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Abstract
The ability to recognize analogies is an important
factor that is closely related to human intelligence.
Verbal analogies have been used for evaluating both
examinees at university entrance exams as well
as algorithms for measuring relational similarity.
However, relational similarity measures proposed
so far are confined to measuring the similarity be-
tween pairs of words. Unfortunately, such pairwise
approaches ignore the rich relational structure that
exists in real-world knowledge bases containing
millions of entities and semantic relations. We pro-
pose a method to efficiently identify analogous en-
tity tuples from a given entity-relation graph.
First, we present an efficient approach for extract-
ing potential analogous tuples from a given entity-
relation graph. Second, to measure the structural
similarity between two tuples, we propose two
types of kernel functions: vertex-feature kernels,
and edge-feature kernels. Moreover, we combine
those kernels to construct composite kernels that
simultaneously consider both vertex and edge fea-
tures. Experimental results show that our proposed
method accurately identifies analogous tuples and
significantly outperforms a state-of-the-art pairwise
relational similarity measure, extended to tuples.

Introduction
Analogies arise when there are one or more similar seman-
tic relations that are shared between two different knowledge
bases. Studies on cognitive science have shown that the abil-
ity to detect analogies materializes in humans at an early
stage [Kotovsky and Gentner, 1996]. Although exact repeti-
tions of past experiences are rare, we tend to compare first-
time events we encounter with our past experiences and effi-
ciently find analogous solutions [Gentner and Gentner, 1983].
Detecting analogies has been an important research topic in
Artificial Intelligence for many years. Given two knowledge
bases, Structure Mapping Theory [Gentner, 1983] states that
analogies arise when we can find a mapping between the se-
mantic relations that exist among the entities in one knowl-
edge base (source) and the other (target). For example, con-
sider the solar system and the classical atomic system. In the

solar system, the relation X revolves around Y exists between
the earth and the sun, whereas in the atomic system the same
relation exists between an electron and the nucleus. Although
the attributes such as the mass and the size of the entities in-
volved in the relation X revolves around Y are very different
in the two systems compared, we can identify the same se-
mantic relation in the two systems. Consequently, the solar
system and the classical atomic system can be considered as
analogous. However, structure mapping is an NP-hard prob-
lem [Veale and Keane, 2003] for which several sub-optimal
heuristic algorithms have been proposed such as the structure
mapping engine [Falkenhainer et al., 1989].

The ability to detect analogies has been used as a measure
of human intelligence. For example, verbal analogies have
been used for evaluating candidates applying for universities
in examinations such as the Scholastic Aptitude Test (SAT)
and the Graduate Record Examination (GRE) [Turney et al.,
2003]. For example, given the word pair (ostrich,bird) as the
question, examinees must identify the word pair that is anal-
ogous to the question from multiple choices. In this example,
(lion,cat) is a correct answer because the semantic relation X
is a large Y exists between ostrich and bird, as well as be-
tween lion and cat. The two word pairs in this example form
a proportional analogy.

Detecting verbal analogies is a challenging task even for
humans. For example, the average score (i.e. percentage of
correct answers to the total number of questions) obtained by
high school students on the verbal analogy questions in SAT
is as low as 57% [Turney, 2005]. Despite those challenges,
the ability to detect analogies has resulted in novel applica-
tions such as the latent relational search engine [Duc et al.,
2011], an information retrieval system based on verbal analo-
gies. For example, given a query such as (Apple, iPad), (Mi-
crosoft, ?), the relational search engine first identifies the re-
lationship between the first two entities (i.e. Apple and iPad),
and then finds an entity that has a similar relation with the
third entity (i.e. Microsoft). In this example, the tablet device
produced by Apple is the iPad, and the tablet device produced
by Microsoft, which is Surface will be the correct answer.
Here, the relationship X produces tablet device Y exists be-
tween the first two entities. In social networks, identification
of analogous communities might lead to more accurate friend
recommendations in future.

