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Continuous authentication using keystroke dynamics is significant for applications where continuous moni-
toring of a user identity is desirable, for example in the context of the online assessments and examinations
frequently encountered in eLearning environments. In this paper, a novel approach to realtime keystroke
continuous authentication is proposed that is founded on a sinusoidal signals based approach that takes into
consideration the sequencing of keystrokes. Three alternative time series representations are considered and
compared: Keystroke Time Series (KTS), Discrete Fourier Transform (DFT) and Discrete Wavelet Transform
(DWT). The proposed process is fully described and analysed using three keystroke dynamics datasets. The
evaluation also includes a comparison with the established Feature Vector Representation (FVR) approach.
The reported evaluation demonstrates that the proposed method, coupled with the DWT representation, out-
performs other approaches to keystroke continuous authentication with a best accuracy of 99.22%; a clear
indicator that the proposed keystroke continuous authentication using time series analysis has significant po-

tential.

1 INTRODUCTION

Keystroke dynamics are a form of behavioural bio-
metrics which can be used to authenticate keyboard
(keypad) users (Gaines et al., 1980; Alshehri et al.,
2016b). Broadly, we can identify two forms of
keystroke authentication: (i) static authentication and
(i1) continuous authentication. The first is used in the
context of one-time authentication, for example pass-
word or pin number access to a system; thus in the
context of fixed texts. Some examples, from the lit-
erature, concerning this form of authentication can be
found in (Bleha et al., 1990; Killourhy and Maxion,
2009; Syed, 2014). The second form of authentica-
tion is typically applied in the context of continuous
free text where it is desirable to continuously monitor
the identity of a user; examples regarding this form of
authentication can be found in (Shepherd, 1995; Mon-
rose and Rubin, 1997; Dowland and Furnell, 2004;
Gunetti and Picardi, 2005; Ahmed and Traore, 2014).
An application where continuous authentication is ap-
plicable is in the case of students completing online
assessments as part of distance and online learning
systems.

The focus of the work presented in this paper is con-
tinuous authentication. The reasons for this are as

follows: (i) there is little reported work concerning
continuous authentication using keystroke dynamics
due to the challenges involved, and (ii) the increas-
ing prevalence of internet facilitated distance learning
(eLearning, Massive Open Online Courses and so on)
where continuous authentication is desirable.

In this paper, we introduce a novel mechanism
for keystroke continuous authentication, namely
Keystroke Continuous Authentication based Spectral
Analysis (KCASA) model. The proposed model is
motivated by conceptualizing the process of keyboard
usage as a continuous stream of keystroke events,
thus as a time series which can be transformed into
the spectral domain to extract typing patterns. More
specifically, the idea is to convert a given keystroke
stream from the temporal domain (raw data) to the
sinusoidal (frequency) domain. The intuition is that
such transformations for time series streams lead
to faster, and more accurate, detection of patterns
(Chan and Fu, 1999; Keogh et al., 2001). There-
fore, keystroke streams can be effectively employed
for real-time/continuous user authentication. In this
study, two types of spectral transform are considered:
(i) Discrete Fourier Transformation (DFT) and (ii)
Discrete Wavelet Transform (DWT).

The remainder of this paper is structured as follows.



In Section 2, we provide a problem statement and dis-
cuss current issues with respect to keystroke contin-
uous authentication. This is followed with Section
3 where definitions and preliminaries concerning the
proposed model are given. Section 4 then discusses
the proposed process of finding similarity between
keystroke sinusoidal signals, while in Section 5 the
proposed KCASA model is presented. The evalua-
tion of the proposed approach is given in Section 6.
Finally, the paper is concluded with a summary of the
main findings and some recommendations for future
work in Section 7.

2 PREVIOUS WORK

The fundamental approach of using keystroke dy-
namics for user authentication is founded on two
keystroke timing features: (i) key hold time (KH"),
the elapsed time between a key press and a key re-
lease; and (ii) flight time (F"), the time between n
consecutive key presses (releases), also sometimes
referred to as flight time latency or simply latency
(Obaidat and Sadoun, 1997). Both can be indexed
using either a temporal or a consecutive numeric ref-
erence. Whatever the case both flight time and hold
time can be used to construct a distinctive typing pro-
file associated with individual users (Gaines et al.,
1980). These profiles are typically encapsulated using
a feature vector representation of some form. In other
words, typing profiles are frequently constructed us-
ing vectors of statistical values, such as the average
and standard deviation of hold times, or the digraph
flight time latency of selected frequently occurring di-
graphs. Authentication is then operated by compar-
ing the similarity between stored feature vector rep-
resented typing (reference) profiles, which are known
to belong to a specific user, and a previously unseen
profile that is claimed to belong to a particular user.
Although there has been only limited reported work
directed at keystroke continuous keystroke authenti-
cation, what reported work there has been has used a
feature vector representation; this has met with some
success.

