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Abstract—The World Wide Web includes semantic relations of numerous types that exist among different entities. Extracting the
relations that exist between two entities is an important step in various Web-related tasks such as information retrieval, information
extraction, and social network extraction. A supervised relation extraction system that is trained to extract a particular relation type
(source relation) might not accurately extract a new type of a relation (target relation) for which it has not been trained. However, it is
costly to create training data manually for every new relation type that one might want to extract. We propose a method to adapt an
existing relation extraction system to extract new relation types with minimum supervision. Our proposed method comprises two stages:
learning a lower-dimensional projection between different relations, and learning a relational classifier for the target relation type with
instance sampling. First, to represent a semantic relation that exist between two entities, we extract lexical and syntactic patterns from
contexts in which those two entities co-occur. Then, we construct a bipartite graph between relation-specific and relation-independent
patterns. Spectral clustering is performed on the bipartite graph to compute a lower-dimensional projection. Second, we train a classifier
for the target relation type using a small number of labeled instances. To account for the lack of target relation training instances, we
present a one-sided under-sampling method. We evaluate the proposed method using a dataset that contains 2000 instances for 20
different relation types. Our experimental results show that the proposed method achieves a statistically significant macro-average
F -score of 62.77. Moreover, the proposed method outperforms numerous baselines and a previously proposed weakly-supervised
relation extraction method.
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1 INTRODUCTION

THE World Wide Web contains information related
to numerous real-world entities (e.g. persons, lo-

cations, organizations, etc.) interconnected by various
semantic relations. Accurately detecting the semantic
relations that exist between two entities is of paramount
importance for numerous tasks on the Web such as
information retrieval (IR) [1], information extraction (IE)
[2], and social network extraction [3]. For example, to
improve coverage in information retrieval, a query about
a particular person can return documents describing the
various semantic relations that the person under con-
sideration has with other related entities. Recent work
on relation extraction has demonstrated that supervised
machine learning algorithms coupled with intelligent
feature engineering provide state-of-the-art solutions to
this problem [4]–[6]. However, supervised learning al-
gorithms depend heavily on the availability of adequate
labeled data for the target relation types that must be ex-
tracted. Considering the potentially numerous semantic
relations that exist among entities on the Web, it is costly
to create labeled data manually for each new relation
type that we want to extract. Instead of annotating a
large set of training data manually for each new relation
type, it would be cost effective if we could somehow
adapt an existing relation extraction system to those new
relation types using a small set of training instances. As
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described in this paper, we examine relation adaptation
– how to adapt an existing relation extraction system
that is trained to extract some specific relation types,
to extract new relation types in a minimally-supervised
setting. We designate the existing relation types on which
a relation extraction system has been trained as source
relations, whereas the novel relation type to which we
must adapt is called the target relation.

We must overcome three fundamental challenges
when adapting a relation extraction system to new rela-
tion types. First, a semantic relation that exists between
two entities can be expressed using more than one lexical
or syntactic pattern. For example, the acquiredBy relation
that exist between two companies X and Y where the
company X is acquired by the company Y can be ex-
pressed using lexical patterns such as X acquires Y, X buys
Y, and X purchases Y. To classify a relation accurately,
we must recognize the different ways in which it can
be expressed on the Web. Second, the types of relations
are strongly dependent on the application domain. For
example, in the financial domain, we might be interested
in extracting relations such as acquiredBy (between two
companies) and ceoOf (between a company and a per-
son), whereas, in the movie domain we might be inter-
ested in extracting relations such as actedIn (between an
actor and a movie) and directed (between a director and
a movie). Therefore, a classifier trained on the financial
domain might not be applied directly to classify relations
in the movie domain because the two domains have
different sets of relations. Third, the labeled instances
for the target relation are markedly fewer than those for
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the source relations. It is challenging to learn a classifier
for the target relation type using such an unbalanced
dataset.

We propose a two-stage approach to adapt an existing
relation extraction system to new relation types. First,
to represent a semantic relation R that exist between
two entities A and B, we extract lexical and syntactic
patterns from contexts in which those two entities co-
occur. Our proposed method is inspired by the observa-
tion that different semantic relations share some lexical
and syntactic patterns. For example, the lexical pattern
X direct Y holds between a company Y and its CEO X, as
well as between a country Y and its leader (e.g. prime
minister or president) X. We designate patterns that
appear in different relation types as relation-independent
patterns, whereas patterns that appear only in a partic-
ular relation type are called relation-specific patterns. To
identify relation-specific and relation-independent pat-
terns, we propose the use of the entropy of a pattern
over the distribution of entity pairs. If a pattern is
distributed uniformly over entity pairs that belong to nu-
merous semantic relations, then such patterns will have a
high entropy. We then create a bipartite graph between
relation-specific and relation-independent patterns and
perform spectral clustering on this graph to compute
a lower-dimensional mapping between relation-specific
and relation-independent patterns. Spectral clustering at-
tempts to minimize the normalized cut on the bi-partite
graph between relation specific and relation independent
patterns, thereby aligning the two types of patterns in
a lower-dimensional space. The clusters formed by this
process capture lexical patterns from source relation
types as well as the target relation type. Consequently,
we can use the lower-dimensional mapping created from
this process to project feature vectors to train a relational
classifier.

In the second stage, we train a classifier for the target
relation type using training instances for both source and
target relation types. A fundamental problem in training
a relational classifier for a target relation type for which
only a few labeled instances are available is that, because
of the numerous source relation instances, the finally
trained classifier becomes biased towards the source
relation types. Any information related to the target
relation type is overshadowed by the numerous source
relation instances. To solve this problem, we propose a
method that first samples a subset of source relation
instances. Then we use that subset to train a classifier
for the target relation type. This method reduces the
imbalance between source and target relation datasets,
thereby improving the classification accuracy for the
target relation type.

To evaluate the performance of the proposed method
to adapt to numerous relation types, we create a dataset
that contains 2000 entity pairs for 20 different rela-
tion types such as actedIn (between an actor and a
movie), leaderOf (between a leader and an organiza-
tion/country), directedIn (between a film director and

a movie), etc. We compare the proposed method against
various baselines and a previously proposed weakly-
supervised relation classification method. In our exper-
iments, the proposed method significantly outperforms
other methods compared herein, thereby demonstrating
its capability of adapting accurately to numerous relation
types.

The remainder of this paper is organized as follows.
In Section 2.1, we formally define the relation adapta-
tion problem. We provide a motivating example for the
proposed method in Section 2.2. The procedure for rep-
resenting semantic relations using lexical and syntactic
patterns is described in Section 2.3. Three strategies to
identify relation-specific and relation-independent pat-
terns are presented in Section 2.4. In Section 2.5, we
construct a bipartite graph between relation-specific and
relation-independent pattern. In Section 2.6, we perform
spectral clustering on the created bipartite graph to
compute a latent relational mapping between relation-
specific and relation-independent features. A one-sided
under-sampling method is proposed in Section 2.7 to
select a subset of source relation instances which are
used together with target relation instances to train a
classifier. In Section 3, we conduct a series of experiments
using a dataset that contains numerous relation types to
evaluate the ability of the proposed method to classify
novel target relation types. Finally, we present the related
work in Section 4 and conclude the paper.

