
Decision Trees
Danushka Bollegala

Rule-based Classifiers

• In rule-based learning, the idea is to learn a
rule from train data in the form IF X THEN Y (or
a combination of nested conditions) that
explains when Y would be TRUE

• Example

• IF forecast=rainy THEN play=NO

• If the weather forecast says it is going to rain,
then we will not have a match tomorrow.

2

Pros/Cons
• Advantages of Rule-based Learners

• Rules are often easier to understand

• Compare this with the perceptron’s weight vector we studied last week

• We can handle features (aka attributes) that have categorical values (e.g.
forecast=sunny/rainy) without requiring those to be mapped to numerical
values

• Disadvantages of Rule-based Learners

• Tend to overfit to the train data more easily than some of the other
classification algorithms (k-NN, SVMs)

• Rules can get very complicated when we have millions of features

• Consider learning a rule for sentiment classification from texts

• Old-school machine learning :-) but there are some modern versions with
good performance such as Random Forest Classifiers.

3

Dataset

4

outlook temperature humidity windy play?

sunny hot high FALSE no

sunny hot high TRUE no

overcast hot high FALSE yes

rainy mild high FALSE yes

rainy cool normal FALSE yes

rainy cool normal TRUE no

overcast cool normal TRUE yes

sunny mild high FALSE no

sunny cool normal FALSE yes

rainy mild normal FALSE yes

sunny mild normal TRUE yes

overcast mild high TRUE yes

overcast hot normal FALSE yes

rainy mild high TRUE no

Task
• We would like to learn a rule that predicts when

we would play

• IF ….. THEN play=yes

• Requirements

• The rule must be accurate (it should correctly
predict the training instances as much as
possible)

• The rule must be simple

• Occam’s razor
5

Occam’s Razor
• If something can be explained by two

hypotheses A and B, and if A is
simpler than B, then we should prefer
A over B

• Razor?

• chops off complicated
explanations such as the
hypothesis B above

• Why we would care?

• Complex rules (lots of IF
conditions) are likely overfit to the
train data, which is bad.

6

William of Ockham
(1287-1347 Surrey UK)

Dataset Properties
• We have 14 training instances

• We have four features

• outlook ∈ {sunny, overcast, rainy}

• temp ∈ {hot, mild, cool}

• humidity ∈ {high, normal}

• windy ∈ {FALSE, TRUE}

• Target prediction

• play ∈ {yes, no}

• A binary classification task
7

Tree Learning Algorithm

create an empty tree T

select a feature A from the set of features

create branches in T for each value v of A

for each branch

 recurse with instances where A = v

 add tree as branch node

8

How to select a feature to branch?
• Lets make a random guessing algorithm and see how we

can improve it

• Let us assume that we selected “windy” as the first feature
(selected randomly among the four features in the dataset)

9

windy

FALSETRUE

yes = 3
no = 3

yes = 6
no = 2

IF windy is TRUE or FALSE, we cannot identify a situation
where play will always be yes or no.
Can we find a better feature that splits yes/no “purely”?

Dataset

10

outlook temperature humidity windy play?

sunny hot high FALSE no

sunny hot high TRUE no

overcast hot high FALSE yes

rainy mild high FALSE yes

rainy cool normal FALSE yes

rainy cool normal TRUE no

overcast cool normal TRUE yes

sunny mild high FALSE no

sunny cool normal FALSE yes

rainy mild normal FALSE yes

sunny mild normal TRUE yes

overcast mild high TRUE yes

overcast hot normal FALSE yes

rainy mild high TRUE no

Lets make a second random guess

• Let us assume we selected “outlook” as the
first feature (selected randomly among the
four features in the dataset)

11

outlook

rainysunny overcast

yes = 2
no = 3

yes = 4
no = 0

yes = 3
no = 2

 Dataset

12

outlook temperature humidity windy play?

sunny hot high FALSE no

sunny hot high TRUE no

overcast hot high FALSE yes

rainy mild high FALSE yes

rainy cool normal TRUE yes

rainy cool normal TRUE no

overcast cool normal TRUE yes

sunny mild high FALSE no

sunny cool normal FALSE yes

rainy mild normal FALSE yes

sunny mild normal TRUE yes

overcast mild high TRUE yes

overcast hot normal FALSE yes

rainy mild high TRUE no

Rule we can learn
• IF outlook = overcast THEN play = yes

• This rule matches 4 out of 14 instances

• coverage = 4/14 = 0.28

• When it matches, it is perfect!

• accuracy = 4/4 = 1.0

• But what about the 14-4 = 10 instances for which this rule does
not match?

• This rule cannot be used to classify those 10 instances.