However, there are some limitations regarding the uti-
lization of the feature vector representation in the con-
text of keystroke continuous authentication. One of
the main limitations is that the size of the feature vec-
tors, a significant number of digraphs and/or trigraphs
has to be considered which is infeasible in the context
of real-time continuous authentication. In (Monrose
and Rubin, 1997) the feature vectors were composed
of the flight time means of all digraphs in the training
dataset. The continuous authentication was then con-

ducted by repeatedly generating “test” feature vectors
for a given user, one every minute, and comparing
with stored reference profiles. If a statistically simi-
lar match was found, then this was considered to be
an indication of user authentication. Although the
typing profile was composed of all digraph features,
the overall reported accuracy was a surprising 23%.
Similarly, in (Dowland and Furnell, 2004) the mean
and Standard Deviation (SD) of the flight times for
all digraphs and trigraphs in the training dataset were
used. Thus, an average of 6,390 digraphs was needed
to make up a sufficient typing profile.

Some researchers have attempted to use an abstrac-
tion of features to decrease the size of feature vectors.
In (Gunetti and Picardi, 2005) the flight time, for fre-
quent n-graphs, was used, although the approach was
used in the context of user identification, as opposed
to authentication. Thus, given a previously unseen
sample, the shared n-graphs in the sample and the
stored n-graphs were identified and collected in sep-
arate arrays. The elements in the arrays were then
ordered according to flight time and the difference
between the arrays computed by considering the or-
derings of the elements; a measure referred to as the
degree of disorder was used (an idea motivated by
Spearman’s rank correlation coefficient (Zar, 1972)).
Identifying a new sample required comparison with
all stored sample profiles (reference profiles), a com-
putationally expensive process. In the reported evalu-
ation, 600 reference profiles were considered (gener-
ated from 40 users, each with 15 samples); the time
taken for a single match, in this case, was 140 sec-
onds (using a Pentium IV, 2.5 GHz). However, con-
struction typing profile using the average flight time
of only shared n-graphs contained in the training data
might not be representative of the n-graphs in the sam-
ples to be authenticated. This can, in turn, affect the
authentication accuracy, especially in the context of
real-time continuous authentication where typing pat-
terns are extracted from free text; thus a substantial
amount of n-graphs are expected to be typed in the
current session. Furthermore, it can be observed from
the study presented in (Gunetti and Picardi, 2005) that
the authentication of one sample relies on all other
samples in the training data. This can also lead to an
efficiency issue where, in the context of continuous
authentication, the current sample needs to be com-
pared against the claimed user’s reference profile.

In (Ahmed and Traore, 2014) an Artificial Neural
Network classifier was used to build a prediction
model to overcome the limitation of (Gunetti and Pi-
cardi, 2005) work. Key-down time was used together
with average digraph and monograph flight times to
predict missing digraphs based on the limited infor-



mation in the training data; thus no need to involve a
great number of keystroke features while constructing
the typing profile. This mechanism worked reason-
ably well in the context of static authentication in a
controlled setting (homogeneous); typing of the same
text using the same keyboard layout in an allocated
environment. Thus the work on continuous authenti-
cation remains an open area for further investigation.
A general criticism of the feature vector approach is
that the feature vector values are either typing pattern
abstractions (for example average hold times) or only
represent a subset of the data (for example only fre-
quently occurring digraphs).

It is argued in this work that the feature vector repre-
sentation may not be the most appropriate representa-
tion for keystroke continuous authentication. There-
fore, it is conjectured that representing keystroke fea-
tures as time series signals, and transforming these
signals to the frequency domain, can lead to a better
understating of typing patterns with respect to real-
time continuous authentication using keystroke dy-
namics. To the best knowledge of the authors, no
prior work in the literature has considered the concept
of sinusoidal representation for keystroke dynamics
in the context of continuous keyboard authentication.
Note that in (Alshehri et al., 2016b) the authors first
proposed the idea of keyboard continuous authenti-
cation using time series, but with respect to static
text. In (Alshehri et al., 2016a) it was suggested that
this could also be applied in the context of contin-
uous text, although only hold time was considered.
This paper presents a much more sophisticated real-
isation and analysis of the approach encompassing:
(1) the idea of transforming the keystroke timing fea-
tures into the sinusoidal (frequency) domain, (ii) us-
ing additional keystroke timing features to enhance
the effectiveness of the authentication, (iii) usage of
a transformed sinusoidal sliding windows to achieve
the desired continuous authentication, (iv) a process
for cleaning keystroke streaming data before authen-
tication is conducted and (iv) a dynamic method for
calculating similarity thresholds calibrated to individ-
ual users.