2 RELATION ADAPTATION

2.1 Problem Definition

Given two entities A and B, we define relation extraction
as the task of selecting the relationR, that exists between
A and B, from a given set of relation types. Note that
this definition of relation extraction is different from that
used, for example in bootstrapping and Open IE systems
(discussed later in Section 4), because we assume that
we already know the set of relation types from which
we must select a relation type for a given entity pair.
Moreover, entity pair (A,B) is regarded as an instance
of the relation R. For example, the entity pair (Steven
Spielberg, Firelight) is an instance of the relation directed.
According to our definition, relation extraction can be
modeled as a multi-class classification problem. For in-
stance, we can label entity pairs for each of the relation
types that we want to extract, and use the labeled entity
pairs to train a supervised multi-class classifier.

Definition: We define Relation Adaptation as the prob-
lem of learning a classifier for a target relation type
T , for which we have a few entity pairs as training
instances, given numerous entity pairs for some N
source relation types, S1, . . . ,SN . We use the notation
Ω = {S1, . . . ,SN , T } to denote the set of all relations. A
particular relation type from this set is denoted by R (i.e
R ∈ Ω). An entity pair that consists of two entities A and
B is denoted as (A,B). Moreover, we use the notation
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(A,B) ∈ R to indicate that the relation R exists between
two entities A and B.

The above-mentioned definition of relation adaptation
assumes the availability of labeled data for source re-
lations as well as for the target relation. However, the
amount of labeled data available for the target relation
is assumed to be very small, limited to several seed
instances. We do not assume the availability of unlabeled
data in this work.

Note that there might exist more than one relation
between an entity pair. For example, both the ceoOf and
founderOf relations exist between the two entities Steve
Jobs and Apple. It is possible to extend our definition
of relation adaptation to incorporate multiple relations
between entities by considering multi-class multi-label
classifiers. In this paper, we limit ourselves to assigning
a single relation type to a given entity pair.

On the other hand, there might not exist any seman-
tic relation between two entities. One solution to this
problem of filtering out entity pairs that are not related
is to train a binary classifier as a pre-processing step
that determines whether a semantic relation exists or
not between two entities. Subsequently, entity pairs that
are marked to be related by this binary classifier can
be further processed by a relation adaptation method to
assign a relation type. In this paper, we assume that all
entity pairs contain some semantic relation and do not
attempt filter out entity pairs with no relations.

2.2 A Motivating Example
Before we explain the proposed method in greater detail,
let us first consider a motivating example that portrays
the intuition underlying the proposed method. Consider
two relations, leaderOf and ceoOf, as shown in Table
1. The leaderOf relation exists between a country and
its current leader, whereas the ceoOf relation exist be-
tween a company and the chief executive officer of that
company. Assuming that we are given contexts in which
instances of the relation leaderOf occurs, we intend to
train a relational classifier for the ceoOf relation. The
two relations under consideration have very different
distributions. Consequently, a relational classifier trained
on one relation might not correctly identify the other
relation. In Table 1, two contexts are provided for the
leaderOf relation instance entity pair (George Bush, U.S.)
and for the ceoOf relation instance entity pair (Steve Jobs,
Apple).

To represent a semantic relation, we extract lexical and
syntactic patterns as described later in Section 2.3. To
illustrate our example, we assume that we extract the
lexical patterns shown within brackets alongside with
contexts in Table 1. The pattern, X direct Y appears
in both relation types. We designate such patterns as
relation-independent (RI) patterns. However, patterns such
as Y president X and X ceo Y appear in only one of the two
relation types. We designate such patterns as relation-
specific (RS) patterns. For relation adaptation, we assume

Relation Specific 

Patterns

Relation Independent 

Patterns

Y president X

X ceo Y

X direct Y

1

1

Fig. 1. A bipartite graph between relation-specific pat-
terns and relation-independent patterns shown in Table 1

that we have sufficiently numerous source relation entity
pairs, but only a few entity pairs for the target relation.
Therefore, it is particularly challenging to learn proper
weights for the target relation-specific patterns such as
X ceo Y. However, relation-specific patterns in the target
relation are extremely useful when determining whether
a particular entity pair belongs to the target relation.

As a solution to this mismatch between source and
target relation-specific patterns, we propose a method
to find a mapping between source relations and the
target relation using relation-independent patterns as
pivots. First, Figure 1 shows that we create a bipartite
graph between relation-specific patterns and relation-
independent patterns. Each pattern is represented as a
vertex in the bipartite graph. Two vertices are connected
by a weighted undirected edge if the corresponding
patterns are extracted from the same entity pair. For
instance, in Table 1, the two patterns X direct Y and
Y president X are extracted from contexts for the entity
pair (George Bush, U.S.). Therefore, those patterns are
connected by an edge in the bipartite graph portrayed
in Figure 1. Similarly, the relation specific pattern X
ceo Y and the relation independent pattern X direct Y
are connected by an edge because those two patterns
are extracted from the contexts for the same entity pair
(Steve Jobs, Apple). Next, we perform spectral cluster-
ing on this bipartite graph to compute a latent map-
ping between relation-specific and relation-independent
patterns. This mapping is then used to project feature
vectors to train a relation classifier.

Several important points must be discussed. We
must determine how to extract lexical and syntactic
patterns to represent the semantic relations expressed
by an entity pair, how to identify relation-specific
and relation-independent patterns, how to weight the
edges on the bipartite graph and how to construct a
low-dimensional mapping using relation-specific and
relation-independent patterns, and how to train a clas-
sifier with a few target relation instances. The following
sections present discussions of these points.
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TABLE 1
Example contexts for two relation types: leaderOf and ceoOf. Entities between which the specified relation exist are

marked in boldface. Words that contribute to important lexical patterns are shown in italic. Some lexical patterns
extracted by the proposed method are shown within squared brackets.

leaderOf (source relation) ceoOf (target relation)
President George Bush directed U.S. to an unnecessary
war against Iraq. [X direct Y]

Steve Jobs personally directs Apple and makes final
decisions on various UI designs. [X direct Y]

U.S. president George Bush attended the G8 summit last
month. [Y president X]

Steve Jobs is the CEO of Apple, which he co-founded
in 1976. [X ceo Y]

2.3 Relation Representation
The contexts in which two entities A and B co-occur
on the Web provide useful clues to the relations existing
between those entities. We use the term context to refer a
window of text in which two entities co-occur. A context
might not necessarily be a complete sentence. Retrieving
contexts in which two entities co-occur has been studied
in previous works investigating the relations between
entities on the Web [7]–[9]. Two main approaches are
identifiable. First, given a large Web crawl, we can select
textual windows that contain the two entities A and B
in web documents [7], [9] However, disadvantages of
this method include the high costs of crawling, storing,
and processing a large text corpus [10]. Moreover, if the
crawled data is insufficient, then the entities might not
co-occur, which in turn engenders data sparseness. A
second approach is to issue various queries including
the two entities to an existing Web search engine and
to retrieve search engine snippets (or entire web pages)
that contain both entities [8]. This approach is cheaper
because it obviates the need to crawl, store or index Web
documents. Unfortunately however, the results that can
be retrieved from a Web search engine are often of a lim-
ited number. Numerous solutions have been proposed
in previous work to circumvent this problem [8], [10]. In
our work, we assume that we are provided with contexts
in which entities co-occur and only specifically examine
the relation adaptation problem. For the experiments
described in this paper we use the Yahoo BOSS API
to retrieve contexts from the Web following the method
described in [8].

