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Linear Separability

e Consider binary classification of two
dimensional feature vectors

e e.g.features ={good, bad}

e classes ={positiveSentiment,
negativeSentiment}

e |f we can find a straight line that can separate all
positive instances (reviews) from all negative
instances (reviews) then we call such a dataset
to be linearly separable












Higher Dimensions

Reviews contain more than two features
(words)

In N-dimensional space, we must find (n-1)
dimensional hyperplane that separates the two
classes (if they are linearly separable)

n=2 (two dimensional feature space), we had
straight lines (n=1 dimensional hyperplanes)

Hyperplane that separates the two classes
might not be unique (as we saw in our previous
example)



Large Margin Classifiers

e Find two hyperplanes that separates the
positive class and the negative class

e Try to maximise the minimum separation
(distance) between the two hyperplanes

e The distance between the hyperplanes is
called the margin

e Maximising the margin minimises the risk of
misclassifying an instance at test time

e reduces overfitting



Support Vector Machines

e Support Vector Machines (SVMs) are one of the
many large margin classification methods

e Uses a constrained convex optimisation method

e Can handle non-linear separable datasets using

e slack variables

e kernel functions



SVM ldea




Distance to a straight line

e Given a straight line [ ax+by+c=0 show the
perpendicular distance d to [ from a point (a,p) is

Home Work 1
a'1 + b' + C

d= -1
az + 2

10



Distance to a hyperplane

e A hyperplane can be expressed as the inner-product
between a weight vector (coefficients) and a feature
vector (variables corresponding to the dimensions)

e Wx=0

e Then the distance to this hyperplane from a point p,
given by the vector p can be computed as

-

|w]]

o where ||w|| is the norm (L2 length) of the vector w

e Observe that this formula reduces to the one we derived
in the two-dimensional case in the previous slide
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SVM background

Let us assume we are given a training dataset (t,, x,,) of
n=1,...N instances

e targetlabelst,=1{-1,+1} for binary classification

The feature vector for the instance x is represented by ¢(x)

Our classification decision of x is made according to the score
y(x) given by

* y(x)=w'dp(x)+b

Here, w is the weight vector and b is the bias (scalar) term
that adjust any fixed bias from the 0 threshold

o Ify(x) > 0then we classify x to be positive and

e otherwise negative
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SVM Derivation

e |f a point (instance) is correctly classified by the
hyperplane then

o thy(Xn) >0

e The distance from a correctly classified point to
the hyperplane is given by

thy(Xn) _ th(W'! (Xn) + )
Hw # Hw # |
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SVM Derivation

e \We need to find the weight vector w and bias
term b such that this margin is maximised for all
the training instances in our train dataset

1 "t # oo b$(%‘
+
ar%fgax #mfn|Jn n W (X,,)

This is a difbcult optimisation problem involving
min-max. Moreover, it IS scale-invariant meaning

that by setting w» kw and b—kb the term inside
min does not change!
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Simplification!

e Scale the parameters such that a point on the
decision hyperplane satisfies

! |
t, w !l (xy)+ b =1

o All correctly classified data points will then

satisfy g
t, W'l (Xp)+ b I 1, n=1,..., N.

e This is called the canonical representation of the
decision hyperplane
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SVM Derivation 3

Now the margin becomes
thy(Xn) _ th(w' ! (xp)+ ) _ 1

Now our final objective becomes to find w and
b such that we maximise the margin subjected
to the set of constraints that ensures our train
data instances are correctly classified

Maximising margin = minimising the norm ||w||
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SVM Optimisation Problem

e Find wand b such that

e Mminimise
1 5
min =||w
Sl

e subjectedto

! ]|
t, w'!l (x,)+ b ! 1, n=1,..., N.
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Constrained Optimisation

¢ Find x that minimises f(x)
e unconstrained optimisation
e Find x that minimises f(x) subjected to g(x) =0

e constrained optimisation
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unconstrained vs. constrained

e minimise f(x,y) = x2 + y?2

e suchthatg(xy)=y-x-1=0

flzy) ="+ (2 + 1) =22° + 22+ 1

of

= =4+ 2 =10
Ox vt '
r=—1/2

y=xz+1=1/2

min f(z,y) = (=0.5)% + (0.53)%> = 0.5

19



Lagrange Multipliers

e Problem:
e Minimise f(x) subjectedtog(x)! O

e Lagrangian function for the problem becomes
e L(x,A\)="(x)-Ag(x)
e \>0is called the Lagrange variable

e Procedure

e Compute x and A by solving
L L(X,"

e
L(X, ")
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Minimising a two variable functic
f(x,y) w.r.t. x and y means that we a
_______ drawing the contours for f(X,y).

