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ABSTRACT

The problem of extracting salient information to include in a summary has been
researched extensively in the field of automatic text summarization. However,
coherent arrangement of the extracted information has received little attention.
Specially, in the case of extractive multi-document text summarization, sentences
that convey important information are selected from a set of documents. There is
no guarantee that this set of extracted sentences will form a coherent summary by
itself. The order of presentation of information is an important factor that affects
the coherence of a summary. This thesis focuses on the problem of automatically
generating a coherent summary from a given set of documents by ordering the
extracted sentences. I propose two different approaches to this problem: a pair-
wise sentence comparison approach and a bottom-up text structuring approach.
The pair-wise sentence comparison approach first compares all possible pairs of
sentences and decides partial orderings between the two sentences in pairs. It
then creates a total ordering that optimizes a certain function. In the bottom-up
text structuring approach, I define four criteria for sentence ordering: chronology,
topical-closeness, precedence and succedence. I then use support vector machines
to integrate these four different criteria to compute the strength of association be-
tween two sentences. For training I use a set of manually ordered summaries. A
hierarchical text clustering algorithm is used to produce a total ordering of sen-
tences. I begin by ordering the pair of sentences that has the highest strength of
association. I then repeatedly order the two segments of texts with the maximum
association strength until a single segment with all sentences ordered is formed. I
compare the sentence orderings produced by the proposed algorithm against man-
ually ordered summaries using various rank correlation measures. Moreover, I
perform a subjective grading of the generated summaries. Both automatic eval-
uation and subjective grading suggest that the proposed sentence ordering algo-
rithms significantly outperforms all existing sentence ordering methods for multi-
document summarization. Moreover, I investigate the problem of automatically
evaluating a sentence ordering for its coherence and propose Average Continuity
as an automatic evaluation measure for this task. The proposed automatic evalua-
tion measure reports a high correlation with human ratings.
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Dedication
To my dearest parents, for everything they have done.



LIST OF PUBLICATIONS

International Journal Papers

1. Danushka Bollegala, Yutaka Matsuo, Mitsuru Ishizuka. Measuring Sematic
Similarity between Words using Web Search Engines. ACM Transactions
on the Web, submitted, 2007.

International Conference Papers

1. Danushka Bollegala, Yutaka Matsuo, Mitsuru Ishizuka. Measuring Seman-
tic Similarity between Words Using Web Search Engines. To appear in
proceedings of 17 th International World Wide Web Conference (WWW
2007), Banff Alberta, Canada, 2007 May.

2. Danushka Bollegala, Yutaka Matsuo, Mitsuru Ishizuka. An Integrated Ap-
proach to Measuring Semantic Similarity between Words using Informa-
tion available on the Web. To appear in proceedings of the North American
Chapter of Association for Computational Linguistics (NAACL), Rochester,
U.S.A., 2007 April.

3. Danushka Bollegala, Yutaka Matsuo, Mitsuru Ishizuka. Identifying People
on the Web through Automatically Extracted Key Phrases. In Proceedings
of TextLink Workshop at International Joint Conference on Artificial Intel-
ligence (IJCAI), Hyderabad, India, 2007.

4. Danushka Bollegala, Yutaka Matsuo, Mitsuru Ishizuka. Disambiguating
Personal Names on the Web using Automatically Extracted Key Phrases.
In Proceedings ofEuropean Conf. on Artificial Intelligence (ECAI), pp.553-
557, Riva, Italy, 2006.

5. Danushka Bollegala, Yutaka Matsuo, Mitsuru Ishizuka. Extracting Key
Phrases to Disambiguate Personal Name Queries in Web Search. In Pro-
ceedings of the Workshop ”How can Computational Linguistics improve
Information Retreival?”, at the joint 21st International Conference on Com-
putational Linguistics and the 44th Annual Meeting of the Association for



List of Publications 5

Computational Linguistics (COLING-ACL 2006), pp.17-24 , Sydney, Aus-
tralia, 2006.

6. Danushka Bollegala, Naoaki Okazaki, Mitsuru Ishizuka. A bottom-up ap-
proach to Sentence Ordering for Multi-document Summarization. In Pro-
ceedings of the Joint 21st International Conference on Computational Lin-
guistics and the 44th Annual Meeting of the Association for Computational
Linguistics (COLING-ACL 2006) ,pp. 385-392, Sydney Australia. 2006.

7. Yutaka Matsuo, Masahiro Hamasaki, Hideaki Takeda, Junichiro Mori, Danushka
Bollegala, Hiroyuki Nakamura, Takuichi Nishimura, Koiti Hashida and Mit-
suru Ishizuka. Spinning Multiple Social Networks for Semantic Web. In
Proceedings of the 21st National Conference on Artificial Intelligence (AAAI
2006), pp 1381-1387, Boston, MA, USA,2006.

8. Danushka Bollegala, Yutaka Matsuo and Mitsuru Ishizuka. Extracting Key
Phrases to Disambiguate Personal Names on the Web. In Proceedings of
the 7th International Conference on Intelligent Text Processing and Com-
putational Linguistics (CICLing 2006), pp. 223-234, Mexico City, Mexico,
2006.

9. Danushka Bollegala, Naoaki Okazaki and Mitsuru Ishizuka. A Machine
Learning Approach to Sentence Ordering for Multi-document Summariza-
tion and its Evaluation. In Proceedings of the 2nd International Joint Con-
ference on Natural Language Processing (IJCNLP 2005), pp. 624-635,
Jeju, South Korea, 2005.

Domestic Conference Papers

1. Danushka Bollegala, Naoaki Okazaki and Mitsuru Ishizuka. Agglomera-
tive Clustering Based Approach to Sentence Ordering for Multi-document
Summarization. In Proceedings of Natural Language Understanding and
Models of Communication (NLC) The Institute of Electronics, Information
and Communication Engineers (IEICE), pp 13-18, Biwako, Japan, 2006.

