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Rule-based Classifiers

• In rule-based learning, the idea is to learn a 
rule from train data in the form IF X THEN Y (or 
a combination of nested conditions) that 
explains when Y would be TRUE 

• Example 

• IF forecast=rainy THEN play=NO 

• If the weather forecast says it is going to rain, 
then we will not have a match tomorrow.
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Pros/Cons
• Advantages of Rule-based Learners 

• Rules are often easier to understand 

• Compare this with the perceptron’s weight vector we studied last week 

• We can handle features (aka attributes) that have categorical values (e.g. 
forecast=sunny/rainy) without requiring those to be mapped to numerical 
values 

• Disadvantages of Rule-based Learners 

• Tend to overfit to the train data more easily than some of the other 
classification algorithms (k-NN, SVMs) 

• Rules can get very complicated when we have millions of features 

• Consider learning a rule for sentiment classification from texts 

• Old-school machine learning :-) but there are some modern versions with 
good performance such as Random Forest Classifiers. 
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Dataset

4

outlook temperature humidity windy play?

sunny hot high FALSE no

sunny hot high TRUE no

overcast hot high FALSE yes

rainy mild high FALSE yes

rainy cool normal FALSE yes

rainy cool normal TRUE no

overcast cool normal TRUE yes

sunny mild high FALSE no

sunny cool normal FALSE yes

rainy mild normal FALSE yes

sunny mild normal TRUE yes

overcast mild high TRUE yes

overcast hot normal FALSE yes

rainy mild high TRUE no



Task
• We would like to learn a rule that predicts when 

we would play 

• IF …..  THEN play=yes 

• Requirements  

• The rule must be accurate (it should correctly 
predict the training instances as much as 
possible) 

• The rule must be simple  

• Occam’s razor
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Occam’s Razor
• If something can be explained by two 

hypotheses A and B, and if A is 
simpler than B, then we should prefer 
A over B 

• Razor? 

• chops off complicated 
explanations such as the 
hypothesis B above 

• Why we would care? 

• Complex rules (lots of IF 
conditions) are likely overfit to the 
train data, which is bad.
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Dataset Properties
• We have 14 training instances 

• We have four features  

• outlook ∈ {sunny, overcast, rainy} 

• temp ∈ {hot, mild, cool} 

• humidity ∈ {high, normal} 

• windy ∈ {FALSE, TRUE} 

• Target prediction 

• play ∈ {yes, no} 

• A binary classification task
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Tree Learning Algorithm

create an empty tree T 

select a feature A from the set of features 

create branches in T for each value v of A 

for each branch 

 recurse with instances where A = v 

 add tree as branch node
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How to select a feature to branch?
• Lets make a random guessing algorithm and see how we 

can improve it 

• Let us assume that we selected “windy” as the first feature 
(selected randomly among the four features in the dataset)
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windy

FALSETRUE

yes = 3 
no = 3

yes = 6 
no = 2

IF windy is TRUE or FALSE, we cannot identify a situation 
where play will always be yes or no. 
Can we find a better feature that splits yes/no “purely”?



Dataset

10

outlook temperature humidity windy play?

sunny hot high FALSE no

sunny hot high TRUE no

overcast hot high FALSE yes

rainy mild high FALSE yes

rainy cool normal FALSE yes

rainy cool normal TRUE no

overcast cool normal TRUE yes

sunny mild high FALSE no

sunny cool normal FALSE yes

rainy mild normal FALSE yes

sunny mild normal TRUE yes

overcast mild high TRUE yes

overcast hot normal FALSE yes

rainy mild high TRUE no



Lets make a second random guess

• Let us assume we selected “outlook” as the 
first feature (selected randomly among the 
four features in the dataset)
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outlook

rainysunny overcast

yes = 2 
no = 3

yes = 4 
no = 0

yes = 3 
no = 2



 Dataset
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outlook temperature humidity windy play?

sunny hot high FALSE no

sunny hot high TRUE no

overcast hot high FALSE yes

rainy mild high FALSE yes

rainy cool normal TRUE yes

rainy cool normal TRUE no

overcast cool normal TRUE yes

sunny mild high FALSE no

sunny cool normal FALSE yes

rainy mild normal FALSE yes

sunny mild normal TRUE yes

overcast mild high TRUE yes

overcast hot normal FALSE yes

rainy mild high TRUE no



Rule we can learn
• IF outlook = overcast THEN play = yes 

• This rule matches 4 out of 14 instances 

• coverage = 4/14 = 0.28 

• When it matches, it is perfect! 

• accuracy = 4/4 = 1.0 

• But what about the 14-4 = 10 instances for which this rule does 
not match? 

• This rule cannot be used to classify those 10 instances. 