• We need to look into the other features as well

• Features that give us “pure” splits are better because we can
“divide and conquer” using such features more efficiently!

13

Can we express “purity” empirically?

• (yes=4, no=0) is a more pure split than (yes=2,
no=2). Can we make this intuition empirical?

• There are numerous measures that would
evaluate how disproportionate a split is. One
very popular such measure is the entropy

14

Entropy

• Is a measure of “surprise”

• How surprised will you be if you hear that you
got a red ball when you randomly picked a ball
from a bag that has 3 red balls and 3 blue balls
vs. when you pick a ball from a ball that has 5
red balls and 1 blue ball?

• A measure of the amount of information that
we get when we hear someone picked a red
ball from the type of bags we discussed above

15

Entropy— Definition

• red balls = 3 and blue balls = 3

• p(red) = 3/6 = 0.5

• p(blue) = 3/6 = 0.5

• H(p) = - (0.5 x log(0.5) + 0.5 x log(0.5)) = 1

• (log(0.5) = -1 for base 2 logarithm)

• We get 1byte of information (the maximum in this case) when we
hear some one picked a red ball from this bag because anything is
possible (50-50 chance) and we have no idea before hand what
the outcome of this random draw would be.

16

H(p) = �
nX

i=1

pi log2 pi

Back to the example

• Play=no for 5 out of the 14 instances in our
dataset.

• Therefore, the original entropy (before we do
any branching) is:

• -5/14*log(5/14) - 9/14*log(9/14) = 0.9402

17

If we select “windy” as the first feature for branching

18

windy

FALSETRUE

yes = 3
no = 3

yes = 6
no = 2

-3/6*log(3/6)-3/6*log(3/6)
= 1

-6/8*log(6/8)-2/8*log(2/8)
= 0.811

We have 6 instances for windy=TRUE and 8 instances for
windy=FALSE. Therefore, the expected entropy is:
6/14 * 1 + 8/14 * 0.811 = 0.8919
Information Gain (IG) = 0.9402 - 0.8919 = 0.0483

Information Gain (IG)
• Information gain (IG) when using a feature f to

branch the tree is defined as the difference
between the amount of entropy we have before
we branch using f and after we branch using f.

• We would prefer f that would yield the maximum
information gain

• If we can gain more information about the
dataset using a particular feature f then we will
select that feature first for branching

• A greedy algorithm but works well in practice
19

Computing Entropy

20

import math

def log2(x):
 return math.log(x) / math.log(2)

def entropy(x, y):
 t = float(x + y)
 e = (x / t) * log2(x / t) + (y / t) * log2(y / t)
 return -e

if __name__ == "__main__":
 print entropy(2,6)

On the other hand…

• If we select “outlook” as the first feature

21

outlook

rainysunny overcast

yes = 2
no = 3

yes = 4
no = 0

yes = 3
no = 2

H(sunny)=0.9709 H(overcast) = 0 H(rainy)=0.9709

Expected entropy=5/14*H(sunny)+4/14*H(overcast)+5/14*H(rainy)
	 	 	 	 	 	 = 0.6935
Information Gain = 0.9402 - 0.6935 = 0.2467

 Dataset

22

outlook temperature humidity windy play?

sunny hot high FALSE no

sunny hot high TRUE no

overcast hot high FALSE yes

rainy mild high FALSE yes

rainy cool normal TRUE yes

rainy cool normal TRUE no

overcast cool normal TRUE yes

sunny mild high FALSE no

sunny cool normal FALSE yes

rainy mild normal FALSE yes

sunny mild normal TRUE yes

overcast mild high TRUE yes

overcast hot normal FALSE yes

rainy mild high TRUE no

 Dataset

23

outlook temperature humidity windy play?

sunny hot high FALSE no

sunny hot high TRUE no

overcast hot high FALSE yes

rainy mild high FALSE yes

rainy cool normal TRUE yes

rainy cool normal TRUE no

overcast cool normal TRUE yes

sunny mild high FALSE no

sunny cool normal FALSE yes

rainy mild normal FALSE yes

sunny mild normal TRUE yes

overcast mild high TRUE yes

overcast hot normal FALSE yes

rainy mild high TRUE no

Computing Information Gain (IG)

24

import math

def log2(x):
 return 0 if x == 0 else math.log(x) / math.log(2)

def entropy(x, y):
 t = float(x + y)
 e = (x / t) * log2(x / t) + (y / t) * log2(y / t)
 return -e

def IG(L):
 (xold, yold, tot) = (0, 0, 0)
 for (x, y) in L:
 xold += x
 yold += y
 tot += x + y
 original = entropy(xold, yold)
 evals = [entropy(x,y) for (x,y) in L]
 newval = 0
 for i in range(len(L)):
 newval += (float(sum(L[i])) / float(tot)) * evals[i]
 return original - newval

if __name__ == "__main__":
 print "outlook =", IG([(3,2), (0,4), (2,3)])
 print "windy =", IG([(2,6), (3,3)])
 print "temp =", IG([(2,2), (2,4), (1,3)])
 print "humidity =", IG([(4,3), (1,6)])

