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Abstract. An approach to Keystroke Continuous Authentication
(KCA) is described founded on a time series analysis based approach
that, unlike previous work on KCA (using feature vector represen-
tations) takes the sequencing of keystrokes into consideration. The
significance of KCA is in the context of online assessments and ex-
aminations used in eLearning environments and MOOCs, which are
becoming increasingly popular. The process is fully described and
analysed, including comparison with established feature vector ap-
proaches. Our proposed method outperforms these other approaches
to KCA (with a detection accuracy of 94%, compared to 79.53%), a
clear indicator that the proposed time series analysis based KCA has
significant potential.

1 Introduction
Keystroke patterns (typing patterns) are a recognised behavioural
biometric for establishing the security credentials of users in the con-
text of static user authentication. The fundamental idea is that the
rhythm of typing a predefined text by a legitimate user can be learned,
and consequently used for authentication purposes [8]. Keystroke
Static Authentication (KSA) has been applied with respect to appli-
cations such as password, username and pin number authentication
[3, 10, 12, 17]. However, KSA is unsuited to applications that require
continuous authentication such as in the context of the online assess-
ments and examinations frequently used in eLearning environments
and MOOCs, where Keystroke Continuous Authentication (KCA) is
required. KCA is significantly more challenging than KSA because
the process relies on detecting patterns from free text (unlike in the
case of KSA where we are looking for a single fixed pattern).

Work on KCA to date has been predominantly focussed on feature
vector based binary classification where the features are statistics,
such as the average hold time (duration of a key press) and digraph
latency (duration between the start or end of pairs of common con-
secutive key presses) [16, 9, 7, 11, 4, 1]. These systems operate by
continuously measuring the similarity between a learnt user statisti-
cal profile and previously unseen profiles presented in the form of
a data stream. However, there is a great deal of variability in the
statistical features used to make up the feature vectors and conse-
quently the reported results to date have tended to not be as good as
anticipated. The overriding disadvantage of the feature vector based
approaches is that the sequencing of key presses is largely lost. In ad-
dition, classifiers (predictors) need to be built for each user and this in
turn adversely affects the efficiency of the application of KCA in real
environments. The idea presented in this paper is to conceptualise the
keystroke process in terms of a ongoing time series from which KCA
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can be realised through a time series analysis process rather than us-
ing a feature vector based classification approach. More specifically
the idea is to view keystrokes in terms of press-and-release temporal
events such that a series of successive events can be recorded. Each
keystroke is defined in terms of a pair P = (t, k), where t is a time
stamp or temporal identifier of some form; and k is some keystroke
attribute (such as flight time between keys or key-hold length). The
intuition is that the time series paradigm can be more readily used
to dynamically identify “suspect behaviour”, in real time, because it
serves to capture keystroke sequences (unlike in the case of statistical
techniques).

The rest of this paper is organised as follows. In Section 2 a brief
state-of-the-art review of KCA is presented. This is followed in Sec-
tion 3 with a description of the proposed keystroke time series rep-
resentation, while in Section 4 we introduce the proposed KCA ap-
proach. Keystroke time series similarity is then discussed in Section
5. The evaluation and comparison of the proposed approach is re-
ported on in Section 6. Finally, the paper is concluded with a sum-
mary and some recommendations for future work in Section 7.

2 Previous Work

Dealing with keystroke patterns, especially KCA, in terms of of time
series has received little attention in the literature. Reference is made
in [15] where a sequence pattern mining algorithm is presented for
which a potential suggested application is KCA; an idea that has
some similarity with the time series approach proposed in this pa-
per. The majority of work on keyboard usage authentication has been
directed at the idea of using statistical feature vectors to recognise
keystroke patterns. As mentioned in the introduction to this paper,
keystrokes have a range of timing features associated with them in-
cluding key-down, key-up and hold time. Also, given sequences of
pairs of keystrokes, the flight time between n successive keystrokes
can also be considered. These features have been represented in terms
of feature vectors by computing statistical quantitative equivalents.
Such feature vectors have then been used to recognise typing pat-
terns with a view to keyboard usage authentication. The similarity,
between (say) two typing profiles may be measured, for example, in
terms of the extent of the distance between two vectors.

