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Question 1 Let us consider the hinge loss h(y) = max(0, y). Given a train
dataset D = {(xi, ti)}Ni=1, we define the loss of classifying an instance (xn, tn) by
h(−tnw>xn). Here, tn ∈ {1,−1} is the target label of the instance xn. Answer
the following questions about the derivation of the perceptron update rule.

A. Plot the hinge loss as a function of y.

B. Compute the differential h′(y) = dh(y)
dy .

C. Let us define the loss associated with a single instance to be L(xn, tn) =
h(−tnw>xn). Show that this loss function reflects the error-driven learn-
ing approach on which perceptron is based.

D. Write the stochastic gradient descent rule for obtaining a new vector
w(t+1) from the current weight vector w(t) after observing a train instance
(xn, tn). Assume learning rate to be η.

E. Show that when η = 1 the update rule you derived in part D becomes the
perceptron update rule.

F. How does regularization prevent overfitting?

G. Let us now add an `2 regularizer ||w||2 = w>w to our loss function to
design the following objective function.

L(xn, tn) = h(−tnw>xn) + λ||w||2

Derive the perceptron update rule for this case.

H. Write the update rule for the logistic regression classifier.

I. Comparing part E and G, write the update rule for the regularised logistic
regression.
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Answers

A. Hinge loss function is shown in Figure 1.
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Figure 1: Hinge loss function.

B.

h′(y) =

{
0 if y < 0

1 otherwise
(1)

C. If t and w>xn are of opposite signs then we have an error. When this
happens −tw>xn > 0, and h(−tw>xn) = −tw>xn > 0. However, if
there is no classification error, then −tw>xn < 0 and h(−tw>xn) =
0. Therefore, we will have a non-zero loss value only when there is a
classification error.

D. Let us first compute the gradient of the loss function w.r.t. w.

∂L

∂w
= h′(−tnw>xn)︸ ︷︷ ︸

=1

∂

∂w

(
−tnw>xn

)
︸ ︷︷ ︸

=−tnxn

= −tnxn (2)

The SGD update rule is

w(k+1) = w(k) − η ∂L
∂w

= w(k) + ηtnxn (3)

E. When we set η = 1 in (3) we get the update rule for the perceptron which
is,

w(k+1) = w(k) + tnxn

F. Regularization methods such as `2 regularization impose a penalty on the
length of the weight vector. Therefore, if we minimize both the loss and
the regularization term, we obtain a weight vector that not only correctly
classifies the train instances but also has lesser number of non-zero param-
eters. If the weight vector has most elements set to zero (or nearly zero),
it can be considered as a simpler model compared to a weight vector that
does not demonstrate this property. Therefore, from the Occam’s razor
principle we should prefer the simpler weight vector to avoid overfitting.

2



G. The gradient of the objective L w.r.t. w in this case will be

∂L

∂w
= −tnxn︸ ︷︷ ︸

from (2)

+λ
∂

∂w
w>w︸ ︷︷ ︸

=2w

= −tnxn + 2λw

The update rule in this case will be

w(k+1) = w(k) − η ∂L
∂w

= w(k) − η
(
−tnxn + 2λw(k)

)
= w(k)(1− 2ηλ) + ηtnxn (4)

H. Update rule for the logistic regression classifier was

w(k+1) = w(k) − η(yn − tn)xn

where,

yn =
1

1 + exp(−w(k)xn)
.

I. Comparing the update rules in (3) and (4) we see that the effect of adding
an `2 regularization term is adding a 2λw term to the gradient of the
objective function. Therefore, the update rule for the regularized logistic
regression will be,

w(k+1) = w(k) − η
(

(yn − tn)xn + 2λw(k)
)

= w(k)(1− 2ηλ)− η(yn − tn)xn
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