Given a pair of entities (A, B), the first step is to
express the relation between A and B using some feature
representation. Lexical or syntactic patterns have been
successfully used in numerous natural language process-
ing tasks involving relation extraction such as extracting
hypernyms [11], [12] or meronyms [13], question answer-
ing [14], and paraphrase extraction [15]. Following the
previous work on relation extraction between entities,
we use lexical and syntactic patterns extracted from the
contexts in which two entities co-occur to represent the
semantic relation that exists between those entities.

First, we lemmatize and part-of-speech (POS) tag the
contexts using Python Natural Language Processing Tool
Kit (NLTK)1. Table 2 presents an example in which we
extract patterns from a context selected for the two

1. http://www.nltk.org

entities, Adobe Systems and Macromedia, between which
the relation acquiredBy exist. Next, both in the surface
form and POS tag sequence, we replace the first entity
(i.e. Adobe Systems) with a placeholder variable X, and
the second entity (i.e. Macromedia) with a different place-
holder variable Y. In relation adaptation, the entity pairs
are given as input. We need only to detect the relations
between those entities. Therefore, we need not recognize
entities in a context. We use the subsequence pattern
extraction algorithm proposed by Bollegala et al. [16] to
extract lexical and syntactic patterns from contexts. Next,
we briefly outline the steps in this algorithm. (refer to
[16] for additional details).

We select subsequence patterns from both surface
forms of the sentences and POS tag sequences that satisfy
the following conditions as patterns.

(i). A subsequence must contain exactly one occur-
rence of each X and Y (i.e., exactly one X and one
Y must exist in a subsequence).

(ii). The maximum length of a subsequence is τ tokens.
(iii). A subsequence is allowed to have gaps (i.e. one or

more skipped tokens). However, we do not allow
gaps of more than g tokens. Moreover, the total
length of all gaps in a subsequence should not
exceed G tokens.

(iv). We expand all negation contractions in a sentence.
For example, didn’t is expanded to did not. We
do not skip the word not when generating subse-
quences. For example, this condition ensures that
from X is not a Y, we do not produce the pattern X
is a Y.

We designate the subsequences of surface forms pro-
duced by the procedure described above as lexical pat-
terns. The corresponding POS tags of a lexical pattern is
called a syntactic pattern. The values of parameters τ , G,
and g are set respectively to 5, 2, and 4 following [16].

The above-described subsequence pattern extraction
algorithm presents several interesting properties. First,
it considers all the words in a context, and is not limited
to extracting patterns only from the mid-fix (i.e., the
portion of text in a context that appears between a pair
of entities). Moreover, the consideration of gaps enables
us to capture relations between entities located at some
distance in a context. We use prefixspan algorithm [17]
to generate the subsequences efficiently. The constraints
(i)-(iv) listed above are used to prune the search space,
thereby reducing the number of subsequences generated
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TABLE 2
Extracting lexical and syntactic patterns from a context retrieved for the entity pair Adobe Systems and Macromedia.

context another example of a statutory merger is software maker Adobe Systems acquisition of Macromedia .
POS tagged DT NN IN DT JJ NN VBZ NN NN NNP NN NN IN NP .
substitution Adobe Systems = X, Macromedia = Y
surface form another example of a statutory merger is software maker X acquisition of Y .
POS sequence DT NN IN DT JJ NN VBZ NN NN X NN IN Y .
lexical patterns X acquisition of Y, software maker X acquisition of Y, X of Y, software X acqusition Y
syntactic patterns X NN IN Y, NN NN X NN IN Y, X IN Y, NN X NN Y

by prefixspan. Some lexical and syntactic patterns ex-
tracted using the proposed method are shown in Table 2
(not all patterns are shown because of the limited avail-
ability of space). Finally, all lexical and syntactic patterns
extracted from all contexts in which two entities A and
B co-occur are arranged in a pattern frequency vector
xAB to represent the entity pair (A, B). The elements of
xAB correspond to, f(ρ,A,B), the total number of times
a pattern ρ is extracted from contexts in which A and
B co-occur. It is analogous to the term frequency vector
used in IR.

2.4 Relation-Specific vs. Relation-Independent Pat-
terns

Once we express the relations that exist between entities
using lexical and syntactic patterns as described in the
previous section, we compute the correspondence be-
tween patterns that express different semantic relations.
First, we must identify which patterns are specific to a
particular relation type. We present three strategies to
identify relation-specific patterns.

The first strategy is to select patterns that occur more
than ζ times in all relation types as relation independent
patterns. Here, the total frequency of a pattern ρ in a
particular relation type R is defined as the sum of the
frequencies of ρ in all entity pairs that belong to R
(i.e.

∑
(A,B)∈R f(ρ,A,B)). Given the number l of relation

independent patterns to be selected, we set ζ to the
largest number such that we can get at least l relation-
independent patterns. Given l, ζ is uniquely determined.

The second strategy for selecting relation-independent
patterns is based on the mutual information between
a pattern and a relation type. Mutual information is a
measure of the mutual dependence between two random
variables. In previous works examining cross-domain
sentiment classification, mutual information between a
feature and a domain label is used as a criterion to select
domain-independent features [18], [19]. The (pointwise)
mutual information I(ρ,R) between a pattern ρ and a
relation type R is defined as follows:

I(ρ,R) = p(ρ,R) log2

(
p(ρ,R)

p(ρ)p(R)

)
. (1)

Here, p(ρ,R) is the joint probability of a pattern ρ and
a relation R; it is given as

p(ρ,R) =

∑
(A,B)∈R f(ρ,A,B)∑

ρ∈Φ

∑
R∈Ω

∑
(A,B)∈R f(ρ,A,B)

. (2)

Here, we use Φ to denote the set of all (lexical and
syntactic) patterns extracted for all entity pairs in all
relations in Ω. Moreover, the total number of patterns in
Φ is denoted by n. We can compute the marginal prob-
abilities p(ρ) and p(R) in Equation 1 by marginalizing
the joint probability p(ρ,R) in Equation 2 respectively
over R and ρ. To select relation-independent patterns,
we consider the sum of mutual information given by
Equation 1 over the set of relations Ω (i.e.

∑
R∈Ω I(ρ,R))

for each pattern. The smaller this value is, the more likely
that the pattern ρ is relation-independent. We select the l
number of patterns with the lowest mutual information
as relation-independent patterns.

We propose a third strategy for selecting relation
independent patterns using the entropy of a pattern over
the distribution of entity pairs. The proposed strategy
is inspired by the fact that if a pattern is relation-
independent, then its distribution over the entity pairs
tends to become more uniform. However, if a pattern
is relation-specific, then its distribution is concentrated
over a small set of entity pairs that belong to a specific
relation type. The entropy of a pattern increases as its
distribution becomes more uniform. The entropy, H(ρ),
of a pattern ρ is computed as

H(ρ) =
∑
R∈Ω

∑
(A,B)∈R

p(ρ,A,B) log2 p(ρ,A,B). (3)

Here, the joint probability between a pattern ρ and an
entity pair (A,B) is given as

p(ρ,A,B) =
f(ρ,A,B)∑

ρ∈Φ

∑
R∈Ω

∑
(A,B)∈R f(ρ,A,B)

. (4)

Figure 2 presents an example in which we plot the dis-
tributions over entity pairs (numeric ids are assigned to
entity pairs and grouped by their relation types for illus-
trative purposes) for four lexical patterns. From Figure
2, it is apparent that relation-specific patterns such as Y
directed by X (directed relation), and Y wife X (isMarriedTo
relation) are concentrated over a small set of entity pairs,
whereas relation-independent patterns such as Y from X,
and Y for X are distributed over a large set of entity
pairs. Consequently, relation-independent patterns have
higher entropy values than relation-specific patterns do.