One of the earliest studies that have considered the idea of key-
board authentication is [6] where the authors utilized the concept of
digraph latency for the feature vector representation from which a bi-
nary classifier was generated. The classifier operated using the mean
and standard deviation of digraph occurrences in a training profile.
Only digraphs that satisfied a predefined threshold of occurrences
were used; not all digraphs were included. The principal disadvan-
tages of the approach were that: (i) to achieve a reasonable classi-



fication performance a substantial amount of data was required with
which to train the classifier, the classifier requires an average of 6,390
digraphs to recognise a useful pattern, and (ii) a dedicated classifier
was required for each individual. The approach would thus be diffi-
cult to apply in the context of eLearning platforms and MOOCs. An
alternative approach was presented in Gunetti and Picardi [9] where
the average time for pressing frequent key sequences (n-graphs) was
recorded and stored in arrays, one per n-graph. Common n-graphs
were extracted for corresponding samples (reference and test). The
elements of the arrays were then ordered and the distance between
sample pairs computed by comparing the ordering in the reference
array with the ordering in the test array. This measure was referred
to as “the degree of disorder”. However, learning a reference sample
depends on all other samples in the reference profile. This can cause
an efficiency issue when dealing with large numbers of samples. The
training of legitimate users profiles is thus as time consuming as in
[6]. Ahmed et al [1] have used key-down time information and the
average of digraph flight time and monograph to represent features.
An Artificial Neural Network classifier was used. This mechanism
worked reasonably well in a controlled experimental setting, typing
of the same text using the same keyboard layout in allocated environ-
ment. This is not the situation we would find in uncontrolled environ-
ments, such as those used for conducting eLearning assessments and
examinations.

From the above, most KCA studies have been directed at the us-
age of quantitative statistical measures to represent keystroke fea-
tures founded on a feature vector representation. However, it is ar-
gued here that the feature vector representation may not necessarily
be representative of useful typing patterns. Therefore, it is conjec-
tured that representing keystroke features as a time series can lead to
a better understating of typing patterns with respect to KCA.

3 Keystroke Time Series Representation

Keyboard usage is typically undertaken in a sequential manner
key-press by key-press, on occasion two keys may be pressed
together (for example using the shift or control keys). Thus typing
action is well suited to representation in terms of time series where
each key press describes a point (event) within the time series.
More formally a Keystroke time series Kts is a sequential ordering
of a set of data points that occur within a specified interval of
time, Kts = {p1, p2, . . . , pn} where each point pi corresponds
to a tuple of the form 〈ti, ki〉 where ti is a temporal identifier of
some description and ki is some associated attribute value. Thus
Kts = {〈t1, k1〉, 〈t2, k2〉, . . . , 〈tn, kn〉}. As such, a time series can
be viewed as a 2D plot with time along the x-axis and attribute value
along the y-axis. The value for ti can be either: (i) key-down time
KDt, (ii) key-up time KU t or (iii) a sequential ID number KN
per keystroke. However, when using KDt or KU t the “ticks” along
the time series x-axis are typically irregularly spaced which in turn
tends to hinder the time series analysis. Therefore, in the context
of the work presented in this paper, KN was used for t. For ki we
have used flight time F t. Flight time serves to capture the duration
between keystrokes which is lost if we use KDt or KU t for t.
Thus, F t was adopted,Kts = {〈KN1, F

t
1〉, 〈KN2, F

t
2〉, . . . }. With

respect to the forgoing the following definitions should be noted:

Definition 1: A Keystroke Time Series Kts is an ordered discrete
sequence of points p; Kts =

[
p1, p2, . . . , pi, . . . , pn

]
where n ∈ N

is the length of the series, and pi is a tuple corresponding to a feature
pairing.

Definition 2: A keystroke time series sub-sequence si is a
keystroke time series of length l, si =

[
p1, p2, . . . , pj , . . . , pl

]
, gen-

erated from Kts, where l < m. Thus an ordered subset of Kts,
indicated using the notation si � Kts (∀pi ∈ si, ∃pi ∈ Kts).

