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Linear Separability
• Consider binary classification of two 

dimensional feature vectors 

• e.g. features = {good, bad} 

• classes = {positiveSentiment, 
negativeSentiment} 

• If we can find a straight line that can separate all 
positive instances (reviews) from all negative 
instances (reviews) then we call such a dataset 
to be linearly separable
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Higher Dimensions
• Reviews contain more than two features 

(words) 

• In N-dimensional space, we must find (n-1) 
dimensional hyperplane that separates the two 
classes (if they are linearly separable) 

• n=2 (two dimensional feature space), we had 
straight lines (n=1 dimensional hyperplanes) 

• Hyperplane that separates the two classes 
might not be unique (as we saw in our previous 
example)

 6



Large Margin Classifiers
• Find two hyperplanes that separates the 

positive class and the negative class 

• Try to maximise the minimum separation 
(distance) between the two hyperplanes 

• The distance between the hyperplanes is 
called the margin 

• Maximising the margin minimises the risk of 
misclassifying an instance at test time 

• reduces overfitting
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Support Vector Machines

• Support Vector Machines (SVMs) are one of the 
many large margin classification methods 

• Uses a constrained convex optimisation method 

• Can handle non-linear separable datasets using 

• slack variables 

• kernel functions
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SVM Idea
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Distance to a straight line
• Given a straight line l ax+by+c=0 show the 

perpendicular distance d to l from a point (α,β) is
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Distance to a hyperplane
• A hyperplane can be expressed as the inner-product 

between a weight vector (coefficients) and a feature 
vector (variables corresponding to the dimensions)  

•  wTx = 0 

• Then the distance to this hyperplane from a point p, 
given by the vector p can be computed as 

• where ||w|| is the norm (L2 length) of the vector w 

• Observe that this formula reduces to the one we derived 
in the two-dimensional case in the previous slide 
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SVM background
• Let us assume we are given a training dataset (tn, xn) of 

n=1,...,N instances 

• target labels tn = {-1, +1}  for binary classification 

• The feature vector for the instance x is represented by ɸ(x) 

• Our classification decision of x is made according to the score 
y(x) given by 

• y(x) = wTɸ(x) + b 

• Here, w is the weight vector and b is the bias (scalar) term 
that adjust any fixed bias from the 0 threshold 

• If y(x) > 0 then we classify x to be positive and 

• otherwise negative
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SVM Derivation
• If a point (instance) is correctly classified by the 

hyperplane then 

• tny(xn) > 0 

• The distance from a correctly classified point to 
the hyperplane is given by
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Figure 7.1 The margin is defined as the perpendicular distance between the decision boundary and the closest
of the data points, as shown on the left figure. Maximizing the margin leads to a particular choice of decision
boundary, as shown on the right. The location of this boundary is determined by a subset of the data points,
known as support vectors, which are indicated by the circles.

having a common parameter σ2. Together with the class priors, this defines an opti-
mal misclassification-rate decision boundary. However, instead of using this optimal
boundary, they determine the best hyperplane by minimizing the probability of error
relative to the learned density model. In the limit σ2 → 0, the optimal hyperplane
is shown to be the one having maximum margin. The intuition behind this result is
that as σ2 is reduced, the hyperplane is increasingly dominated by nearby data points
relative to more distant ones. In the limit, the hyperplane becomes independent of
data points that are not support vectors.

We shall see in Figure 10.13 that marginalization with respect to the prior distri-
bution of the parameters in a Bayesian approach for a simple linearly separable data
set leads to a decision boundary that lies in the middle of the region separating the
data points. The large margin solution has similar behaviour.

Recall from Figure 4.1 that the perpendicular distance of a point x from a hyper-
plane defined by y(x) = 0where y(x) takes the form (7.1) is given by |y(x)|/∥w∥.
Furthermore, we are only interested in solutions for which all data points are cor-
rectly classified, so that tny(xn) > 0for all n. Thus the distance of a point xn to the
decision surface is given by

tny(xn)
∥w∥ =

tn(wTφ(xn) + b)
∥w∥ . (7.2)

The margin is given by the perpendicular distance to the closest point xn from the
data set, and we wish to optimize the parameters w and b in order to maximize this
distance. Thus the maximum margin solution is found by solving

arg max
w,b

{
1

∥w∥ min
n

[
tn

(
wTφ(xn) + b

)]}
(7.3)

where we have taken the factor 1/∥w∥ outside the optimization over n because w



SVM Derivation
• We need to find the weight vector w and bias 

term b such that this margin is maximised for all 
the training instances in our train dataset
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The margin is given by the perpendicular distance to the closest point xn from the
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distance. Thus the maximum margin solution is found by solving
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w,b

{
1

∥w∥ min
n

[
tn

(
wTφ(xn) + b

)]}
(7.3)

where we have taken the factor 1/∥w∥ outside the optimization over n because wThis is a difficult optimisation problem involving 
min-max. Moreover, it is scale-invariant meaning 
that by setting w→kw and b→kb the term inside 
min does not change!



