Dr. Danushka Bollegala Tel. No. 0151 7954283 EXAMINER: **DEPARTMENT:** Computer Science

RESIT EXAMINATIONS 2017/18

Data Mining and Visualisation

TIME ALLOWED : Two and a Half Hours

INSTRUCTIONS TO CANDIDATES

Answer **FOUR** questions.

If you attempt to answer more questions than the required number of questions, the marks awarded for the excess questions answered will be discarded (starting with your lowest mark).

Question 1 Consider a dataset \mathcal{D} of N instances, where each instance $x_i \in \mathcal{D}$ is represented by a three dimensional real-valued vector $\mathbf{x}_i = (x_{i1}, x_{i2}, x_{i3})^{\top}$. Moreover, a label $t_i \in \{-1, 1\}$ is assigned to \mathbf{x}_i . We would like to learn a binary classifier using \mathcal{D} . However, for some instances, we do not have x_{i3} values measured. Answer the following questions.

- **A.** Explain what is meant by the *missing value problem* in data mining. (2 marks)
- **B.** Compute the ℓ_2 norm of x_i . (2 marks)
- **C.** Write the ℓ_2 normalised version of \boldsymbol{x}_i .
- **D.** Compute the means μ_1, μ_2, μ_3 and standard deviations $\sigma_1, \sigma_2, \sigma_3$ for the three features in \mathcal{D} . (6 marks)
- **E.** Write the result of the Gaussian scaling for x_i .
- **F.** Given that $\mu_3 = 0$ would it be problematic to replace missing values of x_{i3} by zero? Explain your answer. (2 marks)
- **G.** As a solution to the missing value problem, we would like to predict x_{i3} using x_{i1} and x_{i2} assuming the linear relationship $\hat{x_{i3}} = ax_{i1} + bx_{i2} + c$, where $a, b, c \in \mathbb{R}$ are parameters that must be estimated from \mathcal{D} and $\hat{x_{i3}}$ is the predicted value for x_{i3} . Write the squared loss for this prediction problem. (3 marks)
- **H.** Compute the gradient of the squared loss function w.r.t. *a*, *b* and *c*. (3 marks)
- **I.** Write the update rules for *a*, *b* and *c* using stochastic gradient descent. (3 marks)

(2 marks)

(2 marks)

Question 2 We would like to use the Perceptron algorithm to learn a linear classifier $y = w^{\top}x + b$, defined by a weight vector $w \in \mathbb{R}^d$ and a bias $b \in \mathbb{R}$ from a training dataset consisting of three instances, $\{(t_n, x_n)\}_{n=1}^3$. Here, $x_1 = (0, 0)^{\top}$, $x_2 = (1, 1)^{\top}$ and $x_3 = (-1, 1)^{\top}$, and the labels are $t_1 = 1$, $t_2 = -1$ and $t_3 = 1$. We predict an instance x as positive if $w^{\top}x + b \ge 0$, and negative otherwise. The initial values of the weight vector and the bias are set respectively to $w^{(0)} = (0, 0)^{\top}$ and b = 0. We visit the training instances in the order x_1, x_2, x_3 . Answer the following questions.

- A. Plot the dataset in the two-dimensional space. (2 marks)
- **B.** Write the perceptron update rule for a misclassified instance (*t*, *x*). (3 marks)
- **C.** What will be the values of the weight vector and the bias after observing the instance x_1 ? (3 marks)
- **D.** What will be values of the weight vector and the bias after observing x_2 ? (4 marks)
- **E.** What will be the values of the weight vector and the bias after observing x_3 ? (4 marks)
- **F.** Is the dataset consisting of x_1, x_2, x_3 linearly separable?. Justify your answer. (2 marks)
- G. Is it the case that a dataset consisting of three points is always linearly separable? If yes, explain your answer. If no, provide a counter example.
 (4 marks)
- H. Explain a method that you can use to learn a Perceptron from a non-linearly separable dataset.
 (3 marks)

Question 3 Consider the two sentences S_1 and S_2 given by:

 $S_1 = I$ love cake with tea $S_2 = I$ drink beer with cake

Answer the following questions.