Definition 3: A profile P is set of m keystroke time series
sub-sequences P = {s1, s2, . . . , sm}.

In practice each Kts describes a task dependent keyboard session.
For example, in the context of an online assessment where a student
is answering an assessment question, the generated Kts should rep-
resent that keyboard session associated with the student conducting
this task. For KCA to operate each time series Kts needs to be eval-
uated at the start (by comparison of an initial sub-sequence s1 of the
time series with P , a previously stored “bank” of sub-sequences for
the subject. As the session proceeds continuous comparison needs
to be undertaken by comparing a most recent sub-sequence si with
earlier collected sub-sequences S = {s1, s2, . . . si−1} (of the time
series Kts).

The fundamental idea proposed in this paper is illustrated in Fig-
ure 1 generated using several randomly selected time series from the
sample data used for evaluation purposes as presented later in this pa-
per (see Section 6). The figure shows four keystroke time series sub-
sequences representing two subjects, two sub-sequences from each
subject (Subjects 2 and 9). From the figure it can be seen that there
are clear similarities in the keystroke sub-sequences associated with
the same subjects (despite the sub-sequences being related to differ-
ent texts), and clear dissimilarities in the keystroke sub-sequences
associated with different subjects. It is thus argued here that such
time series can be fruitfully used for KCA.

4 Proposed KCA Approach

The proposed KCA process is presented in Algorithm 1. The inputs
are: (i) a desired sampling frequency f , (ii) a desired keystroke time
series sub-sequence lengthm and (iii) a minimum size l for S before
similarity measurements can be made and (iv) a similarity thresh-
old σ value. The process operates on a continuous loop; after every
f ticks (line 4) a keyboard time series sub-sequence s of length m
is constructed (line 5). Not every time series is usable, for exam-
ple, there may be sizeable durations between key presses indicat-
ing “away from keyboard” events, thus the generated subsequence s
needs to be verified for its usability (line 6). Recall that for the time
stamps keypress indexes, not the actual time of the key press (for
reasons presented earlier) were used. The usability of a time series
can be simply identified from the presence of an excessive flight time
value. If s is usable and we have collected a sufficient number of sub-
sequences (|S| > l) authentication can be undertaken (line 7). This is
done by calculating a similarity index (simIndex); the simplest way
of doing this is to obtain an average of the similarity values between
s and the sub-sequences in S. If simIndex ≥ σ, then an authentica-
tion error has occurred (lines 8 to 10). Note that in a similar manner
to plagiarism checkers (such as Turnitin2) the proposed KCA is es-
sentially a similarity checker, thus when dissimilarity is found this
is an indicator of further investigation being required. The process
continuous until a data stream end signal is received (line 19). Note
also that Algorithm 1 does not include any “start up comparison” as
described in the foregoing section. However, the similarity checking
process is more-or-less the same; a similarity index can be generated
and compared to a value σ. The most important part of Algorithm 1

2 http://www.turnitinuk.com/



(a) (b)
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Figure 1. Examples of keystroke time series: (a) and (b), time series for Subject 2 writing two different texts; (c) and (d), time series for Subject 9 writing
two different texts.

is the similarity checking process, the mechanism for comparing two
time series. This mechanism is the central focus, and contribution, of
this paper; and is therefore considered in further detail in Section 5
below.

Algorithm 1 Dynamic KCA process
Input: f = sampling freq., m = time series subsequence length,

l = min. size of S for sim. calc., σ = similarity threshold.
Output: Similarity “highlights”.

1: S = Set if time series sub-sequences sofar (empty at start)
2: ti = 1
3: loop
4: if remainder ti

f
≡ 0 then

5: s = time series {pi, . . . , pm}
6: if usable(s) and |S| > l then
7: simIndex = similarityIndex(s, S)
8: if simIndex = σ then
9: highlight

10: end if
11: S = S ∪ s
12: end if
13: end if
14: if end data stream then
15: Exit loop
16: else
17: ti = ti + 1
18: end if
19: end loop

