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Linear Separability

e Consider binary classification of two
dimensional feature vectors

e e.g.features ={good, bad}

e classes ={positiveSentiment,
negativeSentiment}

e |f we can find a straight line that can separate all
positive instances (reviews) from all negative
instances (reviews) then we call such a dataset
to be linearly separable












Higher Dimensions

Reviews contain more than two features
(words)

In N-dimensional space, we must find (n-1)
dimensional hyperplane that separates the two
classes (if they are linearly separable)

n=2 (two dimensional feature space), we had
straight lines (n=1 dimensional hyperplanes)

Hyperplane that separates the two classes
might not be unique (as we saw in our previous
example)



Large Margin Classifiers

e Find two hyperplanes that separates the
positive class and the negative class

e Try to maximise the minimum separation
(distance) between the two hyperplanes

e The distance between the hyperplanes is
called the margin

e Maximising the margin minimises the risk of
misclassifying an instance at test time

e reduces overfitting



Support Vector Machines

e Support Vector Machines (SVMs) are one of the
many large margin classification methods

e Uses a constrained convex optimisation method

e Can handle non-linear separable datasets using

e slack variables

e kernel functions



SVM ldea




Distance to a straight line

e Given a straight line [ ax+by+c=0 show the
perpendicular distance d to [ from a point (a,p) is
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Distance to a hyperplane

e A hyperplane can be expressed as the inner-product
between a weight vector (coefficients) and a feature
vector (variables corresponding to the dimensions)

e Wix=0

e Then the distance to this hyperplane from a point p,
given by the vector p can be computed as
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o where ||w|| is the norm (L2 length) of the vector w

e Observe that this formula reduces to the one we derived
in the two-dimensional case in the previous slide



SVM background

Let us assume we are given a training dataset (t,, xn) of
n=1,...N instances

e targetlabelst,={-1,+1} for binary classification

The feature vector for the instance x is represented by ¢(x)

Our classification decision of x is made according to the score
y(x) given by

* y(x)=wTp(x)+b

Here, w is the weight vector and b is the bias (scalar) term
that adjust any fixed bias from the 0 threshold

o Ify(x) > 0then we classify x to be positive and

e otherwise negative



SVM Derivation

e |f a point (instance) is correctly classified by the
hyperplane then

o thy(Xn) >0

e The distance from a correctly classified point to
the hyperplane is given by




SVM Derivation

e \We need to find the weight vector w and bias
term b such that this margin is maximised for all
the training instances in our train dataset

arg max{ L in tn (W P(xn) + b)) }

wo LW n

This is a difficult optimisation problem involving
min-max. Moreover, it is scale-invariant meaning
that by setting w—kw and b—kb the term inside
min does not change!



Simplification!

e Scale the parameters such that a point on the
decision hyperplane satisfies

tn (W p(xy,) +b) =1
o All correctly classified data points will then

satisfy
tn (WTqb(Xn)—l—b)>1, n=1,...,N.

e This is called the canonical representation of the
decision hyperplane



SVM Derivation 3

Now the margin becomes
tny(Tn) _ tn(wTﬁb(xn) + b) _ L

Now our final objective becomes to find w and
b such that we maximise the margin subjected
to the set of constraints that ensures our train
data instances are correctly classified

Maximising margin = minimising the norm ||w||
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SVM Optimisation Problem

e Find w and b such that
e Mminimise
1 2
min — ||w|]
2

e subjectedto

tn (W' @(xn) +0) > 1, n=1,..., N.



Constrained Optimisation

¢ Find x that minimises f(x)
e unconstrained optimisation
e Find x that minimises f(x) subjected to g(x) =0

e constrained optimisation



unconstrained vs. constrained

e minimise f(x,y) = x2 + y2

e suchthatg(xy)=y-x-1=0

flzy) ="+ (2 + 1) =22° + 22+ 1

of

= =4+ 2 =10
Ox vt '
r=—1/2

y=xz+1=1/2

min f(z,y) = (=0.5)% + (0.53)%> = 0.5



Constrained Optimisation

¢ Optimisation problem
minimise f(x)
subject to fi(z) <0 i=1,...,m

e Lagrangian
L(QZ, )\, V) — fo(ﬂ?) + Z )\Zfz(a:) + Z Vzhz(a?)