2.5 Bipartite Graph Construction
For the set of all patterns Φ (total no. of patterns, |Φ| = n)
extracted by the pattern extraction method described in
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Fig. 2. Distributions of four patterns over entity pairs.
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Section 2.3 for all entity pairs in source relations and the
target relation (i.e. Ω), we can use one of the strategies
described in Section 2.4 to identify a set ΦRS ⊆ Φ
of relation-specific patterns, and a set ΦRI ⊆ Φ of
relation-independent patterns. Here, ΦRS ∪ΦRI = Φ and
ΦRS ∩ ΦRI = φ. In this section, we construct a bipartite
graph, G = (VRS ∪ VRI , E) between relation-specific
and relation-independent patterns to represent the in-
trinsic relationship between those patterns. Each vertex
in VRS corresponds to a relation-specific pattern, and
each vertex in VRI corresponds to a relation-independent
pattern. A vertex in VRS (corresponding to a relation-
specific pattern ρi ∈ ΦRS) is connected to a vertex in
VRI (corresponding to a relation-independent pattern
ρj ∈ ΦRI ) by an undirected edge eij ∈ E. Note that
there are no intra-set edges connecting vertices in VRS
and VRI . Moreover, each edge eij ∈ E is associated with
a non-negative weight mij , that measures the strength
of association between the corresponding patterns ρi
and ρj . We set mij to the number of different entity
pairs from which both ρi and ρj are extracted. If two
patterns are extracted from numerous entity pairs, then
those patterns can be considered as semantically similar
according to the distributional hypothesis [20]. Previous
work on pattern clustering [21] and relation extraction
[16] have modeled patterns using their distributions over
entity pairs to compute distributional similarity. Edge
weights mij are represented collectively by an edge-
weight matrix M of the bipartite graph G. Figure 1
portrays a bipartite graph constructed from the example
shown in Table 1. We use the constructed bipartite graph
to model the intrinsic relationship between relation-
specific and relation-independent patterns.

It is noteworthy that, aside from using the number
of different entity pairs from which two patterns are ex-
tracted, we can use numerous other methods to measure
the strength of association, mij , between two patterns.
For example, we can use the distributional similarity
between the two patterns over the entity pair distribu-

tions, or use popular co-occurrence measures such as
pointwise mutual information, Jaccard coefficient, Dice
coefficient etc. In this paper, for simplicity, we use the
number of different entity pairs from which two patterns
are extracted as the edge-weighting measure. We want
to show that by constructing a simple bipartite graph
and applying spectral clustering techniques on it, we
can accurately map patterns from source relations to the
target relation.

2.6 Relational Mapping

In this section, we propose an algorithm based on spec-
tral graph theory [22] to find a lower-dimensional map-
ping for patterns extracted from different relation types.
This lower-dimensional mapping is used to project pat-
tern frequency vectors created for entity pairs, thereby
reducing the mismatch between patterns extracted for
source relations and the target relation. There are two
main assumptions in spectral graph theory: (1) if two
vertices in a graph are connected to many common
vertices, then those two vertices must be similar, and (2)
there exists a low-dimensional latent space underlying a
complex graph, in which two vertices are mutually simi-
lar if they are also similar in the original graph. Based on
those two assumptions, spectral graph theory has been
applied to widely various problems such as document
clustering [23], dimensionality reduction [24], [25] and
object recognition [26], [27]. In relation adaptation, we
assume that: (1) if two relation-specific patterns are con-
nected to many common relation-independent patterns,
then those relation-specific patterns must be mutually
similar, (2) if two relation-independent patterns are con-
nected to many common relation-specific patterns, then
those relation-independent patterns must be mutually
similar, and (3) there exist a lower-dimensional latent
space in which similar patterns in the original space are
located close together in this lower-dimensional space.
Under those assumptions, we can use spectral graph
theory to find a latent mapping between patterns ex-
tracted for source and target relation types, as shown in
Algorithm 1.

Given as input an edge-weight matrix M for the
bipartite graph G constructed in Section 2.5, and di-
mensionality k(< n) of the latent space, Algorithm 1
returns a projection matrix from the original n dimen-
sional pattern space to a k dimensional latent space. The
(i, j) element of the edge-weight matrix M represents
the weight of the edge that connects a relation-specific
pattern ρi to a relation-independent pattern ρj . The first
step in Algorithm 1 is to construct the affinity matrix A
of the overall bipartite graph G. Because no edges exist
among vertices that belong to VRS and VRI , the affinity
matrix A for the entire bipartite graph can be constructed
using M and the zero matrix 0 as shown in Line 1 in
Algorithm 1. Next, we compute the normalized Lapla-
cian L for the bipartite graph (Line 2) and compute the
eigenvectors corresponding to the k smallest eigenvalues
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Algorithm 1 Mapping patterns extracted from source
relations and the target relation to a lower-dimensional
space.

Input: An edge-weight matrix, M ∈ R(n−l)×l of a bi-
partite graph G(VRS ∪ VRI , E), and the number of
clusters (latent dimensions) k.

Output: A projection matrix, U ∈ Rn×k.

1: Compute the affinity matrix, A ∈ Rn×n, of the

bipartite graph G as A =

[
0 M

M> 0

]
.

2: Compute the Laplacian, L, of the bipartite graph G
as L = I −D−1A, where the diagonal matrix D has
elements Dii =

∑
j Aij , and I ∈ Rn×n is the unit

matrix.
3: Find the eigenvectors corresponding to the k small-

est eigenvalues of L, u1, . . . ,uk, and arrange them
in columns to form the projection matrix U =
[u1, . . . ,uk] ∈ Rn×k.

4: return U

of L (Line 3). In previous work on spectral clustering
[28], it has been shown that the k smallest eigenvectors
of the Laplacian matrix can be used to cluster a set of
data points by mapping them into a k dimensional space
spanned by those eigenvectors. Moreover, the k smallest
eigenvectors act as the continuous solution of the cluster
membership indicators. Consequently, we arrange the k
smallest eigenvectors, u1, . . . ,uk in columns to construct
a projection matrix U (Line 3). It is noteworthy that the
smallest eigenvector of L is always a constant unit vector
and does not provide any useful information related
to the cluster membership. Consequently, we ignore
this constant eigenvector when selecting the k smallest
eigenvectors to construct U. Once the projection matrix
U is computed as described in Algorithm 1, we use it
to project entity pairs that belong to different relation
types into a common latent subspace. Specifically, for
an entity pair (A,B) represented by a pattern-frequency
vector xAB , its projection into the k-dimensional latent
space is given as UxAB .