Simplification!

• Scale the parameters such that a point on the 
decision hyperplane satisfies 

• All correctly classified data points will then 
satisfy 

• This is called the canonical representation of the 
decision hyperplane
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does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w ∥,
is unchanged. We can use this freedom to set

tn
(
w Tφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
w Tφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w ∥−1, which is
equivalent to minimizing ∥w ∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w ∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w ∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w , b,a) =
1
2
∥w ∥2 −

N∑

n=1

an

{
tn(w Tφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN )T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w , b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w ∥,
is unchanged. We can use this freedom to set

tn
(
w Tφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
w Tφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w ∥−1, which is
equivalent to minimizing ∥w ∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w ∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w ∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w , b,a) =
1
2
∥w ∥2 −

N∑

n=1

an

{
tn(w Tφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN )T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w , b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)



SVM Derivation 3

• Now the margin becomes 

• Great! 

• Now our final objective becomes to find w and 
b such that we maximise the margin subjected 
to the set of constraints that ensures our train 
data instances are correctly classified 

• Maximising margin = minimising the norm ||w||
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tny(xn)

||w|| =
tn(w>�(xn) + b)

||w|| =
1

||w||



SVM Optimisation Problem

• Find w and b such that  

• minimise  

• subjected to
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min
1

2
||w||2
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Constrained Optimisation

• Find x that minimises f(x) 

• unconstrained optimisation 

• Find x that minimises f(x) subjected to g(x) = 0 

• constrained optimisation
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unconstrained vs. constrained 
• minimise f(x,y) = x2 + y2 

• such that g(x,y) = y -x - 1 = 0
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Constrained Optimisation
• Optimisation problem 
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• Lagrangian 

Chapter 5

Duality

5.1 The Lagrange dual function

5.1.1 The Lagrangian

We consider an optimization problem in the standard form (4.1):

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,
(5.1)

with variable x ∈ Rn. We assume its domain D =
⋂m

i=0 dom fi ∩
⋂p

i=1 domhi

is nonempty, and denote the optimal value of (5.1) by p⋆. We do not assume the
problem (5.1) is convex.

The basic idea in Lagrangian duality is to take the constraints in (5.1) into
account by augmenting the objective function with a weighted sum of the constraint
functions. We define the Lagrangian L : Rn × Rm × Rp → R associated with the
problem (5.1) as

L(x,λ, ν) = f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

νihi(x),

with domL = D×Rm ×Rp. We refer to λi as the Lagrange multiplier associated
with the ith inequality constraint fi(x) ≤ 0; similarly we refer to νi as the Lagrange
multiplier associated with the ith equality constraint hi(x) = 0. The vectors λ and
ν are called the dual variables or Lagrange multiplier vectors associated with the
problem (5.1).

λi, νi are called Lagrange multipliers. In particular, λi ≥ 0. (νi 

can be anything)

• If a point x satisfies equality and inequality constraints then it is said to be a feasible 
point. We are looking for the feasible point x* that has the smallest f(x*) value



Dual Function
• The minimum value of the Lagrangian w.r.t. x is 

called the Lagrange dual function, g(λ, ν).
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5.1.2 The Lagrange dual function

We define the Lagrange dual function (or just dual function) g : Rm ×Rp → R as
the minimum value of the Lagrangian over x: for λ ∈ Rm, ν ∈ Rp,

g(λ, ν) = inf
x∈D

L(x,λ, ν) = inf
x∈D

(

f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

νihi(x)

)

.

When the Lagrangian is unbounded below in x, the dual function takes on the
value −∞. Since the dual function is the pointwise infimum of a family of affine
functions of (λ, ν), it is concave, even when the problem (5.1) is not convex.