3 KEYSTROKE TIME SERIES
REPRESENTATION

As already noted, the process of typing produces
a Keystroke time series K;; = {ej,e2,...,e,} where
e, is an independent data event, and n € N is the
length of the time series. Each data event e; rep-
resents a tuple of the form of (¢;,k;) where: (i) f;
is a temporal index of some form, and (ii) k; de-

notes some associated attribute (feature) value. Thus,
Ky = {(n1,k1),{t2,k2),...,(t;,ki)}. Such a time se-
ries can be viewed as a 2D plot with 7 along the x-
axis and attribute value k along the y-axis (Figure 1).
With respect to the work presented in this paper, the
value for #; is set to be a sequential ID number (se-
quence of key presses), whilst k records either flight
time (F") or hold time (KH"). Note that in this pa-
per only univariate time series representation is con-
sidered, that is, in the evaluation section, we have
adopted F' and KH' features independently to deter-
mine the effectiveness of each on the proposed model.
Figure 1 shows four pairs of K;; sequences, each fea-
turing n = 300 keystrokes using F’ feature. The fig-
ure shows four (random) subjects selected from the
datasets used for evaluation purposes as reported on
in Section 6. Inspection of the figure clearly indi-
cates that individual subjects have distinct keystroke
streams and thus that they can be used to generate dis-
tinct typing profiles. Note that we also represent typ-
ing streams using KH', in the same manner; however,
because of space limitations these are not included in
the figure.

The generated keystroke time series can be used di-
rectly as described in (Alshehri et al., 2016b). How-
ever, as already noted, the usage of such “raw” time
series is expensive in terms of efficiency and storage
capacity (Agrawal et al., 1993). Thus the idea pre-
sented in this paper is to use some forms of transfor-
mation of the time series; it is conjectured that this
will yield accurate results more efficiently. As noted
in the introduction to this paper, two transformations
are considered: (i) Discrete Fourier Transform (DFT),
and (ii) Discrete Wavelet Transform (DWT). Each is
discussed in further detail in the following two sub-
sections.

3.1 DFT for Keystroke Time Series

The Discrete Fourier Transform (DFT) has been
widely adopted with respect to time series data of all
kinds (see for example (Agrawal et al., 1993; Vla-
chos et al., 2004)). In this paper, DFT has been used
to transform keystroke time series data from the tem-
poral domain to the frequency domain. The idea is
then to compact the keystroke data points without los-
ing any salient information. The compression is con-
ducted by representing the keystroke stream as a lin-
ear combination of sinusoidal coefficients. Then the
similarity is computed between the transformed coef-
ficients for any pairs of corresponding signals.

Let’s assume that we have a keystroke time series,
such that K;; = {ej,ez,...,e,}, where k; € ¢, is ei-
ther a F' or a KH' value, and n is the length of the
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Figure 1: Examples time series (n = 300) for four subjects, two examples per subject, writing unspecified free text.

keystroke time series. The DFT transform then com-
presses K;; into a linear set of sinusoidal functions
with amplitudes p, g and phase w:

N
K= Z(piCOS(ankE’) +q:Sin(2nwiF))) - (1)
i=1
Note that the time complexity to transform (each)
Kis is O(n log n) using the radix 2 DFT algorithm
(Janacek et al., 2005; Cooley and Tukey, 1965).
Using the DFT transform, the obtained Kj; is com-
posed of a new magnitude (the amplitude of the dis-
crete coefficients) and phase spectral shape in which
the similarity can be computed between pairs of trans-
formed K frequencies. Similarity measurement will
be discussed in further detail in Section 4. For fur-
ther detail concerning the DFT, interested readers are
referred to (Harris, 1978).

3.2 DWT for Keystroke Time Series

The Discrete Wavelet Transform (DWT) is an alter-
native form of time series representations that con-
siders the time span over which different frequen-
cies are present in a time series. DWT is some-
times claimed to provide a better transformation than
DFT in that it retains more information (Chan and Fu,
1999). DWT can be applied to time series accord-
ing to different scales, orthogonal (Haar, 1910) and
nonorthogonal (Gabor, 1946). In this paper, an or-
thogonal scale is used for the DWT, more specifically
the well known Haar transform was adopted (Haar,
1910) as described in (Chan and Fu, 1999). Fun-
damentally, a Haar Wavelet is simply a sequence of
functions which together form a wavelet comprised
of a series of square shapes. The Haar transform is
considered to be the simplest form of DWT; however,
it has been shown to offer advantages with respect to
time series analysis where the time series feature sud-
den changes. The transformation is usually described
as per Equation 2 where, in the context of this paper,
x is a keystroke timing feature.