5 Measuring The Similarity of Keystroke Time
Series

The most significant part of the KCA process described above is the
time series analysis element where a current keystroke time series
sub-sequence s is compared with one or more previous series. Given
two keystrokes time series sub-sequence s1 and s2, the simplest way
to define their similarity sim is by measuring the corresponding dis-
tances between each point in s1 and each point in s2. In other words
the Euclidean distance is measured between the points in the two se-
ries, summed and divided by the sub-sequence length to give an av-
erage distance. However, this approach requires both sub-sequences
to be of the same length and, more significantly, tends to be over
simplistic as it assumes a one-to-one correspondence. By returning
to the time series sub-sequences given in Figure 1 (a) and (b) we can
notice that the shape of the two series is similar but the “peaks” and
“troughs” are offset to one another. Euclidean distance measurement
will not capture this noticeable similarity. The adopted solution was
to use Dynamic Time Wrapping (DTW). The idea here being to mea-
sure the distance between every point in s1 with every point in s2,
as shown in Figure 2, and recording these distances in a |s1| × |s2|
matrix. This matrix can then be used to find the “best” path from the
origin along to the opposite “corner”. This path is referred to as the
Warping Path, it length in turn can be used as a similarity measure
for two time series.

DTW was first used as speech recognition technique to compare
acoustic signals [14]. It has subsequently been adopted in the fields
of data mining and machine learning [2]. Using DTW, the linear-
ity of time series of different length is “warped” so that the se-



Figure 2. DTW distance measurement.

quences are aligned (as shown in Figure 2). Given two keystroke
time series sub-sequences s1 = {p1, p2, . . . , pi, . . . , px} and s2 =
{q1, q2, . . . , qj , . . . , qy}, where x and y are the lengths of the two se-
ries respectively, the two corresponding time series are used to con-
structed a matrix M measuring x × y. The value for each element
mij ∈ M is then computed by calculating the distance from each
point pi ∈ s1 to each point qj ∈ s2:

mij =
√

(pi − qj)2 (1)

A Warping Path (WP = {w1, w2, . . . }) is then a sequence of
matrix elements (locations), mij , such that each location is immedi-
ately above, to the left of, or above and to the left of, the previous
location (except at the location opposite to the origin, which is the
warping path end point). For each location the following location is
chosen so as to minimise the accumulated warping path length. The
“best” warping path is the one that serves to minimise the distance
from m1,1 to mx,y . The idea is thus to find the path with the short-
est Warping Distance WD between the two-time series. WD is thus
an indicator of the similarity between the two keystroke time series
under consideration. WD is calculated as shown below. If WD = 0
the two time series in question are identical.

WP =

i=|WP |∑
i=1

mi ∈WP (2)

Figures 3 and 4 show some results of the DTW process when ap-
plied to four of the time series sub-sequences used with respect to
the evaluation of the proposed approach and reported on later in this
paper. Figure 3 shows the WP for two keyboard time series sub-
sequences from the same subject (user), while Figure 4 shows the
WP for two keyboard time series sub-sequences from two different
subjects (users). The red diagonal line included in both figures in-
dicates the WP that would have been obtained given two identical
sub-sequences. The distinction between the generated WP in each
can be observed from inspection of the figures.

6 Evaluation
In the foregoing a proposed KCA process was presented (Algorithm
1). Central to this KCA process was the ability to compare key-
board time series sub-sequences. The proposed mechanism for doing
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Table 1. Ranked average recorded WD values for DTW analysis
(a ∨ b, c), correct matches highlighted in bold font.