- **A.** Represent S_1 and S_2 respectively by feature vectors s_1 and s_2 , where elements correspond to the frequency of unigrams. (4 marks)
- **B.** Compute the ℓ_2 norms of s_1 and s_2 . (4 marks)
- **C.** Compute the ℓ_1 norms of s_1 and s_2 . (4 marks)
- **D.** Compute the cosine similarity between s_1 and s_2 . (2 marks)
- **E.** Compute the Manhattan distance between s_1 and s_2 . (2 marks)
- **F.** Assume that for all the unigrams u_i and bigrams u_iu_{i+1} that appear in S_1 and S_2 we are given the marginal probabilities respectively $p(u_i)$ and $p(u_iu_{i+1})$. Express the conditional probability of observing u_{i+1} given u_i in terms of $p(u_{i+1}u_i)$, $p(u_iu_{i+1})$ and $p(u_i)$. (2 marks)
- **G.** Using the Markov assumption, compute the likelihood $p(S_1)$ and $p(S_2)$. (4 marks)
- **H.** Explain how you can use the computation done in part (F) to evaluate whether S_2 is less common than S_1 in English texts written by native speakers. (3 marks)

Question 4 Table 1 shows how four users u_1 , u_2 , u_3 , u_4 purchased four items l_1 , l_2 , l_3 , l_4 in an online shopping site over a period of one year. A cell value of 1 indicates that the user corresponding to the row has purchased the item corresponding to the column, and 0 otherwise. Answer the following questions.

	I_1	I_2	<i>I</i> ₃	<i>I</i> ₄
<i>U</i> ₁	1	0	1	1
<i>U</i> ₂	1	1	0	0
<i>U</i> ₃	0	0	1	1
<i>U</i> 4	0	1	0	0

Table 1: A table showing four users u_1 , u_2 , u_3 , u_4 who have purchased four items I_1 , I_2 , I_3 , I_4 in an online shopping site over a period of one year.

- **A.** Given that the users have been initially clustered into two clusters $S_1 = \{u_1, u_2\}$ and $S_2 = \{u_3, u_4\}$, compute the centroids for the two clusters respectively denoted by μ_1 and μ_2 . For this purpose, consider a user is represented by a vector over the items he or she has purchased in the past. (2 marks)
- **B.** Compute Euclidean distances between μ_1 and each of the four users. (4 marks)
- **C.** Compute Euclidean distances between μ_2 and each of the four users. (4 marks)
- D. Based on the distances computed in parts (B) and (C), determine the assignment of users to clusters for the next iteration.
 (2 marks)
- **E.** Let us denote the probability of a user purchasing an item I_j when he or she has purchased I_i by $p(I_j|I_i)$. From Table 1, compute $p(I_1|I_4)$, $p(I_2|I_4)$ and $p(I_3|I_4)$. (3 marks)
- F. Based on your calculations in part (E), explain what is the best item to recommend to a user who has just purchased *I*₄.
 (2 marks)
- **G.** Represent the information shown in Table 1 by a bi-partite graph where the users and items are represented by vertices, and an undirected edge is formed between the vertices corresponding to u_i and l_j if and only if u_i has purchased l_j . (4 marks)
- **H.** Consider a random walker moving along the edges of the graph you created in part (G), where the probability of moving from u_i to l_j is given by $\frac{1}{d(u_i)}$ and the probability of moving from l_j to u_i is given by $\frac{1}{d(l_j)}$. Here, d(x) is the degree of the vertex x. Given that the random walker started from u_1 , compute the probability that the random walker will be in u_3 after two time steps. (4 marks)

Question 5 Consider the three points $x_1 = (0, 1)$, $x_2 = (-1, 0)$ and $x_3 = (1, 0)$. We would like to project these three points onto a straight line using principle component analysis. Answer the following questions.

Α.	Compute the total projection error if we project the three points onto the y-axis.	(3 marks)
В.	Compute the total projection error if we project the three points onto the x-axis.	(3 marks)

- **C.** Compute the mean \bar{x} of the three points. (2 marks)
- **D.** Compute the covariance matrix for the three points. (3 marks)
- **E.** Compute the eigenvalues of the covariance computed in part (D). (4 marks)
- **F.** Compute the first principle component of the projection. (3 marks)
- **G.** Compute the second principle component of the projection. (3 marks)
- H. Compute the total variance if we had projected the three points on to the first principle component.
 (2 marks)
- I. Compute the total variance if we had projected the three points on to the second principle component. (2 marks)