2. Danushka Bollegala, Yutaka Matsuo and Mitsuru Ishizuka. Disambiguating
Personal Names on Web. In Proceedings of Annual Meeting of the Japanese
Society of Artificial Intelligence (JSAI), Tokyo, Japan, 2006.

3. Danushka Bollegala, Naoaki Okazaki and Mitsuru Ishizuka. Agglomera-
tive Clustering Based Approach to Sentence Ordering for Multi-document
Summarization. In Proceedings of Annual Meeting of the Japanese Society
of Artificial Intelligence (JSAI), Kokura, Japan, 2005.



List of Publications 6

4. Danushka Bollegala, Naoaki Okazaki and Mitsuru Ishizuka. A Machine
Learning Approach to Sentence Ordering for Multi-document Summariza-
tion. In Proceedings of Annual Meeting of the Natural Language Processing
Society of Japan (NLP), pp. 636-639, Takamatsu, Japan, 2005.

5. Danushka Bollegala, Naoaki Okazaki and Mitsuru Ishizuka. A Machine
Learning Approach to Sentence Ordering for Multi-document Summariza-
tion. In Proceedings of the Annual Meeting of the Information Processing
Society of Japan (IPSJ), Tokyo, Japan, 2005.



CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1 Multi-document Summarization . . . . . . . . . . . . . . . . . . 12
1.2 The problem of Sentence Ordering . . . . . . . . . . . . . . . . . 13
1.3 Previous Work in Sentence Ordering for MDS . . . . . . . . . . . 16

2. Bottom-up Approach to Sentence Ordering in MDS . . . . . . . . . . . 19
2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Chronology criterion . . . . . . . . . . . . . . . . . . . . 21
2.1.2 Topical-closeness criterion . . . . . . . . . . . . . . . . . 22
2.1.3 Precedence criterion . . . . . . . . . . . . . . . . . . . . 22
2.1.4 Succession criterion . . . . . . . . . . . . . . . . . . . . 23
2.1.5 SVM classifier to assess the integrated criterion . . . . . . 23

2.2 Posterior probabilities from SVMs . . . . . . . . . . . . . . . . . 24

3. Evaluation of Sentence Orderings . . . . . . . . . . . . . . . . . . . . 30
3.1 Subjective grading . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Methods for semi-automatic evaluation . . . . . . . . . . . . . . . 32

3.2.1 Average Continuity . . . . . . . . . . . . . . . . . . . . . 34
3.3 Results of semi-automatic evaluation . . . . . . . . . . . . . . . . 35
3.4 Effect of each criterion on coherence . . . . . . . . . . . . . . . . 36
3.5 Correlation between subjective gradings and semi-automatic eval-

uation measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4. Pair-Wise Sentence Comparison Approach . . . . . . . . . . . . . . . 40
4.1 Pair-wise comparison of sentences . . . . . . . . . . . . . . . . . 40

4.1.1 Chronological Expert . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Probabilistic Expert . . . . . . . . . . . . . . . . . . . . . 41
4.1.3 Topical Relevance Expert . . . . . . . . . . . . . . . . . 44
4.1.4 Precedent Expert . . . . . . . . . . . . . . . . . . . . . . 44
4.1.5 Succedent Expert . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Ordering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 47



Contents 8

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.1 Continuity Metric . . . . . . . . . . . . . . . . . . . . . . 48
4.4.2 Weighted Kendall Coefficient . . . . . . . . . . . . . . . 49

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6 Bottom-up vs Pair-wise Approaches . . . . . . . . . . . . . . . . 54

5. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



LIST OF FIGURES

1.1 A typical multi-document summarization system . . . . . . . . . 12
1.2 Randomly ordered sentences in a summary . . . . . . . . . . . . 14
1.3 Pronoun resolution in MDS . . . . . . . . . . . . . . . . . . . . . 15

2.1 Arranging four sentences A, B, C, and D with a bottom-up ap-
proach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Precedence criterion . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Succession criterion . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Partitioning a human-ordered extract into pairs of segments . . . . 29
2.5 Two vectors in a training data generated from two ordered seg-

ments A � B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Subjective grading . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 An example of an ordering under evaluation Teval and its reference

Tref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Precision vs unit of measuring continuity. . . . . . . . . . . . . . 37

4.1 Topical relevance expert . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Precedent expert . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Succedent expert . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Weighting function . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 Precision vs sentence n-gram length . . . . . . . . . . . . . . . . 51
4.6 Human Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7 Randomly Ordered . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.8 Ordered by the Learned Algorithm . . . . . . . . . . . . . . . . . 53



LIST OF TABLES

3.1 Correlation between two sets of human-ordered extracts . . . . . . 30
3.2 Comparison with human-made ordering . . . . . . . . . . . . . . 35
3.3 Performance vs SVM kernel type . . . . . . . . . . . . . . . . . . 36
3.4 Effect of removing a criterion . . . . . . . . . . . . . . . . . . . . 36
3.5 Assigning grades based on semi-automatic evaluation scores . . . 38
3.6 Spearman coefficient vs Subjective grading . . . . . . . . . . . . 38
3.7 Kendall coefficient vs Subjective grading . . . . . . . . . . . . . 39
3.8 Average continuity vs Subjective grading . . . . . . . . . . . . . 39

4.1 Weights learned . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Comparison with Human Ordering . . . . . . . . . . . . . . . . . 51



1. INTRODUCTION

We live in an era of information overload. Despite the growing popularity of
audio and visual media, the majority of information is still available in textual
format. May it be reading news, e-mails or technical papers, We are forced to
read huge volumes of text in our day-to-day activities. Advancements of informa-
tion retrieval such as Web search engines have provided us with efficient means
to search and gather the information we need. However, still the information col-
lected and presented by search engines are so vast that no human has the time
or labour to go through the complete result set. Therefore, automatically creat-
ing a brief summary from a given set of documents is an important task. A short
summary of a set of documents helps a user to quickly understand the important
information discussed in the documents. If the user needs more information then
she can read the source documents.