We implemented the stochastic matrix decomposition
algorithm proposed by Halko et al. [29] to find the
smallest k eigenvectors directly without computing the
entire spectrum of the Laplacian and then selecting only
the smallest k eigenvectors. Moreover, it can be shown
that the eigenvectors of the Laplacian L ∈ Rn×n can
be constructed by computing the left and right singular
vectors in the singular value decomposition of the matrix
M ∈ R(n−l)×l, which has much smaller dimensions than
L (see [23] for the proof). Together these techniques
enable us to compute the projection matrix U efficiently
from numerous lexical and syntactic patterns.

2.7 Relation Classification
The low-dimensional projection computed in the pre-

vious section reduces the mismatch between patterns in

Algorithm 2 One-sided under-sampling algorithm to
select a subset of source relation instances.
Input: Set Λ that contains entity pairs for all source

relations S1, . . . ,SN and the target relation T .
Output: A set Γ ⊆ Λ.

1: Initialize Γ to the set containing all entity pairs of T .
2: Randomly select an entity pair from each source

relation Si and add to Γ.
3: Classify Λ with the 1-NN rule using the instances in

Γ, and compare the assigned relation labels with the
original ones.

4: Move all misclassified instances from Λ into Γ.
5: return Γ

source and target relation types, thereby enabling us to
train a classifier for the target relation type using labeled
entity pairs for both source and target relation types.
However, we must overcome two challenges before we
can use the projected vectors to train a classifier for a
target relation type: loss of information because of imperfect
projections, and imbalance between source and target relation
training datasets. Next, we discuss each challenge in detail
and propose solutions to overcome them.

First, the criterion for selecting relation-independent
and relation-specific patterns might not be perfect,
thereby introducing some noise to the created bipartite
graph. For that reason, the computed projection matrix
might not accurately project features in the dimensional-
ity reduction step. To compensate for the loss of informa-
tion because of imperfect feature projection, we augment
all the patterns in the original vector xAB ∈ Rn×1

to the projection UxAB ∈ Rk×1 to construct a new
representation x̃AB × R(n+k)×1 for an entity pair (A,B)
as

x̃AB = [xAB , λUxAB ]. (5)

The single scalar parameter λ is useful to balance the
tradeoff between original and projected features in the
new representation. Using a set of heldout data, we set
λ such that the average L1 norm on the source relation
projection vectors Ux is equal to that of the original
vectors x. This new representation retains all the features
(pattern frequencies) in the original vector in addition to
the projected features, thereby overcoming any disfluen-
cies attributable to potential imperfect projections.

Second, in relation adaptation, the number of target
relation training instances (entity pairs) is significantly
smaller than that of the source relations. Given such
an unbalanced training dataset, most supervised classi-
fication algorithms treat the minority class (target rela-
tion) instances as noise or outliers. Therefore, learning
a classifier for a target relation type which has only
a few instances is difficult in practice. To overcome
this problem, we use a one-sided under-sampling al-
gorithm (Algorithm 2), which first selects a subset of
the source relation training data and then uses that
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subset to train a multi-class classifier. This algorithm was
first proposed by Tomek [30] as a modification to the
condensed nearest-neighbor (CNN) method in pattern
recognition. One-sided under-sampling methods have
been used to select a subset of the majority class in
previous work investigating the problem of machine
learning with unbalanced datasets [31], [32].

Algorithm 2 takes a set, Λ = {(A,B)|(A,B) ∈ R,∀R ∈
Ω}, of all the entity pairs for source relations and the
target relation, and creates a set Γ ⊆ Λ that contains all
target relation entity pairs and a subset of the source
relation entity pairs. In Algorithm 2, we first select all
target relation entity pairs as the set Γ (Line 1). In
relation adaptation problem setting, the number of target
relation entity pairs is small and we do not sample from
the target relation (hence the name one-sided sampling).
Next, we randomly select an entity pair from each
source relation type and include those entity pairs in
Γ (Line 2). We then use the single nearest neighbor
(1-NN) rule to classify the entity pairs in Λ using the
entity pairs in Γ as the labeled instances (Line 3). We
use the augmented representation given in Equation 5
to represent an entity pair and measure the Euclidean
distance between feature vectors to identify the nearest
neighbors. All misclassified entity pairs in Λ are then
moved to Γ (Line 4). After this operation, we obtain a
set Γ that is consistent with the set Λ, although it contains
fewer source domain entity pairs, thereby decreasing
the imbalance between source and target relation entity
pairs. Note that the sampling process is conducted once
for each target relation type.

After selecting a subset of entity pairs from each of
the source relation types, we train a multi-class classifier
for the source and target relation types. Specifically, we
represent each entity pair by a feature vector where
we use lexical and syntactic patterns that co-occur with
that entity pair as features. For example, given an en-
tity pair (A,B), we use the co-occurrence frequencies
f(ρ,A,B) for each pattern ρ as features. Feature vectors
are normalized to unit length (L2 norm) so that we
can equally represent both entity pairs that co-occur
a lot as well as entity pairs that co-occur only a few
times. Each feature vector is assigned a relational label
according to the relation that exist between the two
entities in the entity pair. We then train a multi-class
classifier to learn a classification model to classify each
of the source relation types and the target relation type.
In general, any classification algorithm can be used to
train from the feature vectors. For simplicity, we use
multi-class logistic regression as our classifier2. The L2

regularization parameter is set to its default value of 1
and is not tuned for any of our experiments.

2. http://www.chokkan.org/software/classias/

3 EXPERIMENTS

3.1 Dataset

To evaluate the proposed method, we select 20 relation
types that have been used frequently for evaluating
relation extraction systems [2], [16], [33] from the YAGO
ontology3. YAGO (Yet Another Great Ontology) is a large
semantic knowledge base that includes over two million
entities such as persons, organizations and cities. More-
over, it contains over twenty million facts about those
entities. YAGO is automatically created from Wikipedia
and uses WordNet to structure information. The YAGO
ontology has a high level (on average 95%) of manually
confirmed accuracy, which makes it a suitable gold
standard for evaluating relations between entity pairs on
the Web [34]. For each selected relation, we randomly se-
lected 100 entity pairs listed for that relation in the YAGO
ontology. Overall, the dataset contains 2000 (20 relations
× 100 instances) entity pairs. Some of those relation
types are: actedIn (actor-movie), ceoOf (ceo-company),
acquiredBy (company-company), and directed (director-
movie).

The dataset contains various relations that exist be-
tween entities of numerous types on the Web. We use
the Yahoo BOSS search API4 to download contexts for
the entity pairs in the dataset. Specifically, we construct
numerous contextual queries that include the two enti-
ties in an entity pair and download snippets that contain
those entities using the method proposed in [8]. On
average, we have ca. 7000 snippets for a pair of entities
in the dataset. The dataset and the source code for the
proposed method is publicly available5.

3.2 Experimental Settings

For each relation type R, we randomly allocated its 100
instances (entity pairs) into three groups: 60 instances
as training instances when R is a source relation, 10 in-
stances as training instances when R is a target relation,
and 30 instances as test instances for R. For each target
relation type, therefore we have 1140 (19 × 60) source
relation training instances and 10 target relation training
instances, which well simulates the problem setting in
relation adaptation. We call this the train dataset for a
particular target relation type, and the 30 instances set
aside for that target relation type combined with the 30
instances set aside from each of the source relation types
(19× 30) as the test dataset for that target relation type.