Despite those successful applications, there are several fun-



damental limitations in the existing approaches proposed for
detecting verbal analogies. They consider only analogies in-
volving two pairs of words. However, in real-world we ob-
serve analogies that involve more than two entities. For ex-
ample, consider the two tuples (Steve Jobs, Apple, Tim Cook)
and (Bill Gates, Microsoft, Steve Balmer). Here, in each tu-
ple between the first and second entities, second and the third
entities, and first and the third entities we have respectively
founderOf relation, ceoOf relation, and successorOf rela-
tion. Therefore, the triangular relational structure that exists
in one tuple can be directly mapped to the other, indicating a
strong analogy between the two tuples. However, if we take a
pairwise approach, then we loose the rich analogical structure
that exists among the three entities in each tuple. For exam-
ple, given three entities X , Y , and Z and we are told that
X is the CEO of company Y , and Y acquired Z, then the
likelihood of X also being the CEO of Z is high. However,
if we consider individual pairwise combinations of the three
entities, then we loose this vital piece of information.

Prior work on relational similarity assume the word pairs
between which we must compute relational similarity to be
given. However, in our setting, we are given a large set of
entities represented by an entity-relation graph from which
we must find analogical entity tuples. Although theoretically
we can first generate all possible tuples between a given set of
entities, and then search for the most relationally similar ones
to discover verbal analogies, this approach does not scale-up
for large sets of entities. For example, the number of possible
pairs between n items grows in the order of O(n2), whereas
the problem is further aggravated when we consider tuples
that contain three or more entities.

We propose a method that overcomes the above-mentioned
limitations and can discover a large number of analogical tu-
ples from an entity-relation graph. Our contributions can be
summarized as follows:

• First, given an entity-relation graph, in which vertices
correspond to entities and edges correspond to lexical-
syntactic patterns that represent numerous semantic re-
lations between entities, we propose a set of efficient
heuristics to identify potential analogous tuples.

• Second, we propose numerous kernel functions to mea-
sure the degree of analogy between two tuples. For
this purpose, we present two types of kernel func-
tions: Vertex-Feature Kernels and Edge-Feature Kernels.
Moreover, we combine those two types of kernels to
construct Composite Kernels.

We describe and evaluate the proposed method for tuples
that consists of three entities. Although the proposed method
can be directly extended to find analogical tuples consisting
more than three entities, we leave this to future work. Experi-
ments conducted using a large entity-relation graph that con-
tains 749, 364 vertices and 3, 862, 331 edges, show that the
proposed method significantly outperforms competitive base-
lines and Latent Relational Analysis (LRA) [Turney, 2006]
– a state-of-the-art pairwise relational similarity measure ex-
tended to measure the degree of analogy between two tuples.

Related Work

The current state-of-the-art method for measuring the rela-
tional similarity between two pairs of words is the Latent Re-
lational Analysis (LRA) [Turney, 2006]. Given a set of word-
pairs, LRA first extracts n-grams of words from the contexts
(sentences) in which two words co-occur. For example, given
the two words ostrich and bird, lexical patterns such as X is a
large Y and X is a Y are extracted. Next, a co-occurrence ma-
trix is built in which the rows correspond to word-pairs and
the columns correspond to lexical patterns. An element hij of
H denotes the number of times the i-th word-pair (ai, bi) co-
occurs with the j-th lexical pattern pj in a text corpus. Next,
singular value decomposition (SVD) is performed on H to re-
duce the data sparseness, and the largest l left singular vectors
are selected to build a matrix H′ with l columns. Finally, the
relational similarity between word pairs (ai, bi) and (aj , bj)
is measured by the cosine of the angle between the i-th and
j-th row vectors in H′. LRA reports an accuracy of 56.1%
on a benchmark dataset containing 374 SAT verbal analogy
questions.

Veale [Veale, 2004] proposed a relational similarity mea-
sure based on the taxonomic similarity in the WordNet
[Miller, 1995]. He evaluates the quality of a candidate anal-
ogy a:b::c:d by comparing the semantic relations that corre-
sponds to the paths in the WordNet that connects a to b and
c to d. This approach achieves an accuracy of 43% on SAT
verbal analogies.