Automatic text summarization has received attention from both academic and
commercial worlds as a possible solution to the problem of information overload.
Although the research on automatic text summarization dates back to Luhn’s [23]
work on abstract generation, this field has received much attention lately due to
the vast textual information available on the Internet. Document Understanding
Conference (DUC) 1 is a dedicated conference which explores various topics
related to automatic text summarization such as multidocument summarization,
topic focused summarization, question answering, etc. In Japan, NTCIR (NII
Test Collection for IR Systems) 2 project has played a leading role in the field
of Japanese text summarization. Columbia Newsblaster [30] is a multidocument
news summarization system that crawls the web for news, classifies news accord-
ing to their topics and creates a summary with sentence fusion. GoogleNews 3 is
an automatic news aggregating system that operates on the Web. It clusters news
articles related to a news topic and users can search for the news they are inter-
ested. However, presently it does not create summaries form the clustered news
articles.

1 http://duc.nist.gov/
2 http://research.nii.ac.jp/ntcir/
3 http://news.google.com/
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Fig. 1.1: A typical multi-document summarization system

1.1 Multi-document Summarization

Summarization can be categorized into extractive summarization and abstractive
summarization according to the approach used to convey the information to the
user. In extractive summarization information is selected from the source docu-
ments and presented in the summary with minimum modifications. Most extrac-
tive summarization systems select whole sentences from the source documents
and include them in the summary. On the other hand, abstractive summarization
attempts to understand the concepts discussed in the documents and generate nat-
ural language texts as a summary. Abstractive summarization is a difficult prob-
lem because it requires deeper analysis of source documents and concept-to-text
generation. Currently most of the commercially available automatic text summa-
rization system are extractive summarization systems.

Automatic text summarization can be further categorized into single docu-
ment summarization and multi-document summarization. In single document
summarization a summary is created from a single document. Whereas in multi-
document summarization a single summary is created from a set of multiple doc-
uments. Multi-document summarization is a more challenging problem because
one needs to recognize the relation between documents in order to create a co-
herent summary from a set of multiple documents. Figure 1.1 depicts a typical
multi-document summarization system. First the set of source documents is pre-
processed using tokenizers and part-of-speech taggers. In the case of Japanese
language, words are not separated by spaces. Therefore, accurate tokenization
of text is essential to further process the documents. In the case of news texts,
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most news providers annotate the articles by including meta information such as
publication date and time, keywords that can be used to index the news article,
genre information (whether it is news on politics, science, economics, sports etc).
These meta information are useful when classifying, indexing and summarizing
the articles. As we will see in chapter 2, particularly the time stamps (publica-
tion date and time information provided by the authors of the articles) are very
useful when deciding the order among sentences in a summary. Preprocessing
stage will extract such useful information from the documents. The second stage
shown in Figure 1.1 represents sentence extraction in multi-document summariza-
tion. Using the information extracted in the previous stage, a set of sentences is
selected from the source documents in order to include in the summary. Vari-
ous algorithms have been proposed to identify salient information from the source
documents [24]. Some of these methods first identify important words or phrases
from the source documents using term-weighting methods such as TF-IDF [8] and
then extract sentences that contain these words or phrases. However, due to the
length of a summary, one cannot select all the sentences that contain such salient
words. Moreover, if two or more sentences convey the same information then in
order to avoid duplication of information in a summary it is desirable to select just
one of them and include in the summary. Selecting a set of sentences that maxi-
mizes the information content is a central problem in extractive multi-document
summarization. Even with single document summarization the same argument
holds. However, when creating a summary with one document, the source doc-
ument itself has less repetition of information. Whereas with a set of documents
on the same event (for example a set of articles published by different authors on
the same news) we can expect to find sentences from different articles that convey
the same information. Once we have identified the important sentences to include
in the summary, we need to produce a coherent text from the selected sentences.
The final stage in Figure 1.1 represents this post-processing step. The main focus
of this thesis is this final stage of multi-document summarization. In this thesis,
I assume that we have already identified a set of sentences to be included in the
summary and concentrate on the problem of generating a coherent summary from
it.

1.2 The problem of Sentence Ordering

This thesis concentrates on the problem of improving coherence in a multidoc-
ument extractive summary with special interest in information ordering. Multi-
document summarization (MDS) [38, 4, 6] tackles the information overload prob-
lem by providing a condensed version of a set of documents. Among a number of
sub-tasks involved in MDS, e.g., sentence extraction, topic detection, sentence or-
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dering, information extraction, sentence generation, etc., most MDS systems have
been based on an extraction method, which identifies important textual segments
(e.g., sentences or paragraphs) in source documents. It is important for such MDS
systems to determine a coherent arrangement of the textual segments extracted
from multi-documents in order to reconstruct the text structure for summariza-
tion. Ordering information is also essential for other text-generation applications
such as Question Answering.

A summary with improperly ordered sentences confuses the reader and de-
grades the quality/reliability of the summary itself. Barzilay [1] has provided
empirical evidence that proper order of extracted sentences improves their read-
ability significantly. Lapata [31] shows experimentally that the time taken to read
a summary strongly correlates with the arrangement of sentences in the summary.