5.1.3 Lower bounds on optimal value

The dual function yields lower bounds on the optimal value p⋆ of the problem (5.1):
For any λ ≽ 0 and any ν we have

g(λ, ν) ≤ p⋆. (5.2)

This important property is easily verified. Suppose x̃ is a feasible point for the
problem (5.1), i.e., fi(x̃) ≤ 0 and hi(x̃) = 0, and λ ≽ 0. Then we have

m∑

i=1

λifi(x̃) +
p∑

i=1

νihi(x̃) ≤ 0,

since each term in the first sum is nonpositive, and each term in the second sum is
zero, and therefore

L(x̃,λ, ν) = f0(x̃) +
m∑

i=1

λifi(x̃) +
p∑

i=1

νihi(x̃) ≤ f0(x̃).

Hence
g(λ, ν) = inf

x∈D
L(x,λ, ν) ≤ L(x̃,λ, ν) ≤ f0(x̃).

Since g(λ, ν) ≤ f0(x̃) holds for every feasible point x̃, the inequality (5.2) follows.
The lower bound (5.2) is illustrated in figure 5.1, for a simple problem with x ∈ R
and one inequality constraint.

The inequality (5.2) holds, but is vacuous, when g(λ, ν) = −∞. The dual
function gives a nontrivial lower bound on p⋆ only when λ ≽ 0 and (λ, ν) ∈ dom g,
i.e., g(λ, ν) > −∞. We refer to a pair (λ, ν) with λ ≽ 0 and (λ, ν) ∈ dom g as dual
feasible, for reasons that will become clear later.

5.1.4 Linear approximation interpretation

The Lagrangian and lower bound property can be given a simple interpretation,
based on a linear approximation of the indicator functions of the sets {0} and −R+.

• g is simply a sum of linear terms (Lagrange multipliers) because x 
is fixed.  

• g is convex even if f is nonconvex because g is the infimum of a 
family of affine (linear) functions. 

• g gives a lower bound for L.  

• We would like to find the maximum lower bound of f by 
maximising g.



KKT Conditions
• Karush-Khan-Tucker (KKT) Conditions 

• When f is convex, KKT are necessary and sufficient conditions for the 
constrained convex optimisation problem (f is convex, fi are convex and 
hj are affine)
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Primal feasibility

Dual feasibility

Complementary slackness

Stability

�⇤
i � 0 i = 1, . . . ,m

�⇤
i fi(x

⇤) = 0 i = 1, . . . ,m

rxf0(x) +
X

i

�irxfi(x) +
X

j

⌫jrxhj(x) = 0



Idea 
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Minimising a two variable function 
f(x,y) w.r.t. x and y means that we are 
drawing the contours for f(x,y).

Minimising while satisfying g(x,y) = c 
happens when the two curves touch 
each other.

At this point the two gradients must be 
parallel and in opposite directions

figure from Wikipedia



Home Work
• Use Lagrangian multiplier method to solve the 

optimisation problem in slide 19

 24



Back to SVM Derivation
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does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w ∥,
is unchanged. We can use this freedom to set

tn
(
w Tφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
w Tφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w ∥−1, which is
equivalent to minimizing ∥w ∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w ∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w ∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w , b,a) =
1
2
∥w ∥2 −

N∑

n=1

an

{
tn(w Tφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN )T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w , b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

@L(w, b,a)

@w
= 0
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∥w ∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w ∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w , b,a) =
1
2
∥w ∥2 −

N∑

n=1

an

{
tn(w Tφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN )T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w , b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)



SVM
• Plugging these back to the Lagrangian function we 

get the dual function 

• We differentiate the dual,        , w.r.t. an and set to zero 
to find the maximiser. We get a set of N linear 
simultaneous equations that we can solve to obtain 
the Lagrange multipliers subject to the following 
constraints
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Eliminating w and b from L(w , b,a) using these conditions then gives the dual
representation of the maximum margin problem in which we maximize

L̃(a) =
N∑

n=1

an − 1
2

N∑

n=1

N∑

m=1

anamtntmk(xn,xm) (7.10)

with respect to a subject to the constraints

an ! 0, n = 1, . . . , N, (7.11)
N∑

n=1

antn = 0. (7.12)

Here the kernel function is defined by k(x,x′) = φ(x)Tφ(x′). Again, this takes the
form of a quadratic programming problem in which we optimize a quadratic function
of a subject to a set of inequality constraints. We shall discuss techniques for solving
such quadratic programming problems in Section 7.1.1.