Bollegala et al. [Bollegala et al., 2009] proposed a su-
pervised approach for learning a Mahalanobis distance met-
ric between semantic relations. Similar to LRA, a word pair
(a, b) is represented by a vector of lexical patterns that co-
occur with a and b. Next, a sequential pattern clustering al-
gorithm is used to cluster semantically similar lexical pat-
terns. Because a single semantic relation can be expressed
using multiple lexical-syntactic patterns, this clustering step
groups semantically similar lexical patterns together, and re-
duces the data sparseness. Finally, an information-theoretic
metric learning algorithm [Davis et al., 2007] is used to com-
pute a Mahalanobis distance matrix over the clusters, report-
ing an accuracy of 51.1% on the SAT verbal analogies.

Latent Relational Mapping Engine (LRME) [Turney, 2008]
finds a bijective mapping between two lists of word pairs. To
represent the semantic relations between two words, LRME
extracts numerous lexical patterns in which those two words
co-occur. Then LRA is used to measure the relational simi-
larity between two pairs of words each taken from one of the
lists. All possible pairwise combinations of word pairs are
considered and the mapping that yields the highest average
relational similarity is selected.

All of the above-mentioned prior work in relational sim-
ilarity consider only the analogies that exist between two
pairs of words, whereas the proposed method considers tu-
ples that contain three words. Moreover, given an entity-
relation graph, we extract all analogous tuple pairs, whereas
the prior work on relational similarity assume that the two
word pairs between which we must compute relational simi-
larity are given.



Entity-Relation Graph
Much of the real-world knowledge that we have about named
entities such as people, products, or organizations can be
concisely expressed using the semantic relations that exist
among those named entities. Consequently, we consider an
entity-relation graph as the input for the proposed method for
extracting analogous tuples of entities. In an entity-relation
graph, each vertex corresponds to a unique entity, and the
edge that connects two vertices represents the semantic rela-
tion that exists between the corresponding entities. Moreover,
an edge can be both directional and/or weighted according to
the strength of the semantic relation that is represented by
that edge. Numerous entity-relation graphs that contain mil-
lions of entities have been created in prior work in informa-
tion extraction such as YAGO [Suchanek et al., 2007], Free-
base [Bollacker et al., 2008], WikiNet [Nastase et al., 2010],
WikiTaxonomy [Ponzetto and Strube, 2007], DBpedia [Auer
et al., 2007], and PATTY [Nakashole et al., 2012].

Although those work differ in the methods they use for
disambiguating entities, extracting and representing relations,
their outputs can be recognized as entity-relation graphs. In
particular, the representations used to denote a semantic re-
lation differs from one entity-relation graph to another. For
example, one can use n-grams of words from the contexts in
which two entities co-occur as lexical patterns to represent the
semantic relation between those two entities [Hearst, 1992].
Lexical patterns can be generalized using part-of-speech tag
sequences or extended using dependency relations [Snow et
al., 2005]. Because a single semantic relation can be ex-
pressed in a text by multiple patterns, some approaches clus-
ter the extracted patterns to group semantically similar pat-
terns [Nakashole et al., 2012; Lin and Pantel, 2001]. Our
method does not assume a particular relation representation
method and can potentially extract analogous tuples from
any of the entity-relation graphs created using the above-
mentioned prior work. Here onwards, we use the term pattern
to collectively refer to any of the above-mentioned relation
representation methods.

We formally define an entity-relation graph G = (V,P, w)
as a labeled, weighted, and directional graph where V =
{v1, v2, . . . , vn} is the set of vertices (corresponding to n
unique entities), P = {p1, p2, . . . , pm} is the set of patterns,
and the weight function w(v, u, p) indicates the strength of
the pattern p that flows from vertex v to u (i.e. direction is
v → u). There have been numerous methods proposed for
measuring the strength of a semantic relation represented by
a pattern that co-occurs with two entities. For example, Tur-
ney [Turney, 2006] uses positive pointwise mutual informa-
tion for this purpose in LRA. Because semantic relations are
directional in general, w(v, u, p) 6= w(u, v, p). Moreover, we
assume that the weight function w is non-negative.