1. Such storms have maximum sustained winds greater than 155 mph and can
cause catastrophic damage.

2. Earlier Wednesday Gilbert was classified as a Category 5 storm, the
strongest ad deadliest type of hurricane.

3. Tropical Storm Gilbert formed in the eastern Caribbean and strengthened
into a hurricane Saturday night.

Fig. 1.2: Randomly ordered sentences in a summary

For example consider the three sentences shown in Figure 1.2. 4 First and
second sentences are extracted from the same source document whereas the third
sentence is extracted from a different document. Although, all three sentences
are informative and talks about the storm Gilbert ordering shown in Figure 1.2
is confusing. The phrase such storms in sentence 1 refers to category 5 storms
described in sentence 2. A better arrangement of sentences in this example would
be 3-2-1.

In single document summarization, one possible ordering of extracted infor-
mation is provided by the input document itself. However, ordering a set of sen-
tences extracted from a set of documents into a coherent text is a non-trivial task.
For example, identifying rhetorical relations [25] in an ordered text has been a
difficult task for computers, whereas this task is even more complicated: to recon-
struct such relations from unordered sets of sentences. Source documents for a
summary may have been written by different authors, by different writing styles,
on different dates, and based on different background knowledge. We cannot ex-

4 These sentences were selected from a reference summary in 2003 Document Understanding
Conference (DUC) dataset.
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pect that any random ordering of a set of extracted sentences from such diverse
documents to be coherent.

Several strategies to determine sentence ordering have been proposed as de-
scribed in section 1.3. Several of these methods utilize chronological information
such as publication date and time of documents, whereas others concentrate on
grouping information by topics and computing the likelihood of a particular topic
preceding or succeeding another topic. However, the appropriate way to com-
bine these strategies to achieve more coherent summaries remains unsolved. In
this paper, I explore four criteria to capture the association of sentences in the
context of multi-document summarization for newspaper articles. These criteria
are integrated into one criterion by a supervised learning approach. A bottom-up
approach to sentence ordering is proposed. The proposed algorithm repeatedly
concatenates textual segments until a segment with all sentences arranged, is ob-
tained. Furthermore, I investigate numerous automatic evaluation measures for
the task of sentence ordering for multi-document summarization.

Besides the proper order of sentences, there are other factors that contribute to
the readability of a summary such as pronoun resolution [39, 15, 9] and acronym
replacement [32, 33]. In order to illustrate the problem of pronoun resolution
in the context of multi-document summarization consider the two sentences in
Figure 1.3.

1. Iraqi Prime Minister Nuri al-Maliki is telling the United States and Iran to
keep their fight out of Iraq.

2. He said he believes Iran is targeting U.S. forces in Iraq.

Fig. 1.3: Pronoun resolution in MDS

Two consecutive sentences extracted from a news article are shown in Fig-
ure 1.3. Assume that a sentence extraction algorithm only selected the second
sentence and ignored the rest of the sentences from this article. Then the pro-
noun he at the beginning of this sentence becomes ambiguous. Depending on
the sentence we bring before this sentence in the summary, sentence 2 can be
mis-interpreted in many different ways. In order to improve the readability in the
summary, the post-processing stage should replace the pronouns that appear in the
set of extracted sentences.

Similarly, when there are acronyms (e.g., NLP for Natural Language Process-
ing) in the extracted sentences, replacing the acronyms by their full-forms im-
proves readability of the summary. Acronyms can be replaced using pre-compiled
acronym dictionaries. If it a rare acronym which is not listed in standard acronym
dictionaries then it is likely that the author of a news paper article gives the full
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form of an acronym at the first instance she uses it. Pronoun resolution and
acronym extraction are beyond the scope of this thesis.

This thesis is organized as follows. I first describe the previous work in the
field of sentence ordering for multi-document summarization in section 1.3. I then
present a bottom-up approach to sentence ordering in chapter 2 followed by a pair-
wise sentence comparison approach in chapter 4. I discuss automatic evaluation
measures for this task in chapter 2. The thesis concludes with a discussion on
possible future work in this field in chapter 5.

1.3 Previous Work in Sentence Ordering for MDS

Existing methods for sentence ordering can be classified into two approaches:
making use of chronological information [29, 22, 1, 34]; and learning the nat-
ural order of sentences from large corpora not necessarily based on chronological
information [21, 3, 14].

A newspaper usually disseminates descriptions of novel events that have oc-
curred since the last publication. For this reason, ordering sentences according to
their publication date is an effective heuristic for multi-document summarization
[22, 29]. In this approach, first sentences that are extracted from the same source
document are ordered according to the order they appear in the original document.
Then these sentence segments are ordered chronologically, bringing in the earli-
est segment (sentences that were extracted from the earliest published article) to
the beginning of the summary in an ascending order of chronology. One problem
frequently acknowledged with this approach is that it is unable to order sentences
which were extracted from documents which were published on the same date
(and time). Moreover, it ignores the events (or themes) discussed in the input
documents.

Barzilay et al. [1] have proposed an improved version of chronological or-
dering by first grouping sentences into sub-topics discussed in the source docu-
ments and then arranging the sentences in each group chronologically. They first
use a linear text segmentation algorithm [16] based on word distribution and co-
reference analysis to segment each input document. They define theme as the set
of sentences conveying similar information from different input texts. For two
themes {A1, . . . , An} and {B1, . . . , Bm}, they denote #AB to be the number of
pairs of sentences (Ai, Bj) which appear in the same text, and #AB+ to be the
number of sentence pairs which appear in the same text and are in the same seg-
ment. They then compute the ratio #AB+/#AB to measure the relatedness of
two themes. The intuition behind this computation is that if this ratio is higher
(i.e., more sentence pairs from the two themes fall in the same text segment) for
two themes then they are topically related. To cluster sentences into themes they
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use a sentence distance measure.
Okazaki et al. [34] have proposed an algorithm to improve chronological or-

dering by resolving the presuppositional information of extracted sentences. They
assume that each sentence in newspaper articles is written on the basis that pre-
suppositional information should be transferred to the reader before the sentence
is interpreted. The proposed algorithm first arranges sentences in a chronologi-
cal order and then estimates the presuppositional information for each sentence
by using the content of the sentences placed before each sentence in its original
article. Their experimental results show that the proposed algorithm improves the
chronological ordering significantly.

