
Information Retrieval
Danushka Bollegala

Anatomy of a Search Engine

 2

Document
Indexing

Query Processing

Results
Ranking

Search Index

Document Processing

• Format detection

• Plain text, PDF, PPT, …

• Text extraction

• Convert to plain text

• Language detection

• Tokenisation

• Indexing

 3

Language Detection
• How to detect the language of a document?

• Check for specific characters such as kanji characters
for Chinese, and Hiragana/Katakana for Japanese,
Hangul for Korean etc.

• Not always perfect

• Some documents might contain multiple languages

• e.g. Japanese web site that teaches English

• Character-based statistical approaches are used

• If we get the language wrong, we will use a wrong
tokeniser

 4

Tokenisation

• If we do not tokenise properly, then we cannot search for
those terms!

• Tokens vs. Words

• Token refers to a single unit of text that we can search for

• the burger i ate was an awesome burger

• tokens = the, burger, i, ate, was, an, awesome, burger

• Tokens might not necessarily be words in English

• Repeating tokens are counted separately

• note the two burger tokens in the previous example

 5

Is tokenisation simple?

• Simple! Just split at spaces to get tokens

• s.split()

• What about the following?

• Dr. D. T. Bollegala

• Should we consider Dr, . , D, ., T, ., Bollegala or Dr., D., T.,
Bollegala?

• Japanese and Chinese languages do not use spaces at all!

• 私は学校に行きました．

• Tokens: 私/は/学校/に/行きました/.

 6

Indexing

• Search engines create an inverted index from
tokens to documents for efficient retrieval

• Similar to the indexes you find at the end of a
text book

• Support Vector Machines p. 13, p. 56, p. 124

• Index is a large table between tokens and
unique document ids

 7

Inverted Index

 8

D1 = I went to school
D2 = The school was closed
D3 = Tomorrow is a holiday

I

went

school

tomorrow

holiday

closed

to

D1

D1

D1

D1

D2

D3

D3

D2

The list of document IDs for
a particular token is called
a posting list

Notes
• We can assign integer IDs to documents so that we can sort

the posting lists.

• By doing so we can quickly answer AND queries.

• We can assign integer ids to terms (tokens) as well. This will
save space.

• We only need to store one entry for a word in a document.
(multiple entries can be ignored, bag-of-words model).

• We need to store the length of a posting list as meta data.

• AND queries

• Start with the shorter posting list.

• Find the document ids in the shorter list in the longer list.
 9

Example

 10

Online edition (c)�2009 Cambridge UP

1.2 A first take at building an inverted index 7

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
Dictionary Postings

! Figure 1.3 The two parts of an inverted index. The dictionary is commonly kept
in memory, with pointers to each postings list, which is stored on disk.

3. Do linguistic preprocessing, producing a list of normalized tokens, which
are the indexing terms: friend roman countryman so . . .

4. Index the documents that each term occurs in by creating an inverted in-
dex, consisting of a dictionary and postings.

We will define and discuss the earlier stages of processing, that is, steps 1–3,
in Section 2.2 (page 22). Until then you can think of tokens and normalized
tokens as also loosely equivalent to words. Here, we assume that the first
3 steps have already been done, and we examine building a basic inverted
index by sort-based indexing.

Within a document collection, we assume that each document has a unique
serial number, known as the document identifier (docID). During index con-DOCID
struction, we can simply assign successive integers to each new document
when it is first encountered. The input to indexing is a list of normalized
tokens for each document, which we can equally think of as a list of pairs of
term and docID, as in Figure 1.4. The core indexing step is sorting this listSORTING

so that the terms are alphabetical, giving us the representation in the middle
column of Figure 1.4. Multiple occurrences of the same term from the same
document are then merged.5 Instances of the same term are then grouped,
and the result is split into a dictionary and postings, as shown in the right
column of Figure 1.4. Since a term generally occurs in a number of docu-
ments, this data organization already reduces the storage requirements of
the index. The dictionary also records some statistics, such as the number of
documents which contain each term (the document frequency, which is hereDOCUMENT

FREQUENCY also the length of each postings list). This information is not vital for a ba-
sic Boolean search engine, but it allows us to improve the efficiency of the

5. Unix users can note that these steps are similar to use of the sort and then uniq commands.

Query = Brutus AND Calpurnia
Results = 2, 31

Start with the posting list for Calpurnia (shorter list),
and check for 2, 31. No point checking any further than
173. We will not find 54 and 101 in Brutus.