Mining for Candidate Tuple Pairs
Given an entity-relation graph G, Algorithm 1 extracts a

set of potential candidate pairs of analogous tuples. In the
next Section, we propose numerous kernel functions to ex-
actly compute the degree of analogy between two given tu-
ples.

Algorithm 1 Candidate Tuple Pair Extraction.
Input: An entity-relation graph G = (V,P, w).
Output: A set C of candidate pairs of tuples.

1: S ← {}
2: for vi ∈ V do
3: for vj , vk ∈ N (vi) do
4: S ← S + {(vi, vj , vk)}
5: end for
6: end for

7: C ← {}
8: for (vi, vj , vk) ∈ S do
9: for p ∈ g(vi, vj) ∪ g(vj , vk) ∪ g(vk, vi) do

10: for vi′ , vj′ , vk′ ∈ H(p) do
11: if (vi′ , vj′ , vk′) ∈ S then
12: C ← C + {(vi′ , vj′ , vk′)}
13: end if
14: end for
15: end for
16: end for
17: return C

In Lines 1-6 in Algorithm 1, for each vertext vi, we create
tuples from vertices that are directly connected to vi. This
step can be conducted efficiently by representing the graph as
lists of neighbours N (v) for each vertex v as follows:

{u | u ∈ V,∃p ∈ P, (w(v, u, p) 6= 0) ∨ (w(u, v, p) 6= 0)}.

Next, in Lines 7-15, for each tuple (vi, vj , vk) generated in
the previous step, we identify other tuples (vi′ , vj′ , vk′) that
share at least one pattern in common with (vi, vj , vk). We
define g(v, u), the set of patterns that co-occur with either v
or u, as follows:

g(v, u) = {p | p ∈ P, (w(v, u, p) 6= 0) ∨ (w(u, v, p) 6= 0)}.

Because patterns represent semantic relations we can safely
filter-out tuple pairs that do not share any semantic rela-
tions in common, thus unlikely to be analogous. This filter-
ing step reduces the number of tuples that we must compare
in the subsequent processing. To speed up the computation,
we build an inverted index H between patterns and entities
such that H(p) returns the set of entities that co-occur with a
pattern p and is defined as follows:

{u | u ∈ V,∃v ∈ V, (w(v, u, p) 6= 0) ∨ (w(u, v, p) 6= 0)}.

The time complexity of enumerating triangles is bounded
by

∑
v∈V d(v)

2, where d(v) is the degree of a vertex v. In
power-law graphs,

∑
v∈V d(v)

2 is approximately equal to
nd3−γ

max [Boccaletti et al., 2006], where dmax is the maximum
degree and γ is the power coefficient. Moreover, dmax is ap-
proximately equal to n1/(γ−1) [Newman, 2003], for which
the complexity n2/(γ−1) follows and is linear in practice.

Tuple-Feature Kernels
To measure the degree of analogy between two tuples
(A,B,C) and (X,Y, Z), we define several kernel functions.
Let us denote the set of features representing the vertex A
by T (A). Moreover, the weight associated with a feature



x ∈ T (A) is denoted by θ(x, T (A)). For example, the cate-
gory of an entity (e.g. musician, politician, software company
etc.) can be a feature of the vertex represented by that entity.
By assigning a weight to a feature representing an entity, we
can represent the degree to which a certain entity belongs to a
category. Moreover, let us denote the set of features that rep-
resent an edge, eAB , connecting the two vertices A and B by
S(A,B). For example, we can use the set of lexical patterns
that co-occur with the two entities corresponding to vertices
A and B as the features representing the edge eAB . Then,
tuple kernel functions, k((A,B,C), (X,Y, Z)), between the
two tuples (A,B,C) and (X,Y, Z) can be defined in several
ways as will be discussed next.