Lapata [21] has suggested a probabilistic model of text structuring and its
application to the sentence ordering. Her method calculates the transition proba-
bility from one sentence to the next from a corpus based on the Cartesian prod-
uct between two sentences defined using the following features: verbs (precedent
relationships of verbs in the corpus); nouns (entity-based coherence by keeping
track of the nouns); and dependencies (structure of sentences). Lapata [31] also
proposed the use of Kendall’s rank correlation coefficient for an automatic evalu-
ation that quantifies the differences between orderings produced by the proposed
method and a human. Although she has not compared her method with chrono-
logical ordering, it could be applied to generic domains, not relying on the chrono-
logical clue provided by newspaper articles. (see section 4.1.2 for further details
on this approach)

Barzilay and Lee [3] have proposed content models to deal with topic tran-
sition in domain specific text. The content models are formalized by Hidden
Markov Models (HMMs) in which the hidden state corresponds to a topic in
the domain of interest (e.g., earthquake magnitude or previous earthquake oc-
currences), and the state transitions capture possible information-presentation or-
derings. The evaluation results showed that their method outperformed Lapata’s
approach by a wide margin. They did not compare their method with chronologi-
cal ordering as an application of multi-document summarization.

Ji and Pulman [14] proposed a sentence ordering algorithm using a semi-
supervised sentence classification and historical ordering strategy. They build a
network of sentences that appear in a summary. Nodes in this network represent
sentences in a summary and the weights on edges are seen as transition probabili-
ties. They then semi-supervisedly classify the sentences in the source documents
into the nodes in the network. Finally, they order summary sentences according
to the original positions of their partners in the same class. However, they do
not compare their results against chronological ordering of sentences, which has
been shown to be an effective sentence ordering strategy in multi-document news
summaries.

As described above, several good strategies/heuristics to deal with the sen-
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tence ordering problem have been proposed. In order to integrate multiple strate-
gies/heuristics, I have formalized them in a machine learning framework and have
considered an algorithm to arrange sentences using the integrated strategy. In
chapter 2 I describe this approach.



2. BOTTOM-UP APPROACH TO SENTENCE ORDERING IN
MDS

2.1 Method

I define notation a � b to represent that sentence a precedes sentence b. I use
the term segment to describe a sequence of ordered sentences. When segment A
consists of sentences a1, a2, ..., am in this order, I denote as:

A = (a1 � a2 � ... � am). (2.1)

The two segments A and B can be ordered either B after A or A after B. I define
the notation A � B to show that segment A precedes segment B.

Let us consider a bottom-up approach in arranging sentences. Starting with a
set of segments initialized with a sentence for each, I concatenate two segments,
with the strongest association (discussed later) of all possible segment pairs, into
one segment. Repeating the concatenating will eventually yield a segment with all
sentences arranged. The algorithm is considered as a variation of agglomerative
hierarchical clustering with the ordering information retained at each concatenat-
ing process.

The underlying idea of the algorithm, a bottom-up approach to text planning,
was proposed by Marcu [27]. Assuming that the semantic units (sentences) and
their rhetorical relations [25] (e.g., sentence a is an elaboration of sentence d) are
given, he transcribed a text structuring task into the problem of finding the best
discourse tree that satisfied the set of rhetorical relations. He stated that global
coherence could be achieved by satisfying local coherence constraints in ordering
and clustering, thereby ensuring that the resultant discourse tree was well-formed.

Unfortunately, identifying the rhetorical relation between two sentences has
been a difficult task for computers [28]. However, the bottom-up algorithm for
arranging sentences can still be applied only if the direction and strength of the
association of the two segments (sentences) are defined. Hence, I introduce a
function f(A � B) to represent the direction and strength of the association of
two segments A and B,

f(A � B) =
{

p (if A precedes B)
0 (if B precedes A)

, (2.2)
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Fig. 2.1: Arranging four sentences A, B, C , and D with a bottom-up approach.

where p (0 ≤ p ≤ 1) denotes the association strength of the segments A and
B. The association strengths of the two segments with different directions, e.g.,
f(A � B) and f(B � A), are not always identical in this definition,

f(A � B) �= f(B � A). (2.3)

Figure 2.1 shows the process of arranging four sentences a, b, c, and d. Firstly,
I initialize four segments with a sentence for each,

A = (a), B = (b), C = (c), D = (d). (2.4)

Suppose that f(B � A) has the highest value of all possible pairs, e.g., f(A � B),
f(C � D), etc, I concatenate B and A to obtain a new segment,

E = (b � a). (2.5)

Then I search for the segment pair with the strongest association. Supposing that
f(C � D) has the highest value, I concatenate C and D to obtain a new segment,

F = (c � d). (2.6)

Finally, comparing f(E � F ) and f(F � E), I obtain the global sentence order-
ing,

G = (b � a � c � d). (2.7)
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In the above description, I have not defined the association of the two seg-
ments. The previous work described in section 1.3 has addressed the association
of textual segments (sentences) to obtain coherent orderings. I define four criteria
to capture the association of two segments: chronology; topical-closeness; prece-
dence; and succession. These criteria are integrated into a function f(A � B)
by using a machine learning approach. The rest of this section explains the four
criteria and an integration method with a Support Vector Machine (SVM) [40]
classifier.

2.1.1 Chronology criterion

Chronology criterion reflects the chronological ordering [22, 29], which arranges
sentences in a chronological order of the publication date. I define the association
strength of arranging segments B after A measured by a chronology criterion
fchro(A � B) in the following formula,

fchro(A � B)

=

⎧⎪⎪⎨
⎪⎪⎩

1 T(am) < T(b1)
1 [D(am) = D(b1)] ∧ [N(am) < N(b1)]
0.5 [T(am) = T(b1)] ∧ [D(am) �= D(b1)]
0 otherwise

.