For each target relation, we use the pattern extraction
algorithm presented in Section 2.3 and extract lexical
patterns from all the contexts from its train dataset.
However, because of misspellings and fragmented snip-
pets, patterns extracted from Web texts can be noisy. To
remove noisy patterns, we select those patterns which
occur at least 5 times in the dataset. We then use

3. http://www.mpi-inf.mpg.de/yago-naga/yago/
4. http://developer.yahoo.com/search/boss/
5. www.iba.t.u-tokyo.ac.jp/∼danushka/RA/
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TABLE 3
Macro-average results for various methods.

Method Precision Recall F-score
Random 7.25 7.33 7.24
RS patterns 77.08 29.99 41.41
RI patterns 81.38 40.22 51.40
All patterns 79.34 37.11 47.94
Projected 78.48 33.56 44.86
Combined (all + projected) 84.21 45.11 56.99
RS patterns + Sampling 83.58 38.44 49.78
RI patterns + Sampling 75.60 45.11 54.83
All patterns + Sampling 80.94 47.11 57.62
Projected + Sampling 72.07 37.33 47.61
Jiang [35] 81.06 44.89 55.62
PROPOSED (Combined + Sam-
pling)

86.47 51.78 62.77

Full Graph 79.37 37.77 49.18
Supervised Upper Bound 74.58 75.55 74.57

the entropy-based relation-independent pattern selection
criterion and select the top 1000 ranked patterns as
relation-independent patterns (l = 1000). The remaining
patterns are selected as relation-specific patterns. Next,
we construct a bipartite graph following the procedure
described in Section 2.5 and apply Algorithm 1 on
the created bipartite graph to compute feature vector
projections. We set the number of clusters to k = 1000 in
our experiments. Later in Section 3.4, we investigate the
effect of the parameters l and k on the proposed method.

To evaluate the performance of a relation adaptation
method, we select one relation type in the dataset as
a target relation and train a multi-class classifier as
described in Section 2. We compute precision, recall, and
F -score on the selected target relation type T as follows:

precision =
no. of correctly classified entity pairs

total no. of entity pairs classified as T
,

recall =
no. of correctly classified entity pairs

total no. of entity pairs in T
,

F =
2× precision× recall

precision + recall
.

This process is repeated with a different relation type as
the target relation and the remaining relation types as
the source relations. We report the macro-average scores
over the 20 relation types in our benchmark dataset.
Note that the macro-averages computed here consider
only the target relations and not source relations, because
in relation adaptation the objective is to obtain high
performance on a target relation and not on source
relations.

3.3 Overall Results of Comparisons

Table 3 presents the results obtained using the pro-
posed method, 12 baselines, and a previously proposed
weakly-supervised relation extraction system on our
dataset as described next.
• Random: This baseline randomly infers a relation for
an entity pair out of the 20 relation types in the dataset.
The probability of randomly guessing the correct relation

is as low as 0.05. Consequently, the macro-average F -
measure for this baseline is the lowest in Table 3. This
method can be considered as a lower baseline.
• RS patterns: We use the frequencies of relation specific
(RS) patterns as features to represent an entity pair to
train a multi-class classifier.
• RI patterns: We use the frequencies of relation indepen-
dent (RI) patterns as features to represent an entity pair
to train a multi-class classifier.
• All patterns: We use all (relation-specific and relation-
independent) patterns and represent an entity-pair by
the frequency of the patterns with the entity pair. This
baseline is expected to show the level of performance we
would obtain if we did not use the lower-dimensional
mapping (Algorithm 1) or the one-sided under-sampling
(Algorithm 2).
• Projected: We use the entropy-based relation-
independent pattern selection criterion and construct
a bipartite graph as described in Section 2.5. We then
run Algorithm 1 to compute a projection matrix U and
project a feature vector xAB for an entity pair (A,B) to
a lower-dimensional vector UxAB . We use the projected
feature vectors to train a multi-class classifier. This
baseline is expected to show the level of performance
we would have obtained if we had used only the
lower-dimensional representation.
• Combined: We use both the original feature vectors
as well as their projection into the k-dimensional latent
space according to Equation 5 and train a multi-class
classifier using those augmented feature vectors. This
baseline is expected to demonstrate the level of perfor-
mance that we would obtain if we did not perform the
one-sided under-sampling (Algorithm 2).
• We perform one-sided undersampling to select a subset
of source relation type entity pairs. For RS patterns,
RI patterns, All patterns, and Projected baselines we
denote their sampling enabled versions respectively by
RS patterns + Sampling, RI patterns + Sampling, All
patterns + Sampling, and Projected + Sampling.
• Jiang [35]: This is the current state-of-the-art cross-
domain relation classification method [35]. In this
method, first, an entity-pair is represented as a set of lex-
ical and syntactic features. Second, a multi-class logistic
regression model is trained using those feature vectors.
Some features are shared across different relations and
the weight parameters for those features are learned in a
joint fashion. This method is further detailed in Section
4. We ran the original implementation that is publicly
available6 on our dataset.
• PROPOSED: This is the method proposed in this paper.
This corresponds to Combined + Sampling.
• Full Graph: As an alternative to using a bipartite
graph model, we construct a full graph that does not
distinguish between relation-independent patterns and
relation-specific patterns. All remaining processing steps
in the proposed method are conducted exactly the same

6. www.mysmu.edu/faculty/jingjiang/software/DALR.html
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way on this full graph. This baseline is expected to
demonstrate the importance of identifying relation inde-
pendent patterns and using a bipartite graph for relation
adaptation.
• Supervised Upper Bound: The supervised upper
bound corresponds to the level of performance that we
would obtain, if we had access to not only a few seeds
(i.e. 10 training seed instances) for the target relation, but
an equal amount of training instances as we have for
each source relation type (i.e. 60 training instances). The
proposed method (combined + sampling) is run using
this training dataset to simulate a fully-supervised rela-
tion extraction scenario. Note that this is not the relation
adaptation scenario that we consider in this paper, where
we assume only a few seed training instances for the
target relation type.

From Table 3, we see that the proposed method has
the best macro-average precision, recall, and F -measure
among all the different methods, except for the su-
pervised upper bound. In particular, the improvement
against the previously proposed state-of-the-art weakly-
supervised relation extraction method [35] is statisti-
cally significant (paired t-test with p < 0.05 inferred
as significant). The Random baseline on this balanced
dataset only yields a very low F -score of 7.25. The RI
patterns baseline that uses only relation-independent
patterns outperforms the RS patterns baseline that uses
only relation-specific patterns (9.99% improvement in
F-score). This result is particularly interesting consid-
ering that there exist only 1000 relation-independent,
whereas on average there exist 67, 822 relation-specific
patterns. Even with a few relation-independent patterns,
we can learn a better relational adaptation model than
using many relation-specific patterns. Relation-specific
patterns occur in only a few relation types. Therefore,
a model trained using those patterns alone does not
generalize well to a novel target relation type. Moreover,
on average, for all target relation types, among the
1000 relation-independent patterns, we have 454 lexical
patterns and 546 syntactic patterns, whereas among the
67, 822 relation-specific patterns we have 65, 771 lexical
patterns and 2051 syntactic patterns. Considering the fact
that part-of-speech tags abstract individual words, it is
not surprising that a major proportion of the relation-
independent patterns are indeed syntactic patterns.