sub 1 sub2 . . . sub17
0.042 0.084 . . . 0.030
0.045 0.085 . . . 0.042
0.048 0.090 . . . 0.042
0.049 0.090 . . . 0.043
0.050 0.094 . . . 0.044
0.051 0.098 . . . 0.045
0.053 0.099 . . . 0.045
0.053 0.099 . . . 0.046
0.055 0.100 . . . 0.046
0.051 0.101 . . . 0.048
0.052 0.101 . . . 0.048
0.053 0.102 . . . 0.051
0.054 0.102 . . . 0.054
0.054 0.103 . . . 0.055
0.056 0.103 . . . 0.055
0.056 0.103 . . . 0.056
0.057 0.104 . . . 0.056
0.060 0.105 . . . 0.056
0.060 0.105 . . . 0.059
0.061 0.106 . . . 0.059
0.062 0.106 . . . 0.062
0.064 0.107 . . . 0.063
0.069 0.108 . . . 0.064
0.069 0.108 . . . 0.065
0.070 0.108 . . . 0.066
0.072 0.108 . . . 0.068
0.073 0.110 . . . 0.071
0.074 0.110 . . . 0.075
0.078 0.110 . . . 0.075
0.079 0.110 . . . 0.076
0.080 0.110 . . . 0.077
0.082 0.110 . . . 0.078
0.082 0.110 . . . 0.080
0.085 0.112 . . . 0.082
0.086 0.112 . . . 0.086
0.086 0.114 . . . 0.090
0.094 0.118 . . . 0.094
0.100 0.120 . . . 0.099
0.102 0.122 . . . 0.099
0.104 0.123 . . . 0.108
0.105 0.123 . . . 0.108
0.109 0.124 . . . 0.110
0.124 0.126 . . . 0.124
0.136 0.133 . . . 0.139
0.149 0.140 . . . 0.155
0.162 0.147 . . . 0.170
0.166 0.152 . . . 0.186
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Table 2. WD rankings for subjects when compared to themselves across datasets

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17
Ranking list in Group a 4 2 10 3 4 5 5 2 4 2 3 10 1 1 10 1 1
Ranking list in Group b 1 4 10 15 3 3 2 2 2 2 6 3 1 1 4 1 1
Ranking list in Group c 1 10 10 5 1 5 1 3 10 1 3 6 1 2 7 5 3

Table 4. Ranking lists of all samples in different groups when applying CS

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17
Ranking list in Group a 5 20 8 13 20 2 20 10 25 20 14 15 1 3 8 1 1
Ranking list in Group b 5 18 15 13 15 2 20 11 25 18 20 10 2 3 8 8 5
Ranking list in Group c 4 19 7 7 20 8 18 3 15 20 20 13 1 8 10 5 1

Figure 3. Application of DTW, same subject

this was the DTW mechanism. To illustrate the effectiveness of this
mechanism this section presents the results obtained from a series
of experiments conducted using DTW to compare keyboard time se-
ries. Two sets of experiments were conducted using a collection of
51 keyboard time series associated with 17 different subjects. The
first set of experiments used DTW to compare time series in the col-
lection; the objective was to determine how effectively DTW could
be used to distinguish between time series. The second set of experi-
ments compared the operation of the DTW technique with that when
using a statistical feature vector based approach akin to that used in
earlier work on KCA (see Section 2). The evaluation metrics used
were: (i) accuracy, (ii) False Rejection Rate (FRR) (iii) False Accep-
tance Rate (FAR) and Mean Reciprocal Rank (MRR). The remain-
der of this evaluation section is organised as follows. We commence,
Sub-section 6.1, with a discussion of the data collection process. The
outcomes from the experiments conducted to analyse the operation
of the use of DTW within an overall KCA process are reported on
in Sub-section 6.2. A summary of the results obtained comparing the

Figure 4. Application of DTW, different subjects.

usage of DTW with the feature vector style approach, found in earlier
work on KCA, is then presented in Sub-section 6.3.

6.1 Data Collection
Keystroke timing data was collected (in milliseconds) using a Web-
Based Keystroke Timestamp Recorder (WBKTR) developed by the
authors in JavaScript. An HTML “front end” was used and subjects
asked to provide answers to discussion questions3. The idea was to
mimic the situation where students are conducting online assess-
ments. We therefore wished to avoid imposing constraints such as
asking the subjects to use a specific keyboard or operating system.
The idea was to allow subjects to type in the same manner as they
would given an on line learning environment, in other words using
different platforms, browsers and so on. JavaScript was used to facil-
itate the collection of data because of its robust, cross-platform, op-
erating characteristics. This also offered the advantage that no third-

3 The interface can be found at (http://cgi.csc.liv.ac.uk/
˜hsaalshe/WBKTR.php).



Table 5. Results obtained by representing keystroke features in the two approaches: i)Time Series, and ii)Feature Vector.