(2.8)

Here, am represents the last sentence in segment A; b1 represents the first sentence
in segment B; T (s) is the publication date of the sentence s; D(s) is the unique
identifier of the document to which sentence s belongs: and N(s) denotes the
line number of sentence s in the original document. The chronological order of
arranging segment B after A is determined by the comparison between the last
sentence in the segment A and the first sentence in the segment B.

The chronology criterion assesses the appropriateness of arranging segment
B after A if: sentence am is published earlier than b1; or sentence am appears
before b1 in the same article. If sentence am and b1 are published on the same day
but appear in different articles, the criterion assumes the order to be undefined. If
none of the above conditions are satisfied, the criterion estimates that segment B
will precede A.

Chronological ordering of sentences has shown to be particularly effective in
multi-document news summarization. As already discussed in section 1.3 sev-
eral previous research in this topic have proposed sentence ordering algorithms
using chronological information. Usually, news publishers provide time-stamps
for their news articles. This information can be used to decide the chronologi-
cal order among sentences extracted from different documents. However, when
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there is no time stamp assigned to the document or where there exist several doc-
uments with identical time stamps, chronological ordering of sentences becomes
impossible. Inferring temporal relations among events in multi-document sum-
marization using implicit time references (such as tense system) and explicit time
references (such as temporal adverbials) [7] is an interesting alternative for using
time-stamps.

2.1.2 Topical-closeness criterion

The topical-closeness criterion deals with the association, based on the topical
similarity, of two segments. The criterion reflects the ordering strategy proposed
by Barzilay et al [1], which groups sentences referring to the same topic. To
measure the topical closeness of two sentences, I represent each sentence with a
vector whose elements correspond to the occurrence1 of the nouns and verbs in
the sentence. I define the topical closeness of two segments A and B as follows,

ftopic(A � B) =
1

|B|
∑
b∈B

max
a∈A

sim(a, b). (2.9)

Here, sim(a, b) denotes the similarity of sentences a and b, which is calculated by
the cosine similarity of two vectors corresponding to the sentences. For sentence
b ∈ B, maxa∈A sim(a, b) chooses the sentence a ∈ A most similar to sentence b
and yields the similarity. The topical-closeness criterion ftopic(A � B) assigns a
higher value when the topic referred by segment B is the same as segment A.

2.1.3 Precedence criterion

Let us think of the case where I arrange segment A before B. Each sentence in seg-
ment B has the presuppositional information that should be conveyed to a reader
in advance. Given sentence b ∈ B, such presuppositional information may be
presented by the sentences appearing before the sentence b in the original article.
However, we cannot guarantee whether a sentence-extraction method for multi-
document summarization chooses any sentences before b for a summary because
the extraction method usually determines a set of sentences, within the constraint
of summary length, that maximizes information coverage and excludes redundant
information. Precedence criterion measures the substitutability of the presupposi-
tional information of segment B (e.g., the sentences appearing before sentence b)
as segment A. This criterion is a formalization of the sentence-ordering algorithm
proposed by Okazaki et al, [34].

1 The vector values are represented by boolean values, i.e., 1 if the sentence contains a word,
otherwise 0.
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I define the precedence criterion in the following formula,

fpre(A � B) =
1

|B|
∑
b∈B

max
a∈A,p∈Pb

sim(a, p). (2.10)

Here, Pb is a set of sentences appearing before sentence b in the original article;
and sim(a, b) denotes the cosine similarity of sentences a and b (defined as in the
topical-closeness criterion). Figure 2.2 shows an example of calculating the prece-
dence criterion for arranging segment B after A. I approximate the presupposi-
tional information for sentence b by sentences Pb, ie, sentences appearing before
the sentence b in the original article. Calculating the similarity among sentences
in Pb and A by the maximum similarity of the possible sentence combinations,
Formula 2.10 is interpreted as the average similarity of the precedent sentences
∀Pb(b ∈ B) to the segment A.

2.1.4 Succession criterion

The idea of succession criterion is the exact opposite of the precedence criterion.
The succession criterion assesses the coverage of the succedent information for
segment A by arranging segment B after A:

fsucc(A � B) =
1

|A|
∑
a∈A

max
s∈Sa,b∈B

sim(s, b). (2.11)

Here, Sa is a set of sentences appearing after sentence a in the original article;
and sim(a, b) denotes the cosine similarity of sentences a and b (defined as in
the topical-closeness criterion). Figure 2.1.4 shows an example of calculating the
succession criterion to arrange segments B after A. I approximate the information
that should follow segment A by the sentences in segments Sa. I then compare
each segments Sa with segment B to measure how much segment B conveys
this information. The succession criterion measures the substitutability of the
succedent information (e.g., the sentences appearing after the sentence a ∈ A) as
segment B.

2.1.5 SVM classifier to assess the integrated criterion

I integrate the four criteria described above to define the function f(A � B)
to represent the association direction and strength of the two segments A and
B (Formula 2.2). More specifically, given the two segments A and B, function
f(A � B) is defined to yield the integrated association strength from four values,
fchro(A � B), ftopic(A � B), fpre(A � B), and fsucc(A � B). I formalize the
integration task as a binary classification problem and employ a Support Vector
Machine (SVM) as the classifier. I conducted a supervised learning as follows.
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I partition a human-ordered extract into pairs each of which consists of two
non-overlapping segments. Let us explain the partitioning process taking four
human-ordered sentences, a � b � c � d shown in Figure 2.4. Firstly, I place the
partitioning point just after the first sentence a. Focusing on sentence a arranged
just before the partition point and sentence b arranged just after we identify the
pair {(a), (b)} of two segments (a) and (b). Enumerating all possible pairs of
two segments facing just before/after the partitioning point, I obtain the following
pairs, {(a), (b � c)} and {(a), (b � c � d)}. Similarly, segment pairs, {(b), (c)},
{(a � b), (c)}, {(b), (c � d)}, {(a � b), (c � d)}, are obtained from the par-
titioning point between sentence b and c. Collecting the segment pairs from the
partitioning point between sentences c and d (i.e., {(c), (d)}, {(b � c), (d)} and
{(a � b � c), (d)}), I identify ten pairs in total form the four ordered sentences.
In general, this process yields n(n2 − 1)/6 pairs from ordered n sentences. From
each pair of segments, I generate one positive and one negative training instance
as follows.