AND query processing

 11

Online edition (c)�2009 Cambridge UP

1.3 Processing Boolean queries 11

INTERSECT(p1, p2)
1 answer ← ⟨ ⟩
2 while p1 ̸= NIL and p2 ̸= NIL
3 do if docID(p1) = docID(p2)
4 then ADD(answer, docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then p1 ← next(p1)
9 else p2 ← next(p2)

10 return answer

! Figure 1.6 Algorithm for the intersection of two postings lists p1 and p2.

and walk through the two postings lists simultaneously, in time linear in
the total number of postings entries. At each step, we compare the docID
pointed to by both pointers. If they are the same, we put that docID in the
results list, and advance both pointers. Otherwise we advance the pointer
pointing to the smaller docID. If the lengths of the postings lists are x and
y, the intersection takes O(x + y) operations. Formally, the complexity of
querying is Θ(N), where N is the number of documents in the collection.6
Our indexing methods gain us just a constant, not a difference in Θ time
complexity compared to a linear scan, but in practice the constant is huge.
To use this algorithm, it is crucial that postings be sorted by a single global
ordering. Using a numeric sort by docID is one simple way to achieve this.

We can extend the intersection operation to process more complicated queries
like:

(1.2) (Brutus OR Caesar) AND NOT Calpurnia

Query optimization is the process of selecting how to organize the work of an-QUERY OPTIMIZATION

swering a query so that the least total amount of work needs to be done by
the system. A major element of this for Boolean queries is the order in which
postings lists are accessed. What is the best order for query processing? Con-
sider a query that is an AND of t terms, for instance:

(1.3) Brutus AND Caesar AND Calpurnia

For each of the t terms, we need to get its postings, then AND them together.
The standard heuristic is to process terms in order of increasing document

6. The notation Θ(·) is used to express an asymptotically tight bound on the complexity of
an algorithm. Informally, this is often written as O(·), but this notation really expresses an
asymptotic upper bound, which need not be tight (Cormen et al. 1990).

Skip pointers

• The previous version of answering AND queries is
inefficient.

• O(n+m) if the length of the two posting lists are n and m.

• We can add skip pointers to speed up the search.

• If the value to be searched for is larger than the skip
pointer then we can directly skip over all the values under
the skip pointer.

• How to find skip points? (square root heuristic)

• Trade-off:

• number of skips vs. skip range

 12

Example

 13

Online edition (c)�2009 Cambridge UP

36 2 The term vocabulary and postings lists

! Figure 2.9 Postings lists with skip pointers. The postings intersection can use a
skip pointer when the end point is still less than the item on the other list.

2.3 Faster postings list intersection via skip pointers

In the remainder of this chapter, we will discuss extensions to postings list
data structures and ways to increase the efficiency of using postings lists. Re-
call the basic postings list intersection operation from Section 1.3 (page 10):
we walk through the two postings lists simultaneously, in time linear in the
total number of postings entries. If the list lengths are m and n, the intersec-
tion takes O(m + n) operations. Can we do better than this? That is, empiri-
cally, can we usually process postings list intersection in sublinear time? We
can, if the index isn’t changing too fast.

One way to do this is to use a skip list by augmenting postings lists withSKIP LIST

skip pointers (at indexing time), as shown in Figure 2.9. Skip pointers are
effectively shortcuts that allow us to avoid processing parts of the postings
list that will not figure in the search results. The two questions are then where
to place skip pointers and how to do efficient merging using skip pointers.

Consider first efficient merging, with Figure 2.9 as an example. Suppose
we’ve stepped through the lists in the figure until we have matched 8 on
each list and moved it to the results list. We advance both pointers, giving us
16 on the upper list and 41 on the lower list. The smallest item is then the

element 16 on the top list. Rather than simply advancing the upper pointer,
we first check the skip list pointer and note that 28 is also less than 41. Hence
we can follow the skip list pointer, and then we advance the upper pointer
to 28 . We thus avoid stepping to 19 and 23 on the upper list. A number
of variant versions of postings list intersection with skip pointers is possible
depending on when exactly you check the skip pointer. One version is shown

After matching up to 8, and when we want to match
41 next, we note that at 16 we have a skip of 28. This
means that we will not observe 41 during this skip
range. We can skip over 19 and 23, and resume
the search process from 28. We cannot skip to 72 because
41 is in between 28 and 72.