I, if o<r<}i
o) =41, if J<r<l 2)
0, otherwise

The time complexity for the Haar transform is O(n)
for each K;;. For space limitations, we omit the
full mathematical explanation of the Haar transform;
however interested readers may refer to (Edwards,
1991) and (Burrus et al., 1997) for further detail.

4 SIMILARITY MEASUREMENT

To compare transformed keystroke streams, it is nec-
essary to use some kind of similarity measure. Typ-
ically, given two keystroke streams (time series), S
and S, of the same length, the simplest way to com-
pare them is to find the Euclidean absolute distances
between all pairs of corresponding points in S; and S
and compute the average distance. If the average dis-
tance is 0, S; and S, are identical. However, this sim-
ple approach does not take into account offsets (phase
shifts). For the process of the KCASA model, dis-
cussed in the following section, Dynamic Time Warp-
ing (DTW) was therefore adopted. The reason is that
DTW takes into consideration phase shifting between
pairs of signals more accurately than Euclidean dis-
tance measurement (Ye and Keogh, 2009).

DTW  operates as follows. For two
given  (transformed)  keystroke  time  se-
ries  S; {a1,a2,...,a;,...,a,} and S, =
{b1,bs,...,bj,...,by}, where x and y are the

length of the two series respectively, and (a; and b;)
are DFT or DWT coefficients, the elements of each
series are constructed in a matrix M of size x X y. The
value for each element m;; € M is then computed by
calculating the distance from each element a; € S| to
each element b; € S5:

mij =/ (ai—b;)? 3)
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Figure 2: WPs examples. Top: W Ps obtained from comparing two keystroke sinusoidal signals from same subject typing
different texts, (a) DFT and (b) DWT. Bottom W Ps obtained from comparing two keystroke sinusoidal signals from two
different subjects writing different texts, (c) DFT and (d) DWT.

A Warping Path (WP = {m;, j,,mi, j,,...}) is then
a sequence of matrix elements (locations), m;;, such
that each location is immediately above, to the right
of, or above and to the right of, the previous location
(see Figure 2). For each location, the next location
is chosen so as to minimise the accumulated warping
path length. The “best” warping path is the one that
serves to minimise the distance from m; | to my . The
idea is then to find the path with the shortest "warp-
ing distance” (wd) between the two series calculated
as follows:

i=|WP|
wd = m; e WP @)
i=1

The value of wd is thus an indicator of the similar-
ity between two keystroke signals; if wd = 0 the two
keystroke signals are identical.
To further illustrate the concept of DTW, Figure 2
presents four W Ps, resulting from application of the
DTW process. Figures 2(a) and 2(b) show WPs ob-
tained when DTW was applied to keystroke sinu-
soidal signals for the same subject writing different
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unknown texts; Figure 2(a) using DFT and 2(b) us-
ing DWT. In contrast, Figures 2(c) and 2(d) show the
W Ps obtained when comparing keystroke sinusoidal
signals associated with two different subjects, writing
different texts; Figure 2(c) using DFT and 2(d) using
DWT.

S KEYSTROKE CONTINUOUS
AUTHENTICATION BASED
SPECTRAL ANALYSIS
(KCASA) OPERATION

The proposed KCASA model operates using a win-
dowing approach, continuously sampling keystroke
stream subsequences K,, C K;;. The window size w is
predefined by the user. Thus K,, = {e;,€i+1,...,ew}
where i is a “start” time stamp. The keystroke stream
subsequences can be made up of either flight time (F")
or hold time (KH") values and can be processed sim-
ply as a straight forward time series, the Keystroke



Time Series (KTS) representation. Alternatively, as
proposed in this paper, the time series can be trans-
formed, using the DFT or DWT representation as de-
scribed above. In the evaluation presented later in
this paper, the effectiveness of the DFT and DWT
representations is compared with the operation of the
straight-forward KTS representation.

5.1 User Profile Calculation

A user profile U, is a set of m non-overlapping
keystroke streams (windows), or simply keystroke
sinusoidal windows, U, = {W;,W,...,W,,}, where
each window W has a length of ®. Note that |7l,|
needs to be substantially greater than the window
length ®, so that a number of subsequences (win-
dows) can be extracted. Note also that the gener-
ated windows are prepared for the next transforma-
tion using DFT and DWT. Note also that ® is user
defined. For the experiments reported on later in this
paper, a range of ® values was considered from 25
to 150 key presses increasing in steps of 25, that is
o = {25,50,75,100,125,150}. By doing so, we can
examine the effect of ® on performance in terms of
accuracy. It was anticipated that a small window size
would provide efficiency gains; that is desirable in the
context of real-time continuous authentication.