Using all the patterns (i.e. All patterns baseline) per-
forms slightly worse than when using only relation-
independent patterns (3.46% drop in F-score). One rea-
son for this is that the overall performance of the All
patterns baseline is dominated by the numerous relation-
specific patterns, which adapt poorly to a target rela-
tion. As explained already in Section 2.7, there can be
errors in identifying relation-independent patterns using
strategies such as mutual information, which engender
some noise in the constructed bipartite graph. Conse-
quently, using only the Projected features is not satisfac-
tory (6.54% drop in F-score compared to RI patterns).

However, by augmenting the original features to the
projected features (i.e. Combined baseline), this problem
can be overcome (5.59% improvement of F-score over RI
patterns).

Next, we evaluate the effect of the one-sided under-
sampling method presented in Section 2.7 on top of the
numerous baselines discussed above. From the experi-
mental results presented in Table 3, it is apparent that, by
sampling, we consistently improve all the baselines: RS
patterns (8.37% increase in F-score), RI patterns (3.43%
increase in F-score), All patterns (9.68% increase in F-
score), and Projected (2.75% increase in F-score). In fact,
the proposed method, which uses augmented feature
vectors with sampling, shows a 5.78% improvement in
F-score over not using sampling (i.e. Combined). A
paired two-tailed t-test shows that the improvements in
all measures due to sampling is statistically significant
under the 0.05 significance level. This underscores the
importance of selecting a subset of source relation in-
stances when training a classifier for a target relation.
In relation adaptation, the number of source relation
labeled instances significantly outperforms that for a
target relation. Without proper sampling, any informa-
tion related to the target relation, encoded in the small
number of target relation instances, get “washed-out”
during training.

The Full Graph baseline has low performance (F-score
of 49.18%), which is roughly equal to the All patterns
baseline in terms of performance. This result shows that
it is important to use a bipartite graph structure as
done by the proposed method for relation adaptation
instead of using a full graph that does not distinguish
between relation-specific and relation-independent pat-
terns. From a domain adaptation point-of-view, it is the
existence of common features (i.e. relation-independent
patterns in our case) that enables us to transfer the
weights learnt from the source relation types to the
target relation type. The bipartite graph structure en-
forces this constraint explicitly, thereby yielding a lower-
dimensional latent space that helps towards relation
adaptation.

It is noteworthy that the Supervised Upper Bound
reports the highest F-score of 74.57 in Table 3. From
this result we can see that there is still sufficient room
for improvement for the proposed method. However,
it is encouraging to observe that the proposed method
attains an F-score of 62.77 merely using one sixth (10 vs
60) training instances for the target relation as used by
the Supervised Upper Bound.

A future research direction in relation adaptation is
how to improve recall without loosing precision. In
fact, for most of the methods compared in Table 3,
we see that the macro-averaged recall is much lower
than the macro-averaged precision. This behavior can
be understood considering the fact that we have only a
few seed training instances for the target relation type in
relation adaptation. Therefore, the classifier only learns
a limited set of properties regarding the target relation
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TABLE 4
Effect of relation-independent pattern selection criteria.

Method Precision Recall F -measure
Frequency 77.49 44.83 54.72
MI Pan et al. [19] 74.29 46.83 55.39
Entropy (PROPOSED) 86.47 51.78 62.77
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Fig. 3. Effect of varying the number of sources

and is unable generalize beyond this small set of training
instances. Consequently, it cannot recognize most of the
target relations in the test set, resulting in low recall.
On the other hand, it will predict any test instance as
belonging to the target relation if that test instance is
highly similar to any of the training target instances,
resulting in high precision.

In Table 4, we compare the three strategies presented
in Section 2.4 to select a set of relation-independent
patterns. With each of the three strategies, we select
1000 relation-independent patterns and created a bipar-
tite graph as described in Section 2.5. Next, we use
Algorithm 1 with dimensionality k = 1000 to aug-
ment the feature vectors to train a multi-class clas-
sifier with sampling as described in Section 2.7. Ta-
ble 4 shows that the proposed entropy-based relation-
independent pattern selection method outperforms both
frequency-based and mutual information (MI)-based ap-
proaches. The frequency-based method tends to ignore
low-frequent relation-independent patterns, whereas the
MI-based approach sometimes select patterns that has
a high mutual information with only a subset of rela-
tion types. Entropy-based relation-independent pattern
selection addresses the entire distribution of a pattern
over entity pairs and is less affected by the disfluencies
described above.

For each target relation in our dataset, we use multiple
source relation types with the proposed method and
evaluate the effect on performance as shown in Figure 3.
We see that as we increase the number of source relation
types, the macro-average F-score improves steadily up
to a certain point (ca. 8 sources) and then saturates. This
result shows that we can improve the performance on
a target relation up to a certain level simply by using
multiple source relations.

Figure 4 depicts the performance of the proposed
method as a function of the number of training instances
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Fig. 5. Effect of varying the number of relation-
independent patterns l.

for the target relation. The figure shows that the perfor-
mance increases steadily with the number of training
instances we have for the target relation. This result
emphasizes the importance of target relation instances
for relation adaptation, and justifies our decision to
retain all target relation instances during sampling.

3.4 Parameter Sensitivity
We experimentally study the effect of the two parame-
ters in our proposed method: the number of relation-
independent patterns l, and the dimensionality k of
the latent space. To study the effect of the number of
relation-independent patterns l on the proposed method,
we use the entropy-based strategy to select different
quantities of relation-independent patterns and use those
patterns in the proposed method. The dimensionality k
of the latent space is fixed at 1000. In Figure 5, we present
the performance of the proposed method against the
number of relation-independent patterns used. We see
that the proposed method is stable against the varying
quantities of relation-independent patterns.

Next, we study the effect of varying the dimension-
ality k of the latent space by executing Algorithm 1
with different k values. The set of relation-independent
features is fixed throughout this experiment (i.e. the total
no. relation-independent patterns l = 1000). Figure 6
shows the performance of the proposed method against
the value of k. From Figure 6, it is apparent that the
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Fig. 6. Effect of varying the number of dimensions

performance of the proposed method remains almost
constant across the range of k values.

4 RELATED WORK AND DISCUSSION

The relation adaptation method proposed in this paper
is motivated by work in three fields: relation extraction,
domain adaptation, and transfer learning. Next, we dis-
cuss previous work in those fields and compare it to our
proposed method.

Traditionally, relation extraction is framed as a binary
classification problem: Given a sentence S and a relation
R, does S assert R between two entities in S? Kernel-
based supervised methods such as dependency tree
kernels [5], subsequence kernels [36], and convolution
tree kernels [37] have been successfully used to learn
relation extraction systems. In particular, kernel methods
allow the use of a large set of features without the need
to extract them explicitly. However, supervised relation
extraction methods assume the availability of sufficient
labeled training data, which is problematic when we
want to extract new relation types, as we do in this paper.