Disk access vs. Memory access

• Disk seek time = 5ms

• disk read per 1b = 2x10-8s

• memory read per 1b = 10-9s

• Reading from memory is faster compared to disk.

• We need to read in blocks (ca. 64kb) when we
read from the disk because of the seek overhead.

• Main memory is limited (10~100GB) vs. disk
space (1~10TB)

 14

Blocked Sort-Based Indexing

• BSBI (Blocked Sort-based Indexing)

• Segment the document collection into parts
of equal size

• Sort the termID-docID pairs for each block in
memory

• Store intermediate sorted results on disk

• Merge all intermediate results into the final
index

 15

BSBI

 16

Online edition (c)�2009 Cambridge UP

4.2 Blocked sort-based indexing 71

BSBINDEXCONSTRUCTION()
1 n← 0
2 while (all documents have not been processed)
3 do n← n + 1
4 block← PARSENEXTBLOCK()
5 BSBI-INVERT(block)
6 WRITEBLOCKTODISK(block, fn)
7 MERGEBLOCKS(f1, . . . , fn; f merged)

! Figure 4.2 Blocked sort-based indexing. The algorithm stores inverted blocks in
files f1, . . . , fn and the merged index in f merged.

ment of such an algorithm is that it minimize the number of random disk
seeks during sorting – sequential disk reads are far faster than seeks as we
explained in Section 4.1. One solution is the blocked sort-based indexing algo-BLOCKED SORT-BASED

INDEXING ALGORITHM rithm or BSBI in Figure 4.2. BSBI (i) segments the collection into parts of equal
size, (ii) sorts the termID–docID pairs of each part in memory, (iii) stores in-
termediate sorted results on disk, and (iv) merges all intermediate results
into the final index.

The algorithm parses documents into termID–docID pairs and accumu-
lates the pairs in memory until a block of a fixed size is full (PARSENEXTBLOCK
in Figure 4.2). We choose the block size to fit comfortably into memory to
permit a fast in-memory sort. The block is then inverted and written to disk.
Inversion involves two steps. First, we sort the termID–docID pairs. Next,INVERSION

we collect all termID–docID pairs with the same termID into a postings list,
where a posting is simply a docID. The result, an inverted index for the blockPOSTING

we have just read, is then written to disk. Applying this to Reuters-RCV1 and
assuming we can fit 10 million termID–docID pairs into memory, we end up
with ten blocks, each an inverted index of one part of the collection.

In the final step, the algorithm simultaneously merges the ten blocks into
one large merged index. An example with two blocks is shown in Figure 4.3,
where we use di to denote the ith document of the collection. To do the merg-
ing, we open all block files simultaneously, and maintain small read buffers
for the ten blocks we are reading and a write buffer for the final merged in-
dex we are writing. In each iteration, we select the lowest termID that has
not been processed yet using a priority queue or a similar data structure. All
postings lists for this termID are read and merged, and the merged list is
written back to disk. Each read buffer is refilled from its file when necessary.

How expensive is BSBI? Its time complexity is Θ(T log T) because the step
with the highest time complexity is sorting and T is an upper bound for the
number of items we must sort (i.e., the number of termID–docID pairs). But

Example: BSBI

 17

Online edition (c)�2009 Cambridge UP

72 4 Index construction

brutus d1,d3

caesar d1,d2,d4

noble d5

with d1,d2,d3,d5

brutus d6,d7

caesar d8,d9

julius d10

killed d8

postings lists
to be merged

brutus d1,d3,d6,d7

caesar d1,d2,d4,d8,d9

julius d10

killed d8

noble d5

with d1,d2,d3,d5

merged
postings lists

disk

! Figure 4.3 Merging in blocked sort-based indexing. Two blocks (“postings lists to
be merged”) are loaded from disk into memory, merged in memory (“merged post-
ings lists”) and written back to disk. We show terms instead of termIDs for better
readability.

the actual indexing time is usually dominated by the time it takes to parse the
documents (PARSENEXTBLOCK) and to do the final merge (MERGEBLOCKS).
Exercise 4.6 asks you to compute the total index construction time for RCV1
that includes these steps as well as inverting the blocks and writing them to
disk.