Vertex-Feature Kernels
The simplest form of the tuple kernels use only the features
assigned to the individual vertices of each tuple. We define a
series of kernel functions based on the set of overlapping fea-
tures between the disjunctions of the individual vertex feature
sets as follows:

kJ((A,B,C), (X,Y, Z)) = Jaccard(T (∪ABC), T (∪XY Z)),

kO((A,B,C), (X,Y, Z)) = Overlap(T (∪ABC), T (∪XY Z)),

kD((A,B,C), (X,Y, Z)) = Dice(T (∪ABC), T (∪XY Z)).

Here, to reduce the cluttering of the notation, we define the
disjunction of the vertex feature sets corresponding to three
verticesA,B, and C as, T (∪ABC) = T (A)∪T (B)∪T (C).

Given, two fuzzy-sets Ψ = {(ψ, θ(ψ,Ψ))}, and Λ =
{(λ, θ(λ,Λ))}, the Jaccard and Overlap coefficients between
those fuzzy-sets can be computed as:

Jaccard(Ψ,Λ) =
|Ψ ∩ Λ|
|Ψ ∪ Λ|

, (1)

Overlap(Ψ,Λ) =
|Ψ ∩ Λ|

min(|Ψ|, |Λ|)
, (2)

Where,

|Ψ| =
∑

(ψ,θ(ψ,Ψ))∈Ψ

θ(ψ,Ψ),

|Ψ ∩ Λ| =
∑

(ψ,θ(ψ,Ψ))∈Ψ
(λ,θ(λ,Λ))∈Λ

min(θ(ψ,Ψ), θ(λ,Λ)),

|Ψ ∪ Λ| =
∑

(ψ,θ(ψ,Ψ))∈Ψ
(λ,θ(λ,Λ))∈Λ

max(θ(ψ,Ψ), θ(λ,Λ)).

Note that it is possible to use other set overlap measures
besides the above two to create kernel functions. However,
some set overlap measures such as the Dice coefficient has a
monotonous relationship with the Jaccard coefficient and are
redundant. If there are no weights assigned to the attributes of
entities in an entity-relation graph, then we can set all θ val-
ues to 1, in which case the above-mentioned kernel functions
resort to crisp sets instead of fuzzy-sets.

Edge-Feature Kernels
We define a series of kernel functions based on the features
assigned to the edges that exist between pairs of entities in
a tuple. First, we define the composition S(A,B,C), of the
three edge feature sets, S(A,B), S(B,C), and S(C,A) as
follows:

S(A,B,C) = S(A,B)� S(B,C)� S(C,A). (3)

Here, the operator � is defined for two fuzzy-sets Ψ and Λ to
give Ψ� Λ as follows:

{(x, θ(x,Ψ)�θ(x,Λ)) | (x, θ(x,Ψ)) ∈ Ψ, (x, θ(x,Λ)) ∈ Λ}

We consider addition (+), multiplication (x), minimum (min),
and maximum (max) as the candidate operators for �. We
represent each edge-feature set as a fuzzy set in which the
membership value of a pattern p ∈ P that co-occurs between
two entities A and B is given by,

θ(p,S(A,B)) = w(A,B, p).

For example, lexical patterns can be used as edge features to
represent the semantic relation that exists between two enti-
ties. However, a single semantic relation can be represented
using more than one lexical pattern. For example, the AC-
QUISITION relation that exists between two companies can
be represented by X is acquired by Y as well as Y purchased X
for NUM dollars, where NUM is some numerical value. On
the other hand, not all lexical-syntactic patterns are equally
representative of a semantic relation. In our previous exam-
ple, the verb acquisition is more commonly used to describe
an ACQUISITION relation between two companies than the
verb purchase. Therefore, the lexical pattern, X is acquired
by Y, is more representative of the ACQUISITION relation
between two companies than the lexical pattern, Y purchased
X for NUM dollars. Therefore, it is desirable to softly assign
lexical patterns to edges as features. For example, we can set
θ(p,S(A,B)) to the number of co-occurrences of the two en-
tities A and B with pattern p.