The solution to a quadratic programming problem in M variables in general has
computational complexity that is O(M3). In going to the dual formulation we have
turned the original optimization problem, which involved minimizing (7.6) over M
variables, into the dual problem (7.10), which has N variables. For a fixed set of
basis functions whose number M is smaller than the number N of data points, the
move to the dual problem appears disadvantageous. However, it allows the model to
be reformulated using kernels, and so the maximum margin classifier can be applied
efficiently to feature spaces whose dimensionality exceeds the number of data points,
including infinite feature spaces. The kernel formulation also makes clear the role
of the constraint that the kernel function k(x,x′) be positive definite, because this
ensures that the Lagrangian function L̃(a) is bounded below, giving rise to a well-
defined optimization problem.

In order to classify new data points using the trained model, we evaluate the sign
of y(x) defined by (7.1). This can be expressed in terms of the parameters {an} and
the kernel function by substituting for w using (7.8) to give

y(x) =
N∑

n=1

antnk(x,xn) + b. (7.13)

Joseph-Louis Lagrange
1736–1813

Although widely considered to be
a French mathematician, Lagrange
was born in Turin in Italy. By the age
of nineteen, he had already made
important contributions mathemat-
ics and had been appointed as Pro-

fessor at the Royal Artillery School in Turin. For many

years, Euler worked hard to persuade Lagrange to
move to Berlin, which he eventually did in 1766 where
he succeeded Euler as Director of Mathematics at
the Berlin Academy. Later he moved to Paris, nar-
rowly escaping with his life during the French revo-
lution thanks to the personal intervention of Lavoisier
(the French chemist who discovered oxygen) who him-
self was later executed at the guillotine. Lagrange
made key contributions to the calculus of variations
and the foundations of dynamics.
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L̃(a)



Observations
• We must find Lagrange multipliers an (collectively 

denoted by the vector a) such that L(a) is minimised. 

• We have the inner-product between two instances 
xn and xm appearing in the objective function 

• k(xn, xm) = ɸ(xn)T ɸ(xm) 

• Only the inner products matter. We do not need 
the explicit form of feature vectors ɸ(x) 

• Can be kernalised using numerous kernel 
functions to overcome the non-linear separability 
issue.
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Observations
• Note that if the Lagrange multiplier an = 0, then 

the n-th instance has no effect on the objective 
function L 

• The instances that correspond to non-zero 
Lagrange multipliers are the ones that we need 
to store in our final model 

• Support Vectors 

• The instances that appear on top of the 
decision hyperplanes and determine its 
shape

 28



Classification with SVMs
• During test time, to classify a test instance x, we 

simply compute the inner-product between x 
and each of the support vectors xn

 29

7.1. Maximum Margin Classifiers 329

Eliminating w and b from L(w , b,a) using these conditions then gives the dual
representation of the maximum margin problem in which we maximize

L̃(a) =
N∑

n=1

an − 1
2

N∑

n=1

N∑

m=1

anamtntmk(xn,xm) (7.10)

with respect to a subject to the constraints

an ! 0, n = 1, . . . , N, (7.11)
N∑

n=1

antn = 0. (7.12)

Here the kernel function is defined by k(x,x′) = φ(x)Tφ(x′). Again, this takes the
form of a quadratic programming problem in which we optimize a quadratic function
of a subject to a set of inequality constraints. We shall discuss techniques for solving
such quadratic programming problems in Section 7.1.1.

The solution to a quadratic programming problem in M variables in general has
computational complexity that is O(M3). In going to the dual formulation we have
turned the original optimization problem, which involved minimizing (7.6) over M
variables, into the dual problem (7.10), which has N variables. For a fixed set of
basis functions whose number M is smaller than the number N of data points, the
move to the dual problem appears disadvantageous. However, it allows the model to
be reformulated using kernels, and so the maximum margin classifier can be applied
efficiently to feature spaces whose dimensionality exceeds the number of data points,
including infinite feature spaces. The kernel formulation also makes clear the role
of the constraint that the kernel function k(x,x′) be positive definite, because this
ensures that the Lagrangian function L̃(a) is bounded below, giving rise to a well-
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In order to classify new data points using the trained model, we evaluate the sign
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the kernel function by substituting for w using (7.8) to give

y(x) =
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Joseph-Louis Lagrange
1736–1813

Although widely considered to be
a French mathematician, Lagrange
was born in Turin in Italy. By the age
of nineteen, he had already made
important contributions mathemat-
ics and had been appointed as Pro-

fessor at the Royal Artillery School in Turin. For many

years, Euler worked hard to persuade Lagrange to
move to Berlin, which he eventually did in 1766 where
he succeeded Euler as Director of Mathematics at
the Berlin Academy. Later he moved to Paris, nar-
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lution thanks to the personal intervention of Lavoisier
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and the foundations of dynamics.