Computing information gains

• IG(windy) = 0.0483

• IG(outlook) = 0.2467

• IG(temp) = 0.029

• IG(humidity) = 0.1518

• outlook is the clear winner here. By selecting
outlook, we maximize the information gain

25

First branching

26

outlook

rainysunny overcast

yes = 2
no = 3

yes = 4
no = 0

yes = 3
no = 2

We need to further branch the “sunny”
and “rainy” sub-trees.

outlook=sunny dataset

27

outlook temperature humidity windy play?

sunny hot high FALSE no

sunny hot high TRUE no

sunny mild high FALSE no

sunny cool normal FALSE yes

sunny mild normal TRUE yes

No need for math here

• IF outlook=sunny AND humidity=high THEN
play=no

• But lets do the math anyway…

• IG(humidity) = 0.9709

• IG(temp) = 0.5709

• IG(windy) = 0.0199

• “humidity” wins!

28

The Decision Tree so far…

29

outlook

rainysunny overcast
yes = 2
no = 3

yes = 4
no = 0

yes = 3
no = 2humidity

high normal

yes =0
no = 3

yes =2
no = 0

outlook=rainy dataset

30

outlook temperature humidity windy play?

rainy mild high FALSE yes

rainy cool normal TRUE yes

rainy cool normal TRUE no

rainy mild normal FALSE yes

rainy mild high TRUE no

Computing Information Gains

• IG(windy) = 0.4199

• IG(temp) = 0.0199

• IG(humidity) = 0.0199

• The largest IG is due to “windy”

31

Final Decision Tree

32

outlook

windy

sunny overcast
yes = 2
no = 3

yes = 4
no = 0

yes = 3
no = 2

humidity

high normal

yes =0
no = 3

yes =2
no = 0

TRUE FALSE

yes = 1
no = 1

yes = 2
no = 0

rainy

outlook=rainy AND windy=TRUE dataset

33

outlook temperature humidity windy play?

rainy cool normal TRUE yes

rainy cool normal TRUE no

rainy mild high TRUE no

Computing Information Gains

• IG(temp) = 0.2516

• IG(humidity) = 0.2516

• No clear winner here. It is a random guess
between temp vs. humidity

• Lets select temp

34

Final Decision Tree

35

outlook

windy

sunny overcast
yes = 2
no = 3

yes = 4
no = 0

yes = 3
no = 2

humidity

high normal

yes =0
no = 3

yes =2
no = 0

TRUE FALSE
yes = 1
no = 1

yes = 2
no = 0

rainy

temp

cool mild

yes=1,no=1 yes=0,no=1

outlook=rainy AND windy=TRUE AND temp = cool

36

outlook temperature humidity windy play?

rainy cool normal TRUE yes

rainy cool normal TRUE no

Final feature selection

• We are only left with humidity

• But humidity is always “normal” for the
remaining instances and we have one “yes”
and one “no” for play.

• The dataset cannot be further branched

• All remaining instances (two in total) must be
included as exceptions (remembered) to the
rule

37

Final Rule

• IF (outlook = overcast) OR

• ((outlook = sunny) AND (humidity = normal))
OR

• ((outlook = rainy) AND (windy = FALSE))

• THEN play = yes

• ELSE play = no

38

ID3 Algorithm

• The algorithm that we just learnt is called the
ID3 algorithm (Iterative Dichotomizer)

• Proposed by John Ross Quinlan

• J. R. Quinlan, Induction of Decision Trees,
Machine Learning, pp. 81-106, vol. 1, 1986.

39

40

Dichtomizer

Decision Tree Issues
• Ordering of Attribute Splits

• As seen, we need to build the tree picking the best attribute to split first.
(greedy)

• Numeric/Missing

• Dividing numeric data is more complicated. We need to perform some form of
a “binnig” (i.e. discretization) as a pre-processing step.

• Tree structure

• A balanced tree with the fewest levels is preferable.

• Stopping criteria

• When should we stop (to avoid overfitting)

• Pruning

• It may be beneficial (speed/over-fitting) to prune the tree once created. We
can do this after we have created the tree or while creating the tree
(incrementally)

41

Quiz
• Learn a decision tree that predicts whether a car is fast from the following dataset.

42

