Dr. Danushka Bollegala Tel. No. 0151 7954283 EXAMINER: **DEPARTMENT:** Computer Science

SECOND SEMESTER EXAMINATIONS 2017/18

Data Mining and Visualisation

TIME ALLOWED : Two and a Half Hours

INSTRUCTIONS TO CANDIDATES

Answer **FOUR** questions.

If you attempt to answer more questions than the required number of questions, the marks awarded for the excess questions answered will be discarded (starting with your lowest mark).

Question 1 Consider the sentence

S = "I would love to go to London by train tomorrow or at least by bus next week". Answer the following questions.

Α.	Given the stop word list [to, at, by, the, or, would], represent S as unigrams.	a bag-of- (2 marks)
В.	Generate all possible bigrams from <i>S</i> without removing the stop words. How made you get?	any bigrams (2 marks)
C.	Generate all possible bigrams from S after removing the stop words from S . bigrams do you get?	How many (2 marks)
D.	State one advantage of removing stop words in text mining tasks.	(2 marks)
Ε.	State one disadvantage of removing stop words in text mining tasks.	(2 marks)
F.	What is meant by part-of-speech in text mining?	(2 marks)
G.	Given the unigram feature set {London, train, bus, John, week, love, Liverpool}, it by a binary-valued feature vector \boldsymbol{s}	represent <i>S</i> (2 marks)
н.	Compute the ℓ_2 norm of s .	(2 marks)
I.	Compute the ℓ_1 norm of s .	(2 marks)
J.	Assume that the <i>d</i> -dimensional pre-trained word embedding for a word w is give	en by v(w).

- **J.** Assume that the *d*-dimensional pre-trained word embedding for a word *w* is given by v(w). Let us denote the set of unigrams computed in part (A) above by \mathcal{V} . Propose a method to create a *d*-dimensional embedding for the sentence *s* using \mathcal{V} and the word embeddings. (3 marks)
- K. State a disadvantage of the sentence embedding method that you described in part (J).
 (2 marks)
- L. Propose a method to overcome the disadvantage that you described in part (K). (2 marks)

Question 2 Consider a training dataset $\mathcal{D} = \{(\mathbf{x}_n, t_n)\}_{n=1}^4$, where $\mathbf{x}_n \in \mathbb{R}^2$ and $t_n \in \{-1, 1\}$. Here, $\mathbf{x}_1 = (0, 1)^\top$, $\mathbf{x}_2 = (-1, 0)^\top$, $\mathbf{x}_3 = (0, -1)^\top$, and $\mathbf{x}_4 = (1, 0)^\top$. We would like to train a binary Perceptron on \mathcal{D} parametrised by the weight vector $\mathbf{w} = (\alpha, \beta)^\top$ and bias *b*. Answer the following questions.

- **A.** Show that if the labels are $t_1 = t_2 = 1$ and $t_3 = t_4 = -1$, then \mathcal{D} can be perfectly classified by the Perceptron with $\mathbf{w} = (-1, 1)$ and b = 0. (4 marks)
- **B.** Now let us relabel \mathcal{D} such that $t_1 = t_4 = 1$ and $t_2 = t_3 = -1$. Initialising $\alpha = \beta = b = 0$ and visiting the training instances in \mathcal{D} once in the order $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$, and \mathbf{x}_4 , compute the final weight vector and the bias. (4 marks)
- **C.** Now let us relabel \mathcal{D} such that $t_1 = t_3 = 1$ and $t_2 = t_4 = -1$. Assuming that b = 0, write the conditions that must be satisfied by the activation scores for each of the four points in \mathcal{D} , if it is to be correctly classified by $\mathbf{w} = (\alpha, \beta)$. (4 marks)
- **D.** Using the inequalities you wrote in part (c) show that there does not exist a Perceptron that can linearly separate \mathcal{D} with a zero bias. (2 marks)
- **E.** Show that when $t_1 = t_3 = 1$ and $t_2 = t_4 = -1$, there does not exist a Perceptron even with $b \neq 0$. (3 marks)
- **F.** Given a feature vector $\mathbf{x} = (x_1, x_2)^{\top}$, let us consider a kernel ψ that maps $\mathbf{x} \in \mathbb{R}^2$ to $\mathbf{x}^* \in \mathbb{R}^4$ such that $\mathbf{x}^* = (x_1, x_2, x_1^2, x_2^2)^{\top}$. Compute the projections $\mathbf{x}_1^*, \mathbf{x}_2^*, \mathbf{x}_3^*$, and \mathbf{x}_4^* respectively of $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$, and \mathbf{x}_4 under ψ . (4 marks)
- **G.** Is $\mathcal{D}^* = \{(\mathbf{x}_1^*, 1), (\mathbf{x}_2^*, -1), (\mathbf{x}_3^*, 1), (\mathbf{x}_4^*, -1)\}$ linearly separable? If yes, then give a weight vector and a bias term of a Perceptron that would correctly classify all four instances in \mathcal{D}^* . If no, then explain why \mathcal{D}^* is not linearly separable. (4 marks)

Question 3 Consider five data points in \mathbb{R}^2 given by $\mathbf{x}_1 = (0,0)^{\top}$, $\mathbf{x}_2 = (1,0)^{\top}$, $\mathbf{x}_3 = (1,1)^{\top}$, $\mathbf{x}_4 = (0,1)^{\top}$, and $\mathbf{x}_5 = (-1,-1)^{\top}$. Answer the following questions about this dataset.