Given a pair of two segments A and B arranged in an order A � B, I calculate
four values, fchro(A � B), ftopic(A � B), fpre(A � B), and fsucc(A � B) to ob-
tain the instance with the four-dimensional vector (Figure 2.5). I label the instance
(corresponding to A � B) as a positive class (ie, +1). Simultaneously, I obtain
another instance with a four-dimensional vector corresponding to B � A. I label
it as a negative class (i.e., −1). Accumulating these instances as training data,
I obtain a binary classifier by using a Support Vector Machine with a quadratic
kernel. The SVM classifier yields the association direction of two segments (e.g.,
A � B or B � A) with the class information (i.e., +1 or −1).

I assign the association strength of two segments by using the posterior prob-
ability that the instance belongs to a positive (+1) class. When an instance is
classified into a negative (−1) class, I set the association strength as zero (see the
definition of Formula 2.2).

2.2 Posterior probabilities from SVMs

Being a large-margin classifier, the output of an SVM is the distance from the
decision hyper-plane. However, this is not a calibrated posterior probability. I use
sigmoid functions to convert this uncalibrated distance into a calibrated posterior
probability. In this section I explain the different methods proposed for converting
SVM outputs to posterior probabilities and the method I chose [37].

Support vector machines classify instances based on the distance to the in-
stance from the decision hyperplane. For an instance x, the distance for this in-
stance from the hyperplane is give by,
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f(x) = h(x) + b. (2.12)

Here,
h(x) =

∑
i

yiαik(xi, x) (2.13)

and b is the bias. h(x) lies in a Reproducing Hilbert Space (RKHS) induced by a
kernel k.

Training an SVM minimizes the misclassification error. Various error func-
tions have been proposed for the training of SVMs. A popular formulation of the
error function is as follows,

C
∑

i

(1 − yifi) +
1

2
||h||, (2.14)

where fi = f(xi). This error function has the following properties. First,
minimizing the error function will also minimize a bound on the test misclassifi-
cation rate [40]. Secondly, minimizing this error function will produce a sparse
machine where only a subset of possible kernels are used in the final machine.
This sparsity property is a well-known desirable feature of SVMs that makes it
such a powerful learning algorithm in large feature spaces such as all the words
from a vocabulary and their n-grams considered in most text classification tasks.
Intuitively, only the training instances that lie on the hyper plane (i.e., only the
training instances which are support vectors) decide the classification result. This
is usually a smaller subset of all the points in the kernel space. When converting
the SVM outputs to posterior probabilities a technique which retains the sparsity
property of SVMs is desirable.

One method of producing probabilistic outputs from a kernel machine (not
limited to support vector machines) is by logistic link function [41],

P(class|input) = P (y = 1|x) = p(x) =
1

1 + exp(−f(x))
, (2.15)

where f is defined as in Equation 2.12.
In this formulation a negative log multinomial likelihood plus a term that pe-

nalizes the norm of the Hilbert space induced by the kernel is minimized:

− 1

m

∑
i

(
yi + 1

2
log(pi) +

1 − yi

2
log(1 − pi)) + λ||h||2, (2.16)

where pi = p(xi). One problem with the above formulation of posterior prob-
ability using SVM outputs is that the sparseness property might no longer hold.
Intuitively, the above method attempts to define a probabilistic function which



2. Bottom-up Approach to Sentence Ordering in MDS 26

maximizes likelihood of observing the training data. There have been various
probability functions defined for this task including cosine fit by Vapnik himself
and Gaussian fit by Hasite and Tibshirani [12]. Platt [37] propose a modification
to Equation 2.15 as follows,

P (y = 1|f) =
1

1 + exp(Af + B)
, (2.17)

where A and B are two parameters fit in the model using maximum likelihood
estimation from a training set (fi, yi). Platt’s experimental results shows a very
good agreement between the probability estimates by the fitted sigmoid and actual
data.
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Fig. 2.4: Partitioning a human-ordered extract into pairs of segments

+1 : [fchro(A � B), ftopic(A � B), fpre(A � B), fsucc(A � B)]

−1 : [fchro(B � A), ftopic(B � A), fpre(B � A), fsucc(B � A)]

Fig. 2.5: Two vectors in a training data generated from two ordered segments A � B



3. EVALUATION OF SENTENCE ORDERINGS

I evaluated the proposed method using the 3rd Text Summarization Challenge
(TSC-3) corpus1. The TSC-3 corpus contains 30 sets of extracts, each of which
consists of unordered sentences2 extracted from Japanese newspaper articles rel-
evant to a topic (query). I arrange the extracts by using different algorithms and
evaluate the readability of the ordered extracts by a subjective grading and several
automatic evaluation measures.