TS, 8xy) =c

Minimising while satisfying g(x,y) =
happens when the two curves touc

k.\«"/ Jp) =d,

D * each other.

\
+--

Pgure from Wikipedia
At this point the two gradients must b

parallel and Iin opposite directions
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Home Work

e Use Lagrangian multiplier method to solve the
optimisation problem in slide 19
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Back to SVM Derivation

1, .7 % %
L(w,b,a) = QHW" H an thiw'!(Xp)+ b#1

n=1

I i
! L(\IN; b1a) =0 * W = antn! (Xn)
' W

n=1

' L(w,b,a) _ RS
5 O = ° E_:t
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SVM

¢ Plugging these back to the Lagrangian function
we get

N

N
Z _% 1> @namtntm Xnaxm)

n=1

»—\(

e Which must be solved subjected to constrains
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Observations

e We must find Lagrange multipliers an, (collectively
denoted by the vector a) such that L(a) is minimised.

e We have the inner-product between two instances
Xn and Xy appearing in the objective function

® K(Xn, Xm) = cI)(Xn)T cI)(Xm)

¢ Only the inner products matter. We do not need
the explicit form of feature vectors d(x)

e (Can be kernalised using numerous kernel
functions to overcome the non-linear separability

Issue.
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Observations

e Note that if the Lagrange multiplier a, = 0, then
the n-th instance has no effect on the objective
function L

e The instances that correspond to non-zero
Lagrange multipliers are the ones that we need
to store in our final model

e Support Vectors

e The instances that appear on top of the
decision hyperplanes and determine its
shape

26



Classification with SVMs

e During test time, to classify a test instance x, we
simply compute the inner-product between x
and each of the support vectors xx

1IAVA
y(x) = antnk(X,X,) + b.

n=1

We still do not need the explicit representation of x of
Xn and can work with the values returned by the kern
function
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Home Work

e Using the decision function y(x) = w'd(x) + b and the result
we obtained for w in slide 23, derlve the classification
function for SVMs in the kernel form as shown in slide 27.

28



Kernel Functions

Linear Kernel
K(Xn,Xm) = Xn! X'm
e Does not use any transformations
Polynomial Kernel
! d
k(x,,xm) = (x, xm,+ c)
e Quadratic (d=2), and Cubic (g=3) are widely used.

e Can account for the combinations of features such as bigrams in text
mining tasks

Sigmoid Kernel
K(Xn,Xm) =tanh( X,' Xy + C)

Exponential Radial Basis Function (RBF) Kernel

NG ! X))
' 21 2

e Subsumes all possible kernel functions

K(Xn,Xm) = exp
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Slack variables

e Sometimes it is easy to shift some of the training
instances (especially around the decision hyperplane)
so that the dataset becomes linearly separable

e Doing this too much will change the train data
significantly and we will not learn the concept
expressed by our train data

e Try to minimise the amount of shifting we do for train
instances to make the problem linearly separable

e Each train instance is associated with a slack variable
that is set to a non-zero value such that the
corresponding training instance is moved sufficiently
to the correct side of the decision hyperplane

30



SVMs and slack variables

y=11 . > 1 misclassibPcation

thy(Xn) ! 11 1, n=1..... N
y=1 slacked version of the constraii

N
1
o OXlntglwi

objective function

1 =0

C: cost-parameter

Higher values of C impose heavier penalties of slack

whereas smaller C values will change the train data

signibcantly. In practice use cross-validation to set C
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SVM slack version

N N N
L(w,b,a) = %"w"2+CZ!n! D an{tay(xa) ! 1+ 030 Dty
n=1 n=1 n=1

oL Y

— =0 = w= a,t,! (x,)
ow o

oL |

— =0 = a,t, =0

ob o

oL

IN |IN

anamthtmK(Xn, Xm)

n=1 m=1

Same Lagrangian as before!3
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SVM Implementations

e LIBSVM

o http://www.csie.ntu.edu.tw/~cjlin/libsvm/

e Availablein a large number of programming
languages

e SVM Light

e http://svmlight.joachims.org/
e can do ranking SVMs
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Home Work

e Use LIBSVM to train a binary sentiment classifier
using the train data provided in the Assignment

1

e Compare the performance with the perceptron
classifier that you implemented
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