Once we have computed S(A,B,C) and S(X,Y, Z)
for two tuples (A,B,C) and (X,Y, Z) using Eq.
3, we define two variants k�J ((A,B,C), (X,Y, Z))

and k�O((A,B,C), (X,Y, Z)) of edge-feature ker-
nels with each � operator using the Jaccard (Eq.
1) and Overlap (Eq. 2) coefficients given respec-
tively by Jaccard(S(A,B,C),S(X,Y, Z)) and
Overlap(S(A,B,C),S(X,Y, Z)).

Note that we have 8 edge-feature kernels in total with the
four operator types (+,×,min,max) for � and the two set
overlap measures: Jacccard and Overlap coefficients.

Composite Kernels
When measuring the degree of analogy between two tuples,
it is desirable to consider both vertex features as well as edge
features. However, the above-described vertex-feature kernels
and edge-feature kernels individually capture only one type
of features. To incorporate both vertex-features and edge-
features in the analogy measurement, we combine vertex-
feature kernels and edge-feature kernels via kernel compo-
sition. Given a vertex-feature kernel kv and an edge-feature



kernel ke, we define their composite kernel kc as the product
of the two kernels as follows:

kc((A,B,C), (X,Y, Z))

= kv((A,B,C), (X,Y, Z))× ke((A,B,C), (X,Y, Z)).

Note that the normalization requirement,
k((A,B,C), (A,B,C)) = 1, is satisfied by all vertex-
feature kernels, edge-feature kernels as well as their
composite kernels. We combine the two vertex-feature
kernels with the eight edge-feature kernels to compute 16
composite kernels. Although there exist numerous other
operators besides the product to construct composite kernels
from two atomic kernel functions [Shawe-Taylor and Cris-
tianni, 2004], we differ the task of conducting an exhaustive
search in the composite kernel space to a future study.

Datasets
We used the PATTY dataset [Nakashole et al., 2012] to create
an entity-relation graph. PATTY is a large resource of textual
patterns that denote numerous binary relations between en-
tities. In PATTY, the patterns are semantically typed based
on categories and organized into a subsumption taxonomy.
For example, the pattern [singer] sings [song], is typed using
Wikipedia categories, singer and song.

We used the PATTY dataset created from the English edi-
tion of Wikipedia, which contains about 3.8 million articles
(as of June 21, 2011). To create an entity-relation graph from
this dataset, first, we create a vertex from each unique en-
tity that appear in the dataset. Next, we create a directional
edge between two vertices, if there exists a pattern in PATTY
that co-occurs with the two entities that correspond to the two
vertices. We use the pattern confidence scores computed in
PATTY as the weights for the edges. The entity-relation graph
that we create from PATTY contains 749, 364 vertices, and
3, 862, 331 connections, corresponding to 350, 569 unique
patterns. We use this entity-relation graph for the experiments
described in this paper.

Algorithm 1 extracts 171, 607 candidate tuple pairs from
this graph. Next, we use numerous kernels described in the
previous sections to identify analogous pairs of tuples. On an
Intel Xeon 2.9GHz 32 core 256GB RAM machine, it takes
less than 10 seconds to process the entire entity-relation graph
with a given kernel, which demonstrates the efficiency of our
method.

Unlike for word-pair analogies, for which there exists the
SAT word-analogy questions benchmark dataset, there is no
gold standard benchmark for evaluating analogous tuples.
Turney [Turney, 2008] proposed a dataset consisting 20 pairs
of word lists, in which there exists a bijective relational map-
ping between each pair of lists. However, this dataset is not
suitable for evaluating our task because we must evaluate
whether two tuples are analogous instead of finding a bijec-
tive mapping between the tuples. Conversely, if two tuples are
not analogous, then there might not exist a bijective relational
mapping between those tuples.