Ai, vi are called Lagrange multipliers. In particular, Ai = 0. (v;
can be anything)

e |f a point x satisfies equality and inequality constraints then it is said to be a feasible
point. We are looking for the feasible point x* that has the smallest f(x*) value
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Dual Function

¢ The minimum value of the Lagrangian w.r.t. X is
called the Lagrange dual function, g(A, v).

xeD xED

g(A,v) = inf L(z, \,v) = inf (fo(a:) + Z/\Zfz(a:) + Zmﬁﬂx))
e gissimply a sum of linear terms (Lagrange multipliers) because x

is fixed.

e gisconvexeven if fis nonconvex because g is the infimum of a
family of affine (linear) functions.

e ggives alower bound for L.

e We would like to find the maximum lower bound of f by
maximising g.
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KKT Conditions

e Karush-Khan-Tucker (KKT) Conditions

e When fis convex, KKT are necessary and sufficient conditions for the
constrained convex optimisation problem (f is convex, f;are convex and
h; are affine)

Primal feasibility fi(z") <0 i=1,...,m
hj(ZIJ*)ZO j=1,. s D

Dual feasibility A>0 i=1,...,m

Complementary slackness A7 f;(z*) =0 i=1,...,m

Stability v, fo(x +Z>\ V. fi(x +Zujv h(
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Minimising a two variable function
f(x,y) w.r.t. x and y means that we are
_____ drawing the contours for f(x,y).
Minimising while satisfying g(x,y) = ¢
, happens when the two curves touch
N Sy =d,
. each other.

figure from Wikipedia

At this point the two gradients must be
parallel and in opposite directions
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Home Work

® Use Lagrangian multiplier method to solve the
optimisation problem in slide 19

24



Back to SVM Derivation
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SVM

¢ Plugging these back to the Lagrangian function we

get the dual function

1 N N

B 5 CL amtntmk(xn7xm)
1

y

Mz

H(

We differentiate the dual, E(a), w.r.t. a, and set to zero
to find the maximiser. We get a set of N linear
simultaneous equations that we can solve to obtain
the Lagrange multipliers subject to the following

constraints
a, = 0, n=1,..., NV,

N
E Antny
n=1
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Observations

e We must find Lagrange multipliers an (collectively
denoted by the vector a) such that L(a) is minimised.

e We have the inner-product between two instances
Xn and Xm appearing in the objective function

® K(Xn, Xm) = cI)(Xn)T cID(Xm)

¢ Only the inner products matter. We do not need
the explicit form of feature vectors d(x)

e (Can be kernalised using numerous kernel
functions to overcome the non-linear separability

Issue.
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Observations

e Note that if the Lagrange multiplier a, = 0, then
the n-th instance has no effect on the objective
function L

e The instances that correspond to non-zero
Lagrange multipliers are the ones that we need
to store in our final model

e Support Vectors

e The instances that appear on top of the
decision hyperplanes and determine its
shape
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Classification with SVMs

e During test time, to classify a test instance x, we
simply compute the inner-product between x
and each of the support vectors xx

N

y(x) = Z antnk(X,X,) + b.

n=1

We still do not need the explicit representation of x or
Xn and can work with the values returned by the kernel
function
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Home Work

e Using the decision function y(x) = wT®d(x) + b and the result
we obtained for w in slide 23, derive the classification
function for SVMs in the kernel form as shown in slide 27.
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Kernel Functions

Linear Kernel

k(x,,x,,) = T

e Does not use any transformations
Polynomial Kernel
T d
k(x,,xm) = (x, T, + c)
e Quadratic (d=2), and Cubic (g=3) are widely used.

e Can account for the combinations of features such as bigrams in text
mining tasks

Sigmoid Kernel

k(, ) = tanh(x, ' &, + c)

Exponential Radial Basis Function (RBF) Kernel

k(@ T) = X (_ (0 — wm)H)

2072

e Subsumes all possible kernel functions
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Slack variables

e Sometimes it is easy to shift some of the training
instances (especially around the decision hyperplane)
so that the dataset becomes linearly separable

e Doing this too much will change the train data
significantly and we will not learn the concept
expressed by our train data

e Try to minimise the amount of shifting we do for train
instances to make the problem linearly separable

e Each train instance is associated with a slack variable
that is set to a non-zero value such that the
corresponding training instance is moved sufficiently
to the correct side of the decision hyperplane
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SVMs and slack variables

y=—1 ¢, > 1 misclassification

y=1 slacked version of the constraint

al 1
O CZ&?@"‘§HWH2
n=1

objective function

£=0

C: cost-parameter
Higher values of C impose heavier penalties of slacking,
whereas smaller C values will change the train data
significantly. In practice use cross-validation to set C.
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L(w,b,a)

SVM slack version

N

N N
— %HWH2+CE_:1§TL_Z@?% {toy(x,) — 1+ fn}—;/ﬁnfn

n=1

Same Lagrangian as before!

34



SVM Implementations

e LIBSVM

o http://www.csie.ntu.edu.tw/~cjlin/libsvm/

e Availablein a large number of programming
languages

e SVM Light

e http://svmlight.joachims.org/
e can do ranking SVMs
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http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://svmlight.joachims.org/

Home Work

e Use LIBSVM to train a binary sentiment classifier
using the train data provided in the Assignment

1

e Compare the performance with the perceptron
classifier that you implemented
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