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Question 1 Let us consider the hinge loss h(y) = max(0,y). Given a train
dataset D = {(x;,t;)}},, we define the loss of classifying an instance (z.,,t,) by
h(—t,w'x,). Here, t,, € {1,—1} is the target label of the instance x,,. Answer
the following questions about the derivation of the perceptron update rule.

A. Plot the hinge loss as a function of y.

B. Compute the differential h'(y) = d’;;y).

C. Let us define the loss associated with a single instance to be L(x,,t,) =
h(—t,w"x,). Show that this loss function reflects the error-driven learn-
ing approach on which perceptron is based.

D. Write the stochastic gradient descent rule for obtaining a new vector
w*Y from the current weight vector w(*) after observing a train instance
(zn,t,). Assume learning rate to be 7.

E. Show that when n = 1 the update rule you derived in part D becomes the
perceptron update rule.

F. How does regularization prevent overfitting?

G. Let us now add an ¢y regularizer ||w||> = w w to our loss function to
design the following objective function.

L(xp,tn) = h(—t,w x,) + A|w||2
Derive the perceptron update rule for this case.

H. Write the update rule for the logistic regression classifier.

I. Comparing part E and G, write the update rule for the regularised logistic
regression.



Answers

A. Hinge loss function is shown in Figure 1.

Figure 1: Hinge loss function.

h,(y):{o ify <0 Q)

1 otherwise

C. If t and w "z, are of opposite signs then we have an error. When this
happens —tw 'x, > 0, and h(—tw'x,) = —tw =z, > 0. However, if
there is no classification error, then —tw '@, < 0 and h(—tw'z,) =
0. Therefore, we will have a non-zero loss value only when there is a
classification error.

D. Let us first compute the gradient of the loss function w.r.t. w.
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The SGD update rule is
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E. When we set n =1 in (3) we get the update rule for the perceptron which
is,
w* ) = w® @,

F. Regularization methods such as /s regularization impose a penalty on the
length of the weight vector. Therefore, if we minimize both the loss and
the regularization term, we obtain a weight vector that not only correctly
classifies the train instances but also has lesser number of non-zero param-
eters. If the weight vector has most elements set to zero (or nearly zero),
it can be considered as a simpler model compared to a weight vector that
does not demonstrate this property. Therefore, from the Occam’s razor
principle we should prefer the simpler weight vector to avoid overfitting.



G. The gradient of the objective L w.r.t. w in this case will be
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The update rule in this case will be
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w® (1= 2\) + ntna, (4)

H. Update rule for the logistic regression classifier was
w(k+1) = w(k) - n(yn - tn)xn
where,

1
1+ exp(—w®a,)

Yn

I. Comparing the update rules in (3) and (4) we see that the effect of adding
an {5 regularization term is adding a 2Aw term to the gradient of the
objective function. Therefore, the update rule for the regularized logistic
regression will be,

whD = w® _y ((yn —tn)Tn + 2/\'w(k))

= w(k)(l =20A) = (Yn — tn)Ty