The set U, is also used to generate a bespoke ©
threshold value. This is calculated by comparing all
subsequences in U, using DTW, and obtaining an av-
erage warping distance wd which is used as the value
for o:

Uy

_ 1 4

c=wd=—Y DTW(W, |,W) (5)
|‘up‘ i=2

It has been shown that averaging the warping dis-
tances of time series lead to fast and accurate
classification of streaming data (Niennattrakul and
Ratanamahatana, 2009).

5.2 Subsequence Preprocessing and
Noise Reduction

Before the KCASA authentication process can com-
mence, each newly collated keystroke time series
must be cleaned. The issue here is that F’ values can
be large, for example when the subject has paused
typing or as a consequence of (say) an “away from
keyboard” event. A limit is therefore placed on F’
values using a maximum flight time threshold value
¢. Given a F' value in excess of @, the value will be
reduced to @. For the evaluation presented later in this

paper, a range of values for ¢ were considered, rang-
ing from 0.750 to 2.00 seconds increasing in steps of
0.25 seconds, that is:

¢ = {0.75,1.00,1.25,1.50,1.75,2.00}

With respect to key hold time KH’, the time whereby
a key is held down is normally no longer than 1 sec-
ond. Inspection of the datasets used in the study pre-
sented in this paper indicated that the highest recorded
value of KH' was 0.950 seconds. Consequently, it
was felt that no maximum hold time threshold was
required in this case.

5.3 The KCASA Algorithm

The pseudo code for KCASA process is presented in
Algorithm 1. As already noted, the principle idea
is, as typing proceeds, to collect non-overlapping
keystroke sinusoidal windows, each of length ®, and
compare these to previously obtained keystroke si-
nusoidal signals. On start up, it is first necessary
to confirm that the user is who they say they are by
comparing the first collected sinusoidal windows with
the user profile U, as described in Sub-section 5.1.
As the session proceeds, continuous authentication is
undertaken by comparing the most recent sinusoidal
windows W; with the previously collected sinusoidal
windows W;_;. Algorithm 1 takes the following in-
puts: (i) window size , (ii) a similarity threshold ¢
(derived as described above in Sub-Section 5.1) and
(iii) a @ threshold for F’. The process operates con-
tinuously in a loop until the typing session is termi-
nated (the user completes the assessment, times out
or logs-out) (lines 4-6). Values for k are recorded as
soon as the typing session starts (line 7). Note that in
the case of flight time the value will be checked, and
if necessary replaced, according to @ (lines 8 to 10).
The k value is then appended to the keystroke stream
Kis- The counter is monitored, and sub-sequences are
extracted whenever ® keystrokes have been obtained.
For the first collected window (W; € %) this is the
startup time series; each subsequent sinusoidal win-
dow W; is then compared, using DTW, with the previ-
ous W;_; sinusoidal window.

6 EVALUATION

A series of experiments were conducted to evaluate
the proposed KCASA model to determine how well
it performed in terms of the detection of imperson-
ators. Comparisons were also undertaken with respect
to a Feature Vector Representation (FVR), the estab-
lished approach from the literature to keystroke con-



Table 1: Summary of datasets.

| Dataset || #Sub. [ Env. | Lang. | Features | Ave.size | SD |

ACB 30 Free | English
GP 31 Free. | Italian
VHHS 39 Lab. | English

F'.KH'
Ft
F'.KH'

4625
7157
4853

1207
1095
1021

Algorithm 1 KCASA algorithm

Input: o, c, ¢.
Output: Continuous authentication commentary.
1: counter =0
2: K =0
3: loop
4 if terminated signal received then
5 break
6: end if
7.
8

k = keystroke feature (e.g. F' or KH")
: if Flight time & k > ¢ then
9: k=¢ > Noise reduction.
10: end if
11: Kis = Kis U {counter,k)
12: counter + +
13: if REM (counter/®) == 0 then

14: W; = subsequence
{%Sroumer—w T %Smumer}

15: if counter = ® then > Start up situation

16: Transform(W) v Transform W to
(DFT)/(DWT)

17: Start up: authenticate W; w.r.t U, and
G, and report

18: else

19: Authenticate W; w.r.t. W;_; and G, and
report

20: end if

21: end if

22: end loop

tinuous authentication. The metrics used for the eval-
uation were: (i) authentication accuracy (Acc.), (ii)
the False Acceptance Rate (FAR) and (iii) the False
Rejection Rate (FRR)'. In more detail, the objectives
of the evaluation were:

1. Authentication Performance using the KCASA
Model: To compare the effectiveness of the DFT
and DWT representations in the context of the
proposed KCASA approach, and the usage of the
simple KTS representation (as prposed in (Al-
shehri et al., 2016b)), in terms of accuracy, FAR
and FRR.