Representation Method Time Series Feature Vector
XXXXXXXXXDataset

Metrics
FRR(%) FAR(%) MRR Acc(%) FRR(%) FAR(%) MRR Acc(%)

Group(a)→ a. ∨ {b, c} 6.11 1.52 0.438 93.88 20.58 1.64 0.283 79.41
Group(b)→ b. ∨ {a, c} 5.17 1.41 0.520 94.82 21.64 1.76 0.155 78.35
Group(c)→ c. ∨ {a, b} 6.70 1.51 0.454 93.29 19.17 1.64 0.225 80.82

Mean 5.99 1.48 0.471 94.00 20.59 1.69 0.221 79.53
SD 0.77 0.06 0.04 0.77 1.24 0.07 0.06 1.24

party plug-ins was required to enable WBKTR to work. Another ad-
vantage of using JavaScript was that it avoided any adverse effect that
might result from network delay when passing data to the “home”
server, which might have affect the accuracy of recorded times. (The
script function works at the end user station to record time stamp data
within the current limitations of the accuracy end users’s computer
clock.) The ability to paste text was disabled.

The subjects recruited were students and instructors working on
online programmes (thus a mixture of ages). The data was collected
anonymously. Additional information concerning the subjects was
not recorded (such as gender and/or age). This was a deliberate de-
cision so as minimise the resource required by subjects providing
the data. Also because this data was not required, we are interested
in comparing user typing patterns with themselves, not in drawing
any conclusions about the nature of keyboard usage behaviour in the
context of (say) age or gender.

The subjects were asked to type at least 100 words in response
to each of three discussion questions (with no maximum limitation)
so that adequate numbers of keystrokes could be collected. In [9] it
was suggested that 100 keystrokes was sufficient for KCA (for con-
venience the WBKTR environment included a scripting function to
count the number of words per question). Samples with a total num-
ber of keystrokes of less than 300 would have been discarded. During
each session a JavaScript tool, with JQuery, transcendently operated
in the background to record the sequencing eventsKN and the flight
time F t between those events. A PHP script was used to store the
identified attributes in the form of a plain text file for each subject.
Once the keystroke data had been collected, time series were gener-
ated of the form described in Section 4 above.

In this manner data from a total of 17 subjects were collected,
three keyboard time series per subject, thus 17× 3 = 51 time series
in total. The data was used to create three data sets such that each
data set corresponded to a discussion question. In the following the
data sets are referred to using the letters (a), (b) and (c).

6.2 Effectiveness of DTW for Keyboard Usage
Authentication

From the foregoing three keyboard time series data sets were col-
lected. For the set of experiments used to determine the effectiveness
of DTW each time series in each data set was compared with the time
series in each other data set pair (as shown in Figure 5): i) a.∨{b, c},
ii) b. ∨ {a, c} and iii) c. ∨ {a, b}. In each case we refer to the first
data set as data set 1, and the two comparator datasets as data sets 2
and 3. In each case we have 17 subjects numbered from 1 to 17. Con-
sequently individual time series can be referenced using the notation
sij where i is the data set identifier and j is the subject number. For
each time series s1j we compare with all time series in data sets 2 and
3 and a set of warping distance WD values obtained. For each pair

of comparisons an averageWD value was obtained and these values
were then ranked in ascending order. Thus each comparison has a
rank value r. The ranking outcome is shown in Table 1. In the table
the rows and columns represent the subjects featured in the data sets.
The complete table will thus measure all sub-sequences time series
with each individual subject; however, because of space limitations
only columns for subjects 1, 2 and 17 are listed. The values high-
lighted in bold font are the values where a subject is compared to
itself. Ideally we would wish this comparison to be ranked first (re-
call thatWD = 0 indicates an exact match). The last row in the table
gives the ranking r′ of each desired match (highlighted in bold font).
All ranking values of corresponding samples of the same subject are
listed in Table 2 with subjects represented by columns and data sets
by the rows.

With respect to the above the overall accuracy was computed as
the ratio between the number of incorrect matches ` ranked prior to a
correct match (` =

∑i=m
i=1

∑j=n
j=1 (r′ij − 1) where m is the number

of data sets, n is the number of subjects and r′ij is the ranking of the
desired match for subject sij) and the total number of comparisons
τ (τ = m × n). Thus in this case ` = 52 and τ = 867, giving an
accuracy of 94.00% ( 867−52

867
× 100 = 94.00).

