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Linear Separability

e Consider binary classification of two
dimensional feature vectors

e e.g.features ={good, bad}

e classes ={positiveSentiment,
negativeSentiment}

e |f we can find a straight line that can separate all
positive instances (reviews) from all negative
instances (reviews) then we call such a dataset
to be linearly separable












Higher Dimensions

Reviews contain more than two features
(words)

In N-dimensional space, we must find (n-1)
dimensional hyperplane that separates the two
classes (if they are linearly separable)

n=2 (two dimensional feature space), we had
straight lines (n=1 dimensional hyperplanes)

Hyperplane that separates the two classes
might not be unique (as we saw in our previous
example)



Large Margin Classifiers

e Find two hyperplanes that separates the
positive class and the negative class

e Try to maximise the minimum separation
(distance) between the two hyperplanes

e The distance between the hyperplanes is
called the margin

e Maximising the margin minimises the risk of
misclassifying an instance at test time

e reduces overfitting



Support Vector Machines

e Support Vector Machines (SVMs) are one of the
many large margin classification methods

e Uses a constrained convex optimisation method

e Can handle non-linear separable datasets using

e slack variables

e kernel functions



SVM ldea




Distance to a straight line

e Given a straight line | ax+by+c=0 show the
perpendicular distance d to | from a point (a,p) is

Home Work |




Distance to a hyperplane

e A hyperplane can be expressed as the inner-product
between a weight vector (coefficients) and a feature
vector (variables corresponding to the dimensions)

e Wix=0

e Then the distance to this hyperplane from a point p,
given by the vector p can be computed as
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o where ||w|| is the norm (L2 length) of the vector w

e Observe that this formula reduces to the one we derived
in the two-dimensional case in the previous slide



SVM background

Let us assume we are given a training dataset (t,, xn) of
n=1,...N instances

e targetlabelst,={-1,+1} for binary classification

The feature vector for the instance x is represented by ! (x)

Our classification decision of x is made according to the score
y(x) given by

* y(x)=wTl (x)+b

Here, w is the weight vector and b is the bias (scalar) term
that adjust any fixed bias from the 0 threshold

o Ify(x) > 0then we classify x to be positive and

e otherwise negative



SVM Derivation

e |f a point (instance) is correctly classified by the
hyperplane then

o thy(Xn) >0

e The distance from a correctly classified point to
the hyperplane is given by




SVM Derivation

e \We need to find the weight vector w and bias
term b such that this margin is maximised for all
the training instances in our train dataset

argV]VTax{#\i/#mfr!n[ (W (x,,) + b)}}

This is a difficult optimisation problem involving
min-max. Moreover, it is scale-invariant meaning
that by setting w* kw and b” kb the term inside
min does not change!



Simplification!

e Scale the parameters such that a point on the
decision hyperplane satisfies

th (W'! (Xn)+ b) =1
o All correctly classified data points will then

satisfy
th Wl (x)+ b >1, n=1,...,N.

e Thisis called the canonical representatioof the
decision hyperplane



SVM Derivation 3

Now the margin becomes
thy(zn)  to(w'@(z,) +0) 1

Now our final objective becomes to find w and
b such that we maximise the margin subjected
to the set of constraints that ensures our train
data instances are correctly classified

Maximising margin = minimising the norm ||w||
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SVM Optimisation Problem

e Find w and b such that
e Mminimise
1 5
min éHWH
e subjectedto

th (W o(x,)+ b) > 1, n=1,..., N.



Constrained Optimisation

¢ Find x that minimises f(x)
e unconstrained optimisation
e Find x that minimises f(x) subjected to g(x) =0

e constrained optimisation



unconstrained vs. constrained

e minimise f(x,y) = x2 + y2

e suchthatg(xy)=y-x-1=0

flzy) ="+ (2 + 1) =22° + 22+ 1

of

= =4+ 2 =10
Ox vt '
r=—1/2

y=xz+1=1/2

min f(z,y) = (=0.5)% + (0.53)%> = 0.5



Constrained Optimisation

¢ Optimisation problem
minimise f(x)
subject to fi(z) <0 i=1,...,m

Ai, vi are called Lagrange multipliers. In particular, Ai = 0. (v;
can be anything)

e |f a point x satisfies equality and inequality constraints then it is said to be a feasible
point. We are looking for the feasible point x* that has the smallest f(x*) value
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Dual Function

¢ The minimum value of the Lagrangian w.r.t. X is
called the Lagrange dual function, g(A, v).