2. Effect on Authentication Performance using

IFAR and FRR are the traditional metrics used to mea-
sure the performance of Biometric systems (Polemi, 1997).

Different Parameters: To determine the effect of
using different values for ® (the sampling window
size) and @ (the maximum flight time threshold
value).

3. Efficiency: to compare the run time efficiency of
KCASA in the context of the three representations
considered (DFT, DWT and KTS).

4. Comparison with Feature Vector Approach: To
compare the operation of KCASA with the estab-
lished feature vector based approach for keystroke
continuous authentication.

Note that the evaluation was conducted using flight
time and hold time so as to also analyse which feature
yielded the better results.

The rest of this section is organised as follows. The
datasets used for the evaluation are introduced in Sub-
section 6.1. The results with respect to the first set of
experiments are considered in Sub-section 6.2, while
those with respect to the second set of experiments
in Sub-section 6.3. Efficiency is considered in Sub-
section 6.4; and the comparison with the feature vec-
tor based approach is presented in Sub-section 6.5.

6.1 Datasets

Three datasets were used with respect to the reported
experiments (Gunetti and Picardi, 2005; Vural et al.,
2014; Alshehri et al., 2016b) to conduct. For ease
of presentation the three data sets are identified here
using acronyms made up of the authors’ surnames:
GP (Gunetti and Picardi, 2005), VHHS (Vural et al.,
2014) and ACB (Alshehri et al., 2016b).

GP dataset comprised 31 subjects typing free text in
Italian (that used in (Gunetti and Picardi, 2005) had
40 subjects, but some records are not available in the
public version). The VHHS dataset was collected in
laboratory conditions. The subjects were asked to
type both predefined text and free text (in English);
however, only the free text part was used with respect
to the experiments reported on in this paper. Note also
that for the GP dataset only the F” feature was avail-
able, whilst for the remaining two datasets both F’
and KH' were collected. Therefore the performance
of KCASA using KH' could not be evaluated using
the GP dataset.

The ACB comprises 30 subjects although the origi-
nal dataset consisted of 17 subjects, but the number



of subjects has increased to 30 in the public version.
Each subject provided free text samples (in English)
in a simulated online assessment environment; the
aim being to mimic the mode of typing when using
an eLearning platform. Thus, the subjects used what-
ever keyboard they had at hand.

Table 1 provides a summary of the three datasets used;
the table also includes some statical measurements
concerning the average length of the time seres in
each data collection and the associated Standard De-
viation (SD). For evaluation purpose, each record in
each data set was divided into two where the first half
was used to generate the typing profile U,, and the
second half for the continuous authentication evalua-
tion.

6.2 Authentication Performance using
the KCASA Model

The results obtained with respect to the evaluation di-
rected at comparing the DFT, DWT and KTS KCASA
representations, using either F' or KH', are given
in Tables 2 to 5; Tables 2 and 4 show the accuracy
(Acc.), FAR and FRR results obtained using F’, while
Tables 3 and 5 presents the results, using the same
metrics, obtained using KH'. For the reported experi-
ments, ® = 75 keystrokes and ¢ = 1.25 seconds were
used as default settings. These parameters were used
because experiments, reported on in the following
sub-section, had indicated that these produced best re-
sults.

From Table 2, it can be observed that the DWT rep-
resentation produced the best overall accuracy (aver-
age accuracy of 98.24% with an associated Standard
Deviation-SD of 1.07) when using F’. With respect
to FAR, we can observe from Table 4 that DWT also
produced best results, except in the case of the GP
datasets where DFT was recorded as producing the
best result. It can also be noted from Table 4 that the
DWT representation gave the best FRR results with
an average of 1.50 and an associated SD of 0.14.
With respect to KH' (Tables 3 and 5), a best accuracy
results of 95.66% was obtained using DFT (with an
associated SD of 2.40). Inspection of Table 5 shows
that the best average FAR result was 0.04 when us-
ing the DFT representation, and the best average FRR
result was 1.56 using DWT. Recall that evaluation us-
ing KH' could not be conducted using the GP dataset
because KH' was not recorded in this case.

To support a comparison summary, the results listed
in Tables 2 to 5 are presented in summary form in Ta-
ble 6. From this summary table, it can be observed
that the simple KTS representation did not perform
well compared to the DFT and DWT representations.