Figure 5. Dataset has been divided into three groups a, b, c where multiple
comparisons have been conducted between different combination of groups:

a. ∨ {b, c}, b. ∨ {a, c}, c. ∨ {a, b}.

The False Rejection Rate (FRR) and False Acceptance Rate (FAR)
were also calculated with respect to the outcomes of the time se-
ries analysis of typing patterns presented above. According to the
European Standard for access control, the acceptable rate of FRR
is 1%, where the rate of FAR is 0.001% [13]. Thus, we used the
FRR and FAR metrics to measure how far the operation of our pro-
posed method, as a biometric authentication method, compared with
this standard. For each average WD comparison, in each dataset
grouping, we calculated FRR by computing the number of sub-
jects n where the corresponding desired rank r′ did not equal to 1,∑j=n

j=1 r
′
j 6= 1. If the equivalent sample’s rank is not equal to 1, this
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Table 3. Ranked average recorded CS values for feature vector analysis
(a ∨ b, c), correct matches highlighted in bold font.

sub 1 sub2 . . . sub17
0.813 0.559 . . . 0.598
0.806 0.554 . . . 0.589
0.715 0.542 . . . 0.534
0.712 0.530 . . . 0.522
0.686 0.510 . . . 0.498
0.659 0.503 . . . 0.488
0.659 0.500 . . . 0.484
0.654 0.495 . . . 0.480
0.651 0.482 . . . 0.474
0.647 0.481 . . . 0.469
0.641 0.481 . . . 0.457
0.632 0.480 . . . 0.454
0.629 0.479 . . . 0.452
0.629 0.475 . . . 0.450
0.618 0.460 . . . 0.450
0.615 0.450 . . . 0.439
0.615 0.448 . . . 0.437
0.614 0.446 . . . 0.433
0.611 0.443 . . . 0.431
0.609 0.440 . . . 0.420
0.605 0.440 . . . 0.412
0.604 0.439 . . . 0.411
0.603 0.439 . . . 0.410
0.596 0.437 . . . 0.407
0.587 0.435 . . . 0.407
0.578 0.426 . . . 0.402
0.576 0.423 . . . 0.401
0.569 0.419 . . . 0.390
0.568 0.418 . . . 0.385
0.561 0.417 . . . 0.382
0.561 0.413 . . . 0.380
0.552 0.403 . . . 0.379
0.550 0.386 . . . 0.378
0.548 0.385 . . . 0.377
0.547 0.378 . . . 0.370
0.522 0.378 . . . 0.343
0.521 0.357 . . . 0.328
0.517 0.345 . . . 0.326
0.512 0.333 . . . 0.308
0.510 0.328 . . . 0.300
0.492 0.325 . . . 0.299
0.485 0.307 . . . 0.299
0.465 0.291 . . . 0.264
0.456 0.232 . . . 0.227
0.440 0.172 . . . 0.191
0.425 0.113 . . . 0.155
0.411 0.054 . . . 0.119
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means that the sample has been falsely rejected. In contrast, FAR
is calculated by computing the number of subjects that are ranked
higher than the desired sample. The subjects ranked before the de-
sired subject can be considered to have been accepted as real users.
Average FRR and FAR values, across the three data set groupings, of
of 5.99% and 1.48% were obtained.

6.3 Effectiveness of Feature Vector Approach for
Keyboard Usage Authentication

To compare the operation of our proposed approach with the statis-
tical feature vector style of operation found in earlier work on KCA
(see Section 2), the keystroke data was used to define a feature vec-
tor representation. This was done by calculating the average flight
time µ(f t), for the most frequently occurring di-graphs found in the
data, using Equation 3, where d is the number of identified frequent
di-graphs. Each identified di-graph was thus a feature (dimension) in
a feature space with the range of average µ(f t) values as the values
for the dimension. In this manner feature vectors could be generated
for each sample. The resulting representation was thus similar to that
found in more traditional approaches to KCA [16, 6, 9, 1].