- **A.** Let us assume that we clustered this dataset into two clusters $S_1 = \{x_4, x_3\}$ and $S_2 = \{x_1, x_2, x_5\}$. Moreover, let us represent S_1 and S_2 by two 2-dimensional vectors respectively μ_1 and μ_2 . Write the within-cluster sum of squares objective, $f(S_1, S_2)$ for this clustering. (3 marks)
- **B.** Write μ_1 and μ_2 that would minimise $f(S_1, S_2)$.
- **C.** Assuming that we initialised μ_1 and μ_2 such that $\mu_1 = (0.5, 0.5)^{\top}$ and $\mu_2 = (-2, -2)^{\top}$. Following the procedure of *k*-means clustering, assign the data points $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5$ to the two clusters S_1 and S_2 represented respectively by μ_1 and μ_2 . (2 marks)
- **D.** Compute the next values for μ_1 and μ_2 following the assignment done in part (3). (2 marks)
- E. Has the k-means clustering converged after the update in part (D)? Explain your answer.
 (4 marks)
- **F.** Consider the two clusters $S_1 = \{R, R, B\}$ and $S_2 = \{R, B\}$ consisting of red (R) and blue (B) colour balls. Compute the purity for this clustering. (3 marks)
- G. Compute the rand index for the clustering described in part (F). (4 marks)
- H. Compute the precision, recall and F-score for the clustering described in part (F). (3 marks)

(4 marks)

Question 4

A. Consider flipping a coin *C* and a dice *D* at the same time and observing the outcomes. The events corresponding to the two sides of the coin are denoted by c_1 (head) and c_2 (tail), whereas those for the dice are denoted by d_1 , d_2 , d_3 , d_4 , d_5 , d_6 respectively for the six sides of the dice. The probability of an event *e* is denoted by p(e). The joint observations from 40 trials are summarised in Table 1. Answer the following questions about this experiment.

	d_1	d_2	d_3	d_4	d_5	d_6
<i>C</i> ₁	2	4	3	5	2	4
<i>C</i> ₂	3	3	4	2	4	4

Table 1: Frequency of the events observed in the experiment.

- (a) Compute $p(c_1)$, $p(c_2)$ and decide whether C is a biased coin or not. (3 marks)
- (b) Compute the mutual information between C and D. (You do not need to simplify the logarithms)(4 marks)
- **B.** Consider four product reviews r_1 , r_2 , r_3 , r_4 represented in a three dimensional feature space consisting of the unigrams *awesome*, *awful* and *burger*. The frequency of each unigram in each review is shown in Table 2 and their sentiment labels (1 and -1 respectively denote positive and negative sentiment). Answer the following questions.

Review	awesome	awful	burger	label (t)
<i>r</i> ₁	2	0	3	1
<i>r</i> ₂	2	1	0	1
<i>r</i> 3	0	2	2	-1
<i>r</i> ₄	2	3	1	-1

Table 2: A set of four reviews represented using three attributes.

- (a) Compute the marginal probabilities *p*(awesome), *p*(awful) and *p*(burger). (3 marks)
- (b) Compute the conditional probabilities p(awesome|t = 1), p(awful|t = 1) and p(burger|t = 1). (3 marks)
- (c) Compute p(t = 1) and p(t = -1).
- (d) Compute $p(t = 1|r_4)$ (You do not need to simplify the answer). (4 marks)
- (e) Apply Laplace smoothing for the occurrences of attributes in reviews shown in Table 2 and compute $p(t = 1|r_3)$ using the smoothed counts. (You do not need to simplify the answer) (6 marks)

(2 marks)

Question 5 Consider the neural network with one hidden layer shown in Figure 1. Here, a twodimensional input (represented by two features x_1, x_2) is multiplied by a weight matrix **W** and subsequently a nonlinear activation of $tanh(\theta) = \frac{exp(\theta) - exp(-\theta)}{exp(\theta) + exp(-\theta)}$ is applied. The outputs after applying the activation at the hidden layer are z_1 and z_2 , which are linearly weighted respectively by u_1 and u_2 to compute the prediction *y*. The output *y* is compared against the target output *t* for the instance $\mathbf{x} = (x_1, x_2)^{\top}$ to compute the loss given by

$$E(\boldsymbol{x},t)=\frac{1}{2}(\boldsymbol{y}-t)^2$$

Answer the following questions.

Figure 1: A neural network that takes two-dimensional feature vector and applies a tanh activation in the hidden layer. The weight connecting nodes x_i and z_j is set to w_{ij} , whereas the weight connecting node z_i to the output node y is set to u_i .

- **A.** Express the output y in terms of z_1, u_1, z_2, u_2 . (2 marks)
- **B.** Write z_1 using the input, weights in the first layer and the activation function. (2 marks)
- **C.** Write the loss gradient w.r.t. *y*.
- **D.** Show that

$$\frac{\partial z_1}{\partial w_{11}} = \left(1 - \tanh^2 \left(x_1 w_{11} + x_2 w_{21}\right)\right) x_1.$$

(4 marks)

(2 marks)

- **E.** Write $\frac{\partial E}{\partial w_{11}}$, the loss gradient w.r.t. w_{11} . (4 marks)
- **F.** Derive the stochastic gradient descent update rule for w_{11} . (3 marks)
- **G.** Explain why it would be inappropriate to initialise the weights w_{ij} in the first layer to high numerical values. (2 marks)
- H. State a solution that you can use to reduce the overfitting in a neural network. (2 marks)

Continued

I. Consider the ℓ_2 regularised version of the loss function given by

$$E(\boldsymbol{x},t) = \frac{1}{2}(y-t)^2 + \lambda(w_{11}^2 + w_{12}^2 + w_{21}^2 + w_{22}^2) + \mu(u_1^2 + u_2^2),$$

where λ and μ are regularisation coefficients. Derive the update rule for w_{11} under this regularisation. (4 marks)