• We need to look into the other features as well 

• Features that give us “pure” splits are better because we can 
“divide and conquer” using such features more efficiently!
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Can we express “purity” empirically?

• (yes=4, no=0) is a more pure split than (yes=2, 
no=2). Can we make this intuition empirical? 

• There are numerous measures that would 
evaluate how disproportionate a split is. One 
very popular such measure is the entropy
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Entropy

• Is a measure of “surprise” 

• How surprised will you be if you hear that you 
got a red ball when you randomly picked a ball 
from a bag that has 3 red balls and 3 blue balls 
vs. when you pick a ball from a ball that has 5 
red balls and 1 blue ball? 

• A measure of the amount of information that 
we get when we hear someone picked a red 
ball from the type of bags we discussed above
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Entropy— Definition

• red balls = 3 and blue balls = 3 

• p(red) = 3/6 = 0.5 

• p(blue) = 3/6 = 0.5 

• H(p) = - (0.5 x log(0.5) + 0.5 x log(0.5)) = 1 

• (log(0.5) = -1 for base 2 logarithm) 

• We get 1byte of information (the maximum in this case) when we 
hear some one picked a red ball from this bag because anything is 
possible (50-50 chance) and we have no idea before hand what 
the outcome of this random draw would be.
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H(p) = �
nX

i=1

pi log2 pi



Back to the example

• Play=no for 5 out of the 14 instances in our 
dataset. 

• Therefore, the original entropy (before we do 
any branching) is: 

• -5/14*log(5/14) - 9/14*log(9/14) = 0.9402
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If we select “windy” as the first feature for branching
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windy

FALSETRUE

yes = 3 
no = 3

yes = 6 
no = 2

-3/6*log(3/6)-3/6*log(3/6)  
= 1

-6/8*log(6/8)-2/8*log(2/8)  
= 0.811

We have 6 instances for windy=TRUE and 8 instances for 
windy=FALSE. Therefore, the expected entropy is: 
6/14 * 1 + 8/14 * 0.811 = 0.8919 
Information Gain (IG) = 0.9402 - 0.8919 = 0.0483



Information Gain (IG)
• Information gain (IG) when using a feature f to 

branch the tree is defined as the difference 
between the amount of entropy we have before 
we branch using f and after we branch using f. 

• We would prefer f that would yield the maximum 
information gain 

• If we can gain more information about the 
dataset using a particular feature f then we will 
select that feature first for branching 

• A greedy algorithm but works well in practice
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Computing Entropy
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import math

def log2(x):
    return math.log(x) / math.log(2)

def entropy(x, y):
    t = float(x + y)
    e = (x / t) * log2(x / t) + (y / t) * log2(y / t)
    return -e 

if __name__ == "__main__":
    print entropy(2,6)



On the other hand…

• If we select “outlook” as the first feature
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outlook

rainysunny overcast

yes = 2 
no = 3

yes = 4 
no = 0

yes = 3 
no = 2

H(sunny)=0.9709 H(overcast) = 0 H(rainy)=0.9709

Expected entropy=5/14*H(sunny)+4/14*H(overcast)+5/14*H(rainy) 
	 	 	 	 	 	 = 0.6935 
Information Gain = 0.9402 - 0.6935 = 0.2467



 Dataset
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outlook temperature humidity windy play?

sunny hot high FALSE no

sunny hot high TRUE no

overcast hot high FALSE yes

rainy mild high FALSE yes

rainy cool normal TRUE yes

rainy cool normal TRUE no

overcast cool normal TRUE yes

sunny mild high FALSE no

sunny cool normal FALSE yes

rainy mild normal FALSE yes

sunny mild normal TRUE yes

overcast mild high TRUE yes

overcast hot normal FALSE yes

rainy mild high TRUE no



 Dataset
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outlook temperature humidity windy play?

sunny hot high FALSE no

sunny hot high TRUE no

overcast hot high FALSE yes

rainy mild high FALSE yes

rainy cool normal TRUE yes

rainy cool normal TRUE no

overcast cool normal TRUE yes

sunny mild high FALSE no

sunny cool normal FALSE yes

rainy mild normal FALSE yes

sunny mild normal TRUE yes

overcast mild high TRUE yes

overcast hot normal FALSE yes

rainy mild high TRUE no



Computing Information Gain (IG)
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import math

def log2(x):
    return 0 if x == 0 else math.log(x) / math.log(2)

def entropy(x, y):
    t = float(x + y)
    e = (x / t) * log2(x / t) + (y / t) * log2(y / t)
    return -e 

def IG(L):
    (xold, yold, tot) = (0, 0, 0)
    for (x, y) in L:
        xold += x
        yold += y
        tot += x + y
    original = entropy(xold, yold)
    evals = [entropy(x,y) for (x,y) in L]
    newval = 0
    for i in range(len(L)):
        newval += (float(sum(L[i])) / float(tot)) * evals[i]
    return original - newval

if __name__ == "__main__":
    print "outlook =", IG([(3,2), (0,4), (2,3)])
    print "windy =", IG([(2,6), (3,3)])
    print "temp =", IG([(2,2), (2,4), (1,3)])
    print "humidity =", IG([(4,3), (1,6)])