µ(f t) =
1

d

i=d∑
i=1

Fti (3)

In the same manner as described in Sub-section 6.2, we measured
the similarity of each feature vector in the first data set with every
other feature vector in the other two data sets using Cosine Similarity
(CS) (note that this was done for all three data pairings as before).
The CS values were calculated using Equation 4, where x · y is the
dot product between two feature vectors x and y, and ||x|| (||y||) is
the magnitude of the vector x (y). Note that using CS, unlike in the
case of DTW; the feature vectors need to be of the same length. As
before averages for pairs of CS values were used, and as before the
values were ranked but in this case in descending order (CS = 1
indicates a perfect match).

CS(x, y) =
x · y

||x|| × ||y|| (4)

Table 3 presents examples of the ranking outcomes. The table is
organised in the same manner as Table 1 used to display WD rank-
ings. As before r′ values are listed along the bottom row of the ta-
ble and correct matches are again highlighted in bold font. Table
4 presents an overview of the rankings results obtained using the
feature vector approach in the same way as Table 2 presented an
overview of the DTW rankings obtained. Detection accuracy was cal-
culated in the same way as for the DTW experiments reported above.
In this case ` = 163 and, as before, τ = 867. Thus an accuracy
of 81.20% ( 867−163

867
× 100 = 81.20). The average FRR and FAR

values obtained using the feature vector representation, calculated as
described above, 20.59% and 1.69% respectively.

6.3.1 Discussion

In the foregoing three sub-sections both the proposed DTW based
and the established feature vector based approaches to keyboard au-
thentication were analysed in terms of accuracy, FRR and FAR. A
summary of the results obtained is presented in Table 5 with respect
to the three data set combinations considered. Mean values are in-
cluded at the bottom of the table together with their associated Stan-
dard Deviation (SD). The table also includes Mean Reciprocal Rank
(MRR) values for each approach and data set combination. MRR is
an alternative evaluation measure that can be used to indicate the



effectiveness of authentication systems [5]. MRR is a standard eval-
uation measure used in Information Retrieval (IR). It is a measure of
how close the position of a desired result (identification) is to the top
of a ranked list. MRR is calculated as follows:

MRR =
1

|Q| .
|Q|∑
i=1

1

ri
(5)

where: (i) Q is a set of queries (in our case queries as to whether we
have the correct subject or not), and (ii) ri is the generated rank of
the desired response to Qi. An MRR of 1.00 would indicate that all
the results considered are correct, thus we wish to maximise MRR.
Thus, with reference to Table 5, the average MRR with respect to
the proposed time series based approach to KCA is of all proposed
combination is 0.471 , while for the feature vector based approach
it is 0.221 is obtained with respect to the comparator feature vec-
tor based approach. Returning to Table 5, inspection of the results
indicates that the proposed DTW based approach to keyboard au-
thentication outperforms the exciting feature vector based approach
by a significant margin.

7 Conclusion
An approach to KCA using time series analysis has been presented
that takes into consideration the ordering of keystrokes. The pro-
cess operates by representing keystroke timing attributes as discrete
points in a time series where each point has a timestamp of some kind
and an attribute value. The proposed representation used a sequential
keypress numbering system as the time stamp, and flight time as the
attribute (distance between key presses). DTW was adopted as the
time series comparison mechanism. For evaluation purposes data was
collected anonymously using a bespoke web-based tool designed to
mimic the process of conducting online assessments (responding to
discussion questions). The evaluation was conducted by comparing
every subject to every other subject to determine whether we could
distinguish between the two using: (i) the proposed technique and (ii)
a feature vector based approach akin to that used in established work
on KCA. With respect to the first set of experiments, an overall ac-
curacy of 94.00% was obtained. This compared very favourably with
an accuracy of 79.53%, obtained with respect to the second set of
experiments. The results demonstrated that the proposed time series
based approach to KCA had significant potential benefit in the con-
text of user authentication with respect to online assessments such as
those used in online learning and MOOCS. The authors belief that
further improvement can be realised by considering n-dimensional
time series (time series that consider more than one keystroke at-
tribute). Future work will also be directed at confirming the findings
using larger datasets.
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