Consequently, to evaluate the proposed method, we cre-
ate a gold standard dataset of analogous tuples. First, we ran-
domly select a source tuples from the set of extracted tuples

by Algorithm 1. Next, for each source tuple, we list the can-
didate tuples that share at least two patterns with it. Three hu-
man annotators compared each seed tuple and its candidate
list and marked the tuples that they considered to be analo-
gous to the source tuple. In the case where the annotators were
not familiar with the entities in a tuple, they are instructed to
gather additional information from the Web to determine the
semantic relations that exist, if any, between two entities. Fi-
nally, for each source tuple we randomly select a tuple that is
marked as being analogous to the source tuple by at least two
of the three annotators. The final dataset contains 30 pairs of
analogous tuples.

Experiments and Results
We consider that it is appropriate to evaluate the proposed
method in a retrieval task for two reasons. First, in our task,
we must correctly identify the analogous tuples to a given tu-
ple among a large number of non-analogous candidate tuples.
This scenario resembles Web search, where we must iden-
tify a small number of relevant documents to a given user
query among a vast number of irrelevant documents. Kernel
functions that assign high similarity scores to tuples that are
analogous are desirable. We enforce this condition by limiting
the evaluation to the top ranked tuples by a kernel function.
Second, precise measurement of recall is difficult in our task
because it is labour intensive and costly to go through the en-
tire set of tuples extracted from a large entity-relation graph
to identify all pairs of analogous tuples.

For each source tuple in our gold standard, we measure the
degree of analogy between it and the remainder of the tuples
extracted by Algorithm 1 using a particular kernel function,
and rank in the descending order of their similarity scores. We
evaluate the top 10 ranked candidates using two popular eval-
uation measures used in the information retrieval community:
Precision@10, and Mean Reciprocal Rank (MRR) [Manning
et al., 2008]. Precision@10 is the ratio between the number
of analogous tuples found among the top 10 ranked tuples re-
trieved for a source tuple. MRR is the reciprocal of the rank
assigned to the most analogous tuple to a source tuple. Both
of those measures are computed for each source tuple in the
gold standard and then averaged. Unlike Precision@10, MRR
is sensitive to the rank assigned to analogous tuples. Because
in the gold standard we assign only a single analogous tuple
for each source tuple, Precision@10 can be seen as a mea-
sure of accuracy indicating the percentage of source tuples
for which we can find their analogous counterparts among
the top 10 similar tuples.

In Table 1, we use symbols V, E, and C respectively
to denote vertex-feature kernels, edge-feature kernels, and
composite kernels. For edge-feature kernels, we indicate the
operator � and the set overlap measure within brackets.
For composite kernels, we show the two constituent ker-
nels used for the composition. We extend LRA, a state-
of-the-art method word-pair relational similarity measure,
to measure the degree of analogy between two tuples as
follows. Given two tuples (A,B,C) and (X,Y, Z), us-
ing LRA we measure the relational similarity between all
possible combinations of entity pairs between the two tu-



Table 1: Performance for retrieving analogous tuples.
Method Precision@10 MRR
LRA [Turney, 2006] 0.4666 0.1879
V: Jaccard 0 0
V: Overlap 0 0
E: (+, Jaccard) 0.4 0.1474
E: (+, Overlap) 0.2 0.04841
E: (max, Jaccard) 0.4666 0.2127
E: (max, Overlap) 0.3333 0.1261
E: (×, Jaccard) 0 0
E: (×, Overlap) 0 0
E: (min, Jaccard) 0 0
E: (min, Overlap) 0 0
C: E(+, Jaccard), V:Jaccard 0.6 0.3817
C: E(+, Jaccard) V:Overlap 0.5333 0.2411
C: E(+, Overlap) V:Jaccard 0.4666 0.2295
C: E(+, Overlap) V:Overlap 0.4 0.2266
C: E(max, Jaccard), V:Jaccard 0.6 0.4688
C: E(max, Jaccard), V:Overlap 0.6 0.3077
C: E(max, Overlap), V:Jaccard 0.4 0.2577
C: E(max, Overlap), V:Overlap 0.5333 0.3088
C: E(×, Jaccard), V:Jaccard 0 0
C: E(×, Jaccard), V:Overlap 0 0
C: E(×, Overlap), V:Jaccard 0 0
C: E(×, Overlap), V:Overlap 0 0
C: E(min, Jaccard), V:Jaccard 0 0
C: E(min, Jaccard), V:Overlap 0 0
C: E(min, Overlap), V:Jaccard 0 0
C: E(min, Overlap), V:Overlap 0 0