Computing information gains

• IG(windy) = 0.0483 

• IG(outlook) = 0.2467 

• IG(temp) = 0.029 

• IG(humidity) = 0.1518 

• outlook is the clear winner here. By selecting 
outlook, we maximize the information gain
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First branching
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outlook

rainysunny overcast

yes = 2 
no = 3

yes = 4 
no = 0

yes = 3 
no = 2

We need to further branch the “sunny”  
and “rainy” sub-trees.



outlook=sunny dataset
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outlook temperature humidity windy play?

sunny hot high FALSE no

sunny hot high TRUE no

sunny mild high FALSE no

sunny cool normal FALSE yes

sunny mild normal TRUE yes



No need for math here

• IF outlook=sunny AND humidity=high THEN 
play=no 

• But lets do the math anyway… 

• IG(humidity) = 0.9709 

• IG(temp) = 0.5709 

• IG(windy) = 0.0199 

• “humidity” wins!
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The Decision Tree so far…
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outlook

rainysunny overcast
yes = 2 
no = 3

yes = 4 
no = 0

yes = 3 
no = 2humidity

high normal

yes =0 
no = 3

yes =2 
no = 0



outlook=rainy dataset
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outlook temperature humidity windy play?

rainy mild high FALSE yes

rainy cool normal TRUE yes

rainy cool normal TRUE no

rainy mild normal FALSE yes

rainy mild high TRUE no



Computing Information Gains

• IG(windy) = 0.4199 

• IG(temp) = 0.0199 

• IG(humidity) = 0.0199 

• The largest IG is due to “windy”
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Final Decision Tree
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outlook

windy

sunny overcast
yes = 2 
no = 3

yes = 4 
no = 0

yes = 3 
no = 2

humidity

high normal

yes =0 
no = 3

yes =2 
no = 0

TRUE FALSE

yes = 1 
no = 1

yes = 2 
no = 0

rainy



outlook=rainy AND windy=TRUE dataset
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outlook temperature humidity windy play?

rainy cool normal TRUE yes

rainy cool normal TRUE no

rainy mild high TRUE no



Computing Information Gains

• IG(temp) = 0.2516 

• IG(humidity) = 0.2516 

• No clear winner here. It is a random guess 
between temp vs. humidity 

• Lets select temp
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Final Decision Tree
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outlook

windy

sunny overcast
yes = 2 
no = 3

yes = 4 
no = 0

yes = 3 
no = 2

humidity

high normal

yes =0 
no = 3

yes =2 
no = 0

TRUE FALSE
yes = 1 
no = 1

yes = 2 
no = 0

rainy

temp

cool mild

yes=1,no=1 yes=0,no=1



outlook=rainy AND windy=TRUE AND temp = cool
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outlook temperature humidity windy play?

rainy cool normal TRUE yes

rainy cool normal TRUE no



Final feature selection

• We are only left with humidity 

• But humidity is always “normal” for the 
remaining instances and we have one “yes” 
and one “no” for play. 

• The dataset cannot be further branched 

• All remaining instances (two in total) must be 
included as exceptions (remembered) to the 
rule
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Final Rule

• IF (outlook = overcast) OR  

• ((outlook = sunny) AND (humidity = normal)) 
OR 

• ((outlook = rainy) AND (windy = FALSE) ) 

• THEN play = yes 

• ELSE play = no
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ID3 Algorithm

• The algorithm that we just learnt is called the 
ID3 algorithm (Iterative Dichotomizer) 

• Proposed by John Ross Quinlan 

• J. R. Quinlan, Induction of Decision Trees, 
Machine Learning, pp. 81-106, vol. 1, 1986.
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Dichtomizer



Decision Tree Issues
• Ordering of Attribute Splits 

• As seen, we need to build the tree picking the best attribute to split first. 
(greedy) 

• Numeric/Missing  

• Dividing numeric data is more complicated. We need to perform some form of 
a “binnig” (i.e. discretization) as a pre-processing step. 

• Tree structure 

• A balanced tree with the fewest levels is preferable. 

• Stopping criteria 

• When should we stop (to avoid overfitting) 

• Pruning 

• It may be beneficial (speed/over-fitting) to prune the tree once created. We 
can do this after we have created the tree or while creating the tree 
(incrementally) 
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Quiz
• Learn a decision tree that predicts whether a car is fast from the following dataset.

42