Also, from the results presented in this table, an argu-
ment can be made in favor of the DWT representation,
coupled with F’, which gave the best overall perfor-
mance in terms of Acc, FAR and FRR.

6.3 Effect on Authentication
Performance using Different
Parameters

The results presented in the previous sub-section as-
sumed a window size ® of 75 and a maximum
F' threshold value @ of 1.25. Recall that the lat-
ter is only applicable in the context of F’. To
evaluate the effect of these parameters, experiments
were conducted using a range of values for ® and
¢; {25,50,75,100,125,150} key presses for ®, and
{0.75,1.00,1.25,1.50,1.75,2.00} seconds for ¢.

VHHS dataset

Accuracy(%)

Rep;

Figure 3: The effect of the  parameter on accuracy using
KH' feature for VHHS dataset.

ACB dataset

Accuracy(%)

DWT

DFT
w KTS

Rep;

Figure 4: The effect of the ® parameter on accuracy using
KH' feature for ACB dataset.

The accuracy results using KH’, as the keystroke dy-
namics, are shown in the form of 3D bar charts in
Figures 3 and 4 for the VHHS and ACB datasets re-
spectively. From the figure, it can be seen that ® = 75
produced better accuracy results for the two datasets
in terms of all three KCASA representations, with
the exception of the KTS representation in the ACB
dataset where ® = 100 has produced better accuracy.



Table 2: Accuracy results obtained using the three differ-
ent KCASA representations when using F’ (best results
in bold font).

Flight time F’
Dataset Accuracy
KTS [ DFT | DWT
ACB 96.20 | 97.43 | 99.22
GP 95.47 | 96.94 | 98.41

VHHS 94.83 | 97.43 | 97.09

Average || 95.50 | 97.27 | 98.24
SD 0.68 | 0.28 | 1.07

Table 4: FAR and FRR results obtained using the three
different KCASA representations when using F' (best
results in bold font).

Flight time F*
Dataset| FAR FRR
KTS \ DFT\ DWT KTS\ DFT\ DWT

ACB | 0.050| 0.030( 0.026|| 1.96| 1.50| 1.37
GP 0.039| 0.034| 0.035|| 1.98| 1.72| 1.48
VHHS | 0.030| 0.022| 0.016|| 1.97| 1.85| 1.65

Ave. 0.040| 0.029( 0.026|| 1.97| 1.69| 1.50
SD 0.010] 0.006( 0.010|| 0.01| 0.17| 0.14

Table 6: Summary of results presented in Tables 2 to 5.

F' Feature KH' Feature
KTS | DFT | DWT]| KTS | DFT | DWT

Acc 95.50| 97.27| 98.24)| 95.24| 95.66| 95.42

Metric

FAR || 0.040| 0.029| 0.026/| 0.05 | 0.04 | 0.25

FRR || 1.97 | 1.69 | 1.50 || 1.99 | 1.76 | 1.56

The accuracy results obtained using F’ as the
keystroke dynamics are presented, again in the form
of 3D bar charts, in Figure 5. From this Figure, it
can be seen that ® and ¢ values of 75 and 1.25, re-
spectively, tended to produce better results, although
the selection of @ does not seem to have had as much
impact as the selection of ®. Note also that accuracy
“levels off” as m is increased.

6.4 Efficiency

To compare the efficiency of the considered KCASA
representations, experiments were conducted in terms
of the time to generate the user profiles in each case.
For the experiments, ® was set to a range of values, as
described earlier, whilst ¢ was kept constant at 1.25
because earlier experiments, reported on above, had
demonstrated that the value of @ was less significant.
The efficiency performance using F' is presented in
Figure 6 with respect to each of the three datasets con-
sidered. From the Figure, it can be seen that as ® in-

Table 3: Accuracy results obtained using the three dif-
ferent KCASA representations when using KH' (best re-
sults in bold font).

Key hold time KH'’
Dataset Accuracy
KTS [ DFT | DWT
ACB 96.15 | 97.36 | 95.09

VHHS 94.33 | 93.69 | 95.75

Average || 95.24 | 95.66 | 95.42
SD 1.29 | 240 | 047

Table 5: FAR and FRR results obtained using the three
different KCASA representations when using KH' (best
results in bold font).