Notice that Reuters-RCV1 is not particularly large in an age when one or
more GB of memory are standard on personal computers. With appropriate
compression (Chapter 5), we could have created an inverted index for RCV1
in memory on a not overly beefy server. The techniques we have described
are needed, however, for collections that are several orders of magnitude
larger.

? Exercise 4.1

If we need T log2 T comparisons (where T is the number of termID–docID pairs) and
two disk seeks for each comparison, how much time would index construction for
Reuters-RCV1 take if we used disk instead of memory for storage and an unopti-
mized sorting algorithm (i.e., not an external sorting algorithm)? Use the system
parameters in Table 4.1.

Exercise 4.2 [⋆]

How would you create the dictionary in blocked sort-based indexing on the fly to
avoid an extra pass through the data?

Web scale indexing
• Most large documents collections (e.g. Web) result in indexes that cannot be

stored in a single machine

• Distributed indexing methods are required

• Methods based on MapReduce are used.

 18

Online edition (c)�2009 Cambridge UP

76 4 Index construction

masterassign

map
phase

reduce
phase

assign

parser

splits

parser

parser

inverter

postings

inverter

inverter

a-f

g-p

q-z

a-f g-p q-z

a-f g-p q-z

a-f

segment
files

g-p q-z

! Figure 4.5 An example of distributed indexing with MapReduce. Adapted from
Dean and Ghemawat (2004).

partitioning the keys into j term partitions and having the parsers write key-
value pairs for each term partition into a separate segment file. In Figure 4.5,
the term partitions are according to first letter: a–f, g–p, q–z, and j = 3. (We
chose these key ranges for ease of exposition. In general, key ranges need not
correspond to contiguous terms or termIDs.) The term partitions are defined
by the person who operates the indexing system (Exercise 4.10). The parsers
then write corresponding segment files, one for each term partition. Each
term partition thus corresponds to r segments files, where r is the number
of parsers. For instance, Figure 4.5 shows three a–f segment files of the a–f
partition, corresponding to the three parsers shown in the figure.

Collecting all values (here: docIDs) for a given key (here: termID) into one
list is the task of the inverters in the reduce phase. The master assigns eachINVERTER

term partition to a different inverter – and, as in the case of parsers, reas-
signs term partitions in case of failing or slow inverters. Each term partition
(corresponding to r segment files, one on each parser) is processed by one in-
verter. We assume here that segment files are of a size that a single machine
can handle (Exercise 4.9). Finally, the list of values is sorted for each key and
written to the final sorted postings list (“postings” in the figure). (Note that
postings in Figure 4.6 include term frequencies, whereas each posting in the
other sections of this chapter is simply a docID without term frequency in-
formation.) The data flow is shown for a–f in Figure 4.5. This completes the
construction of the inverted index.

Ranking

• Often there are hundreds of documents that
contain a particular query

• We must rank the search results according to
their relevance to a query

• There are numerous factors that need to be
considered when computing f(q,d), the
relevance of a document d to a query q.

 19

Static Ranking

• The ranking of a document independent of the query

• PageRank is a famous example of a static ranking
algorithm

 20

Discussed later in our
Graph Mining lecture

Dynamic Ranking
• The rank of a document depends on the query

• Features

• term frequency

• PageRank

• novelty of the document

• position of the query within the document

• title, anchor text, links, etc.

• f(q,d) is computed as the linear combination of numerous
features that indicate relevance

• f(q,d) = wTψ(q,d)
 21

How to learn the relevance weights?

• Clickthrough data are collected by the search
engines

• Assume that we entered a query q and obtained a
ranked list of documents d1, d2, d3.

• If we skip d1 and clicked on d2, then the search
engine creates a training instance indicating that
f(q,d2) > f(q,d1)

• Billions of people are using search engines and
clicking on documents, giving a large and cheap
training dataset to learn the relevance function f.

 22

References

 23

PDF available here.
http://www-nlp.stanford.edu/IR-book/

http://www-nlp.stanford.edu/IR-book/