Bootstrapping methods [9], [33], [38]–[40] to relation
extraction are attractive because they require markedly
fewer training instances than supervised approaches
do. Bootstrapping methods are initialized with a few
instances (often designated as seeds) of the target rela-
tion [9], [33], [39] or general extraction templates [38].
During subsequent iterations of the bootstrapping pro-
cess, new extraction patterns are discovered and are
used to extract new instances. However, the quality
of the extracted relations depends heavily upon the
initial seeds provided to the bootstrapping system [41].
Different from bootstrapping, we not only use target
relation seeds, but also use the existing training instances
for numerous source relations to train a robust relation
extractor for a target relation. In information extrac-
tion, lexical patterns have been used for extracting class
instances [40] and entity pairs with specific relations
[33]. However, unlike those works that use vector space
model-based patterns, the subsequence patterns used
in our work can both preserve the relative ordering of
words as well as consider long range dependencies.

Open Information Extraction (Open IE) [2], [7], [42] is
a domain-independent information extraction paradigm
that has been studied in both a natural language doc-
ument corpus [42], and the Web environment [2], [7]
to extract relation tuples. Open IE systems are initial-
ized with a few manually provided domain indepen-
dent extraction patterns. To produce training data for
the algorithm, dependency parsing is conducted on a
text corpus; domain-independent extraction patterns are
used to identify correct extractions. Using the created
training data, a classifier is trained to identify the correct
instances of target relations. In contrast, we learn the
domain-independent relation patterns using source and
target relation instances. We do not require them to be
provided manually. Moreover, open IE systems attempt
to extract all relations that exist in a corpus; users cannot
specify in advance which relation types (targets) they
want to extract. Therefore, it is not guaranteed that we
will be able to extract instances for the target relation
type in which we are interested.

Domain adaptation methods can be classified broadly
into fully supervised [43], [44] and semi-supervised
adaptation [18], [19], [45], [46] . In the fully supervised
scenario, we have labeled data for the source domain
and also invest in labeling a few instances in the target
domain whereas, the semi-supervised version does not
assume the availability of labeled data from the target
domain to use unlabeled data from the target domain.
Domain adaptation methods first identify a set of com-
mon features in source and target domains and then use
those features as pivots to map source domain features to
the target domain. However, relation adaptation differs
from domain adaptation because, in domain adaptation,
it is assumed that the class labels remain the same in both
source and target domains, only the distribution of data
is different whereas, in relation adaptation, the source
and target relation types are considered to be different.

Transfer learning is intended to transfer knowledge
learned from one or more tasks to a new task. In the Al-
ternating Structure Optimization (ASO) [47] framework,
a learning algorithm is first trained on a set of auxil-
iary problems. The linear prediction vectors for those
problems are arranged as a matrix. Next, Singular Value
Decomposition is performed on this matrix to compute
a lower-dimensional mapping between the features. The
working hypothesis in ASO is that by jointly learning
a set of related problems (auxiliary problems), we can
learn some useful information related to the structure
of the data, which is useful when learning a new task.
Relation adaptation can be seen as a special instance of
transfer learning, where the source relations act as auxil-
iary problems. We must transfer the structural knowledge
about source relations to a target relation type. However,
relation adaptation necessitates that we overcome the
additional challenge of learning the target relation using
only a few seed instances.

Spectral clustering of bipartite graphs have been stud-
ied in [23] and in this case it turns out to be producing



13

co-clusters. If we represent the vertices of one partite of
the bipartite graph in rows of a matrix and the vertices
of the other partite in columns (the matrix M in Section
2.5 is such an example), then spectral clustering of the
original bipartite graph gives co-clusters for the newly
formed matrix. If we translate this result back to our
scenario where we have relation specific patterns in one
of the partites and relation independent patterns in the
other partite of the bipartite graph, then we retrieve
clusters which group relation specific and relation inde-
pendent patterns that are semantically similar. The co-
clusters can be considered as providing an alignment
between relation specific and relation independent pat-
terns. This enables us to perform relation adaptation be-
cause relation specific patterns (features) in both source
relations and the target relation can be first mapped to
relation independent patterns and then train a classifier
in this common (lower-dimensional) feature space.

Methods proposed for learning from an unbalanced
dataset can be broadly categorized into two: undersam-
pling methods and oversampling methods. Undersam-
pling methods, such as the method described in Algo-
rithm 2, attempt to select a subset of training instances
from the majority class, whereas oversampling methods
synthetically generate instances from the minority class.
For example, DataBoost-IM method [48] first detects
hard-to-classify examples for each class and then sepa-
rately generates synthetic instances for each class. More
synthetic instances are generated for the minority class.
Next, the frequency of classes in the combined (original
+ synthetic) dataset are re-balanced to alleviate the learn-
ing algorithm’s bias towards the majority class. Finally,
the total weights of instances of different classes are re-
balanced so that the final classifier will focus on hard
as well as minority class examples. Above procedure is
iterated for a user specified number of iterations unless
the error term exceeds some threshold value.

Synthetic Minority Oversampling Technique (SMOTE)
[49] is an oversampling method that generates new
minority class instances by interpolating between exist-
ing minority class instances. For example, with 200%
sampling rate, for each minority class instance, two of
its neighbors are selected uniformly at random from
its neighborhood. Next, the difference vector between
the selected two neighbors is multiplied by a random
number between 0 and 1 and is added to the original
minority class instance to generate a new minority class
instance. One problem of oversampling methods is that
the synthetically generated instances might not bring in
new information to the training dataset. Moreover, it can
lead to overfitting to the minority class. On the other
hand, the 1-nearest neighbor-based one-sided undersam-
pling method used in this paper does not generate any
synthetic instances and has also shown to be robust to
the noise in the training data [30].

The most computationally demanding steps in our
proposed method are the bipartite graph construction
and eigenvalue decomposition of the graph Laplacian.

It is noteworthy that the bipartite graph that we con-
struct contains lexical-syntactic patterns as its vertices.
Therefore, the size of the affinity matrix of the bipartite
graph (hence, the size of the Laplacian) directly depends
on the number of patterns we extract. In practice, the
computational complexity of eigenvalue decomposition
of an n × n square matrix is O(n3). Therefore, there is
a cubic time complexity dependence on the number of
patterns we extract. However, it must be emphasized
that the size of the affinity matrix does not depend on
the number of relation types nor the number of entity
pairs. For example, if we use a fixed set of patterns to
represent all entity pairs, then the complexity of this
step will remain constant regardless of the number of
relation types or the entity pairs used in the system.
We consider this is to be a desirable property of the
proposed method that makes it scalable to thousands of
relations and/or many source examples. Moreover, the
stochastic matrix decomposition algorithm [29] that we
use in our proposed method produces an approximate
truncated eigenvalue decomposition in quadratic (O(n2))
time complexity, which is sufficiently accurate for our
task.

5 CONCLUSION

We proposed and investigated a method to learn a
relational classifier for a target relation using multiple
source relations. Our experimental results show that the
proposed method significantly outperforms 11 baselines
and a previously proposed weakly-supervised relation
extraction method on a dataset that contains 2000 entity
pairs for 20 different relation types. Both feature projec-
tion and sampling positively contribute to the proposed
method. Moreover, the proposed method performs con-
sistently under different parameter settings. An interest-
ing future research direction of relation adaptation is to
extend the current method to handle entities that are not
related as well as entities with multiple semantic rela-
tions. Moreover, in our future work we intend to apply
the proposed relation adaptation method in real-world
relation extraction systems and evaluate its effectiveness
in detecting novel relation types.
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