We still do not need the explicit representation of x or 
xn and can work with the values returned by the kernel 
function



Home Work
• Using the decision function y(x) = wTɸ(x) + b and the result 

we obtained for w in slide 23, derive the classification 
function for SVMs in the kernel form as shown in slide 27.
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Kernel Functions
• Linear Kernel 

• Does not use any transformations 

• Polynomial Kernel 

• Quadratic (d=2), and Cubic (q=3) are widely used. 

• Can account for the combinations of features such as bigrams in text 
mining tasks 

• Sigmoid Kernel 

• Exponential Radial Basis Function (RBF) Kernel 

• Subsumes all possible kernel functions
 31

k(xn,xm) = xn
>xm

k(xn,xm) = (xn
>xm + c)d

k(xn,xm) = tanh(xn
>xm + c)

k(xn,xm) = exp

✓
� ||(xn � xm)||

2�2

◆



Slack variables
• Sometimes it is easy to shift some of the training 

instances (especially around the decision hyperplane) 
so that the dataset becomes linearly separable 

• Doing this too much will change the train data 
significantly and we will not learn the concept 
expressed by our train data 

• Try to minimise the amount of shifting we do for train 
instances to make the problem linearly separable 

• Each train instance is associated with a slack variable 
that is set to a non-zero value such that the 
corresponding training instance is moved sufficiently 
to the correct side of the decision hyperplane
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SVMs and slack variables

 33

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0< ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w ∥2 (7.21)

where the parameter C > 0controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w , b,a) =
1
2
∥w ∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)
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misclassification

slacked version of the constraint

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0< ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w ∥2 (7.21)

where the parameter C > 0controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by
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∥w ∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

objective function

C: cost-parameter
Higher values of C impose heavier penalties of slacking, 
whereas smaller C values will change the train data 
significantly. In practice use cross-validation to set C.



SVM slack version
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where {an ! 0} and {µn ! 0} are Lagrange multipliers. The corresponding set of
KKT conditions are given byAppendix E

an ! 0 (7.23)
tny(xn) − 1 + ξn ! 0 (7.24)

an (tny(xn) − 1 + ξn) = 0 (7.25)
µn ! 0 (7.26)
ξn ! 0 (7.27)

µnξn = 0 (7.28)

where n = 1, . . . , N .
We now optimize out w , b, and {ξn} making use of the definition (7.1) of y(x)

to give

∂L

∂w
= 0 ⇒ w =

N∑

n=1

antnφ(xn) (7.29)

∂L

∂b
= 0 ⇒

N∑

n=1

antn = 0 (7.30)

∂L

∂ξn
= 0 ⇒ an = C − µn. (7.31)

Using these results to eliminate w , b, and {ξn} from the Lagrangian, we obtain the
dual Lagrangian in the form

L̃(a) =
N∑

n=1

an − 1
2

N∑

n=1

N∑

m=1

anamtntmk(xn,xm) (7.32)

which is identical to the separable case, except that the constraints are somewhat
different. To see what these constraints are, we note that an ! 0is required because
these are Lagrange multipliers. Furthermore, (7.31) together with µn ! 0implies
an " C. We therefore have to minimize (7.32) with respect to the dual variables
{an} subject to

0" an " C (7.33)
N∑

n=1

antn = 0 (7.34)

for n = 1, . . . , N , where (7.33) are known as box constraints. This again represents
a quadratic programming problem. If we substitute (7.29) into (7.1), we see that
predictions for new data points are again made by using (7.13).

We can now interpret the resulting solution. As before, a subset of the data
points may have an = 0, in which case they do not contribute to the predictive
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Same Lagrangian as before!



SVM Implementations

• LIBSVM 

• http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

• Available in a large number of programming 
languages 

• SVM Light 

• http://svmlight.joachims.org/ 

• can do ranking SVMs
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Home Work

• Use LIBSVM to train a binary sentiment classifier 
using the train data provided in the Assignment 
1 

• Compare the performance with the perceptron 
classifier that you implemented
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