ples: ((A,B), (X,Y )), ((B,A), (Y,X)), ((B,C), (Y,Z)),
((C,B), (Z, Y )), ((C,A), (Z,X)), and ((A,C), (X,Z)).
We consider the average of those relational similarity scores
as the degree of analogy between the two tuples. This base-
line demonstrates the level of performance we would obtain
if we use pairwise relational similarity measure for detecting
analogical tuples.

From Table 1, we see that vertex-feature kernels when
used alone, does not retrieve any analogous tuples. On the
other hand, edge-feature kernels outperform vertex-feature
kernels, except when used with × and min operators. Recall
that vertex-feature kernels use attributes of entities, whereas
edge-feature kernels use patterns that represent the relations
that exist between entities. According to Structure Mapping
Theory [Gentner, 1983], relations, not attributes, are impor-
tant when finding a mapping between analogous knowledge
bases. We believe our empirical results, the superior perfor-
mance of edge-feature kernels over vertex-feature kernels,
support the claim of Structure Mapping Theory. Among the
four operators used in edge-feature kernels, max is the best,
followed by +. Because × and min operators prefer the
weaker features (i.e. patterns with smaller weights) over the
stronger features inside a tuple, those operators fail to identify
analogous tuples.

Interestingly, when we combine both types of kernels, the
performance increases. The best performance is obtained by
C: E(max, Jaccard), V:Jaccard, which combines the vertex-
feature kernel with Jaccard coefficient as the set overlap mea-
sure, and the edge-feature kernel that uses the max opera-
tor with Jaccard coefficient as the set overlap measure. More-
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Figure 1: Correlation plot between the best individual vertex-
feature and edge-feature kernels.

over, this composite kernel significantly outperforms the LRA
baseline (Binomial exact test with significance level of 0.05).

To further study the improved performance by compos-
ite kernels, we randomly select 1000 tuples from our entity-
relation graph and compute vertex and edge feature kernels
between those tuples. Figure 1 shows those scores for the
constituents of the best performing composite kernel (i.e.
C: E(max, Jaccard), V:Jaccard). From Figure 1, we see that
vertex-feature and edge-feature kernels measure very differ-
ent aspects of tuples. For example, for numerous pairs of tu-
ples for which vertex-feature kernel assigns perfect scores,
we must resort to edge-feature kernels to discriminate the
correct analogous tuple pairs. Moreover, the Pearson corre-
lation coefficient between the two kernels is low at 0.1356.
Similar trends were observed between other combinations of
vertex-feature and edge-feature kernels as well. Therefore,
the combination of vertex-feature and edge-feature kernels
can be considered as providing mutually exclusive informa-
tion, which justifies our kernel composition approach.

Conclusion
Given an entity-relation graph as the input, we proposed a
method to extract analogous pairs of tuples that contain three
entities. First, we proposed an algorithm to efficiently gen-
erate candidate pairs of tuples. Second, we proposed two
types of kernel functions based on vertex-features and edge-
features to measure the degree of analogy between two tu-
ples. Moreover, we derived composite kernels from vertex
and edge feature kernels. Our experiments using a real-world
entity-relation graph showed that the proposed kernel com-
position approach significantly outperforms the current state-
of-the-art pairwise relational similarity measure, extended to
cover tuples with three entities. Moreover, we show that edge-
features play an important role when detecting analogous tu-
ples. In future, we plan to extend the proposed method to han-
dle tuples with n(> 3) entities, thereby identifying analogous
subgraphs within an entity-relation graph.
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