..
"nm, np

g(l," Y= inf L(x,1," )=inf fo(x)+ 1.0+  ";hi(x)
xeD x€D i1 i—1

e gissimply a sum of linear terms (Lagrange multipliers) because x
is fixed.

e (isconvex even if fis nonconvex because gis the infimum of a
family of affine (linear) functions.

e ggives alower bound for L

e We would like to find the maximum lower bound of f by
maximising g.
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KKT Conditions

e Karush-Khan-Tucker (KKT) Conditions

e When fis convex, KKT are necessary and sufficient conditions for the
constrained convex optimisation problem (f is convex, fiare convex and

hj are affine)
Primal feasibility fi(z") <0 i=1,...,m
hj(ZIJ*)ZO j=1,. s D
Dual feasibility 10 1=1,...,m
Complementary slackness 1. fj(x')=0 1=1,...,m

Stability 1 ,fo(x)+  AN! xfi(x)+ ! xhj(x)= 0



ldea

Minimising a two variable function
f(x,y) w.r.t. x and y means that we are
_____ drawing the contours for f(x,y).
Minimising while satisfying g(x,y) = ¢
, happens when the two curves touch
N Sy =d,
. each other.

figure from Wikipedia

At this point the two gradients must be
parallel and in opposite directions
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Home Work

® Use Lagrangian multiplier method to solve the
optimisation problem in slide 19
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Back to SVM Derivation

1, .7 % %
L(w,b,a) = éw H an thiw'!(xp)+ b#1

n=1

N
| L(\I/v,b,a) -0 * W antn! (Xn)
| W

n=1
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SVM

¢ Plugging these back to the Lagrangian function we

get the dual function

nN nN N
a=  an —

n=1 nN=1m=1

anamtntm k(Xn, Xm)

NI -

We differentiate the dual, £(a), w.r.t. a, and set to zero
to find the maximiser. We get a set of N linear
simultaneous equations that we can solve to obtain
the Lagrange multipliers subject to the following

constraints
a, | 0, n=1,...,N,

N
at, = 0.

n=1
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Observations

e We must find Lagrange multipliers an (collectively
denoted by the vector a) such that L(a) is minimised.

e We have the inner-product between two instances
Xn and Xm appearing in the objective function

® k(Xn, Xm)="! (Xn)T! (Xm)

¢ Only the inner products matter. We do not need
the explicit form of feature vectors ! (x)

e (Can be kernalisedusing numerous kernel
functions to overcome the non-linear separability

Issue.
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Observations

e Note that if the Lagrange multiplier a, = 0, then
the n-th instance has no effect on the objective
function L

e The instances that correspond to non-zero
Lagrange multipliers are the ones that we need
to store in our final model

e Support Vectors

e The instances that appear on top of the
decision hyperplanes and determine its
shape
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Classification with SVMs

e During test time, to classify a test instance x, we
simply compute the inner-product between x
and each of the support vectors xx

N
Y(X) = Zantnk(x,xn) + D.
n=1

We still do not need the explicit representation of x or
Xn and can work with the values returned by the kernel
function
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Home Work

e Using the decision function y(x) = wT! (x) + b and the result
we obtained for w in slide 23, derive the classification
function for SVMs in the kernel form as shown in slide 27.
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Kernel Functions

Linear Kernel
K(Xn,Xm) = XnTXm
e Does not use any transformations
Polynomial Kernel
— ! d
K(Xn,Xm) =(Xn" Xm + C)
e Quadratic (d=2), and Cubic (g=3) are widely used.

e Can account for the combinations of features such as bigrams in text
mining tasks

Sigmoid Kernel
K(Xn,Xm) =tanh( X,' Xy + C)

Exponential Radial Basis Function (RBF) Kernel

NG ! X))
' 21 2

e Subsumes all possible kernel functions

K(Xn,Xm) = exp
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Slack variables

e Sometimes it is easy to shiftsome of the training
instances (especially around the decision hyperplane)
so that the dataset becomes linearly separable

e Doing this too much will change the train data
significantly and we will not learn the concept
expressed by our train data

e Try to minimise the amount of shifting we do for train
instances to make the problem linearly separable

e Each train instance is associated with a slack variable
that is set to a non-zero value such that the
corresponding training instance is moved sufficiently
to the correct side of the decision hyperplane
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SVMs and slack variables

y=11 | > 1 misclassification
y:O thy(xp) ! 11 1, n=1,...,N
y=1 slacked version of the constraint
| N
. 1" "2
O Cn:1 €n + é W

objective function

C: cost-parameter

Higher values of C impose heavier penalties of slacking,
whereas smaller C values will change the train data
significantly. In practice use cross-validation to set C.
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SVM slack version

1 IN IN IN
L(w,b,a) = EHW"2+C . an {thy(Xp)! 1+ 1,}! Un!n
n=1 n=1 n=1
IIL !N
W:O W: antn! (Xn)
n=1
I N
IIL !
0 =0 a.ntn =0
b n=1
IIL
=0 an=C! u,.

anamthtmK(Xn, Xm)

n=1 m=1

Same Lagrangian as before!
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SVM Implementations

e LIBSVM

o http://www.csie.ntu.edu.tw/~cjlin/libsvm/

e Availablein a large number of programming
languages

e SVM Light

e http://svmlight.joachims.org/
e can do ranking SVMs
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Home Work

e Use LIBSVM to train a binary sentiment classifier
using the train data provided in the Assignment

1

e Compare the performance with the perceptron
classifier that you implemented
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