Key hold time KH’
Dataset| FAR FRR
KTS [ DFT | DWT|| KTS| DFT]| DWT|

ACB | 0.06 | 0.04 | 0.45 || 2.01| 1.61| 1.38
VHHS | 0.03 | 0.02 | 0.04 || 1.97| 191| 1.74

Ave. 0.05 | 0.04 | 0.25 || 1.99] 1.76| 1.56
SD 0.02 | 0.01 | 0.29 || 0.02| 0.22| 0.25

creased the run time also increased. This was to be
expected because the computation time required for
the DTW would increase as the size of the window
 increases. Interestingly, there are well-known solu-
tions to mitigate against the complexity of DTW (see
for example (Itakura, 1975; Sakoe and Chiba, 1978));
however, no such mitigation was applied with respect
to the experiments reported on in this paper although
this could clearly be done. We left this for further fu-
ture investigation.

Overall the results indicated that when using the pro-
posed transformations efficiency gains were made
with respect to the simple KTS representation, with
DFT producing better runtime results than DWT. Fur-
thermore, comparing the runtime performance ob-
tained with the feature vector approach to keystroke
authentication, it is interesting to note that in (Gunetti
and Picardi, 2005) the time taken to construct a user
profile was given as 140 second, a significant differ-
ence to when using the proposed KCASA method.

Note that in the context of KH’, similar runtime re-
sults were produced to those presented in Figure 6,
because both are using the same DTW similarity mea-
sure.
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Figure 5: The accuracy results obtained for KTS, DFT and DWT using different values ® and ¢.

6.5 Comparison with Feature Vector
Approach

From the literature, previous work on keystroke con-
tinuous authentication has been conducted using Fea-
ture Vector Representation (FVR). It has already been
noted that the proposed KCASA model has signifi-
cant runtime advantages over the feature vector based
approach (see above). However, it was felt appro-
priate to conduct further experiments comparing the
operation of KCASA with the feature vector based
approach in terms of authentication accuracy. Us-
ing both F' and KH' appropriate feature vectors were
generated. Concequently, further comparison could
be made with the mechanism proposed in (Gunetti
and Picardi, 2005) (see Section 2). The reason for
selecting the mechanism presented in (Gunetti and
Picardi, 2005) was that the mechanism, to the best
knowledge of the authors, had produced the best re-
ported FAR and FRR results to date. However, it
should be noted that the code for that mechanism is
not available; thus we encoded the mechanism our-

selves according to the description given in the origi-
nal study. So as to conduct a fair comparison only F*
was considered, because the study in (Gunetti and Pi-
cardi, 2005) used F’ values. The average accuracy
results obtained, when comparing the operation of
FVR with the KTS, DFT and DWT representations,
in terms of F’, are given in Figure 7. The best ac-
curacy result obtained for FVR was 90.15%, signifi-
cantly worse than the accuracy results obtained using
KCASA representations which yielded a best accu-
racy result of 98.24% (when using the DWT repre-
sentation).

7 CONCLUSION

In this paper, a novel mechanism for realtime con-
tinuous keystroke authentication, called Keystroke
Continuous Authentication using Spectral Analysis
(KCASA) has been proposed, whereby authentica-
tion of user typing patterns is conducted by captur-
ing keystroke dynamics in the form of spectral (fre-
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Figure 7: The obtained average accuracy using the three
representations (KTS, DFT, DWT and FVR) with respect to
the three datasets used. DWT shows a comparative perfor-
mance with respect to KCASA model.

quency) streams. KCASA efficiently operates us-
ing either flight time F’ or hold time KH' keystroke
timing features. Two spectral transformations were
considered to represent keystroke timing features:
(i) Discrete Fourier Transform (DFT) and (ii) Dis-
crete Wavelet Transform (DWT). Keystroke spec-
tral streams similarity was conducted using Dynamic
Time Warping (DTW), although alternative time se-
ries comparison techniques could equally well have
been applied. The KCASA model operates by con-
tinuously extracting non-overlapped keystroke sinu-
soidal signals captured using a sliding window of size
. The most appropriate size for ® was found to
be 75 keystrokes for both timing features (flight time
F" and key hold time KH"). In the case of flight
time, an issue was discovered with excessive flight
times; flight times were thus capped with a maximum
value defined by a parameter @, the most appropriate
value for ¢ was found to be 1.25 seconds. The re-
ported experimentation and evaluation indicated that

the most accurate representation was DWT using the
F" keystroke feature, while the most efficient was
found to be DFT. Experiments were also reported on
indicating that the proposed KCASA model outper-
formed the feature vector based approach used by
comparator systems such as that reported in (Gunetti
and Picardi, 2005). For future work, the authors in-
tend to investigate the usage of multivariate keystroke
time series (incorporating F' and KH' timing features
together) within the context of the proposed KCASA
model. Furthermore, the time complexity of DTW, in
the context of the proposed representations, remains
an open topic for future work.
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