Tab. 3.1: Correlation between two sets of human-ordered extracts
Metric Mean Std. Dev Min Max
Spearman 0.739 0.304 -0.2 1
Kendall 0.694 0.290 0 1
Average Continuity 0.401 0.404 0.001 1

In order to construct training data applicable to the proposed method, I asked
two human subjects to arrange the extracts and obtained 30(topics)×2(humans) =
60 sets of ordered extracts. Table 3.1 shows the agreement of the ordered extracts
between the two subjects. The correlation is measured by three metrics, Spear-
man’s rank correlation, Kendall’s rank correlation, and average continuity (de-
scribed later). The mean correlation values (0.74 for Spearman’s rank correlation
and 0.69 for Kendall’s rank correlation) indicate a certain level of agreement in
sentence orderings made by the two subjects. 8 out of 30 extracts were actually
identical. This experiment suggests that there is a high correlation between hu-
mans for sentence orderings. However, the experiment needs to be carried out
using a large number of subjects in order to obtain any statistically guaranteed
results.

I applied the leave-one-out method to the proposed method to produce a set
of sentence orderings. In this experiment, the leave-out-out method arranges an
extract by using an SVM model trained from the rest of the 29 extracts. Repeating
this process 30 times with a different topic for each iteration, I generated a set of
30 extracts for evaluation. In addition to the proposed method, I prepared six sets

1 http://lr-www.pi.titech.ac.jp/tsc/tsc3-en.html
2 Each extract consists of ca. 15 sentences on average.
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of sentence orderings produced by different algorithms for comparison. I describe
briefly the seven algorithms (including the proposed method):

Agglomerative ordering (AGL) is an ordering arranged by the proposed method;

Random ordering (RND) is the lowest anchor, in which sentences are arranged
randomly;

Human-made ordering (HUM) is the highest anchor, in which sentences are arranged
by a human subject;

Chronological ordering (CHR) arranges sentences with the chronology criterion
defined in Formula 2.8. Sentences are arranged in chronological order of
their publication date;

Topical-closeness ordering (TOP) arranges sentences with the topical-closeness
criterion defined in Formula 2.9;

Precedence ordering (PRE) arranges sentences with the precedence criterion de-
fined in Formula 2.10;

Suceedence ordering (SUC) arranges sentences with the succession criterion de-
fined in Formula 2.11.

The last four algorithms (CHR, TOP, PRE, and SUC) arrange sentences by the
corresponding criterion alone, each of which uses the association strength directly
to arrange sentences without the integration of other criteria. These orderings
are expected to show the performance of each criterion independently and their
contribution to solving the sentence ordering problem.

3.1 Subjective grading

Evaluating a sentence ordering is a challenging task. Intrinsic evaluation that
involves human judges to rank a set of sentence orderings is a necessary approach
to this task [1, 34, 31]. I asked two human judges to rate sentence orderings
according to the following criteria.

Perfect A perfect summary is a text that we cannot improve any further by re-
ordering.

Acceptable An acceptable summary is one that makes sense and is unnecessary
to revise even though there is some room for improvement in terms of read-
ability.

Poor A poor summary is one that loses the thread of the story at some places and
requires minor amendments to bring it up to an acceptable level.
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Fig. 3.1: Subjective grading

Unacceptable An unacceptable summary is one that leaves much to be improved
and requires overall restructuring rather than partial revision.

To avoid any disturbance in rating, I inform the judges that the summaries were
made from a same set of extracted sentences and only the ordering of sentences is
different. Furthermore, the judges were given access to the source documents for
each summary.

Figure 3.1 shows the distribution of the subjective grading made by two judges
to four sets of orderings, RND, CHR, AGL and HUM. Each set of orderings has
30(topics) × 2(judges) = 60 ratings. Most RND orderings are rated as unac-
ceptable. Although CHR and AGL orderings have roughly the same number of
perfect orderings (ca. 25%), the AGL algorithm gained more acceptable order-
ings (47%) than the CHR alghrotihm (30%). This fact shows that integration of
CHR criterion with other criteria worked well by pushing poor ordering to an ac-
ceptable level. However, a huge gap between AGL and HUM orderings was also
found. The judges rated 28% AGL orderings as perfect while the figure rose as
high as 82% for HUM orderings. Kendall’s coefficient of concordance (Kendall’s
W ), which asses the inter-judge agreement of overall ratings, reported a higher
agreement between the two judges (W = 0.939).

3.2 Methods for semi-automatic evaluation

In general, subjective grading consumes much time and effort, even though we
cannot reproduce the evaluation after wards. Automatic evaluation measures are
particularly useful when evaluations must be performed quickly and frequently.

There have been several methods proposed [2, 17, 18] for the task of automat-
ically evaluating coherence in a given text. Barzilay and Lapata [2] proposed a
coherence model inspired by centering theory.
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Teval = (e � a � b � c � d)

Tref = (a � b � c � d � e)

Fig. 3.2: An example of an ordering under evaluation Teval and its reference Tref .

However, in the current task summaries produced by different systems for a
particular topic differ only in their orderings of sentences. I need a measure that
only concentrates on the effect on coherence due to different sentence orderings.
Although there are differences in applications, automatic evaluation methods usu-
ally compare system output against a set of gold standards and produce a numeric
value indicating the similarity or closeness between the system output and the
gold standards. Following this procedure, numerous automatic evaluation meth-
ods have been proposed in natural language processing tasks such as machine
translation [36] and text summarization [13].

The previous studies [3, 21, 31] employ rank correlation coefficients such as
Spearman’s rank correlation and Kendall’s rank correlation, assuming a sentence
ordering to be a rank.

Let S = s1 . . . sN be a set of N items to be ranked. Let π and σ denote
two distinct orderings of S. Then Kendall’s rank correlation coefficient [20] (also
known as Kendall’s τ ) is defined as follows,

τ = 1 − 2D(π, σ)

N(N − 1)/2
. (3.1)

Here, D(π, σ) denotes the discordant pairs of sentences in the two rankings.
For example, in Figure 3.2 the four sentences pairs (e, a), (e, b), (e, c) and (e, d)
appear in reverse-order in Teval. These four discordant sentences pairs between
Tref and Teval results in a Kendall’s τ of 0.2. Kendall’s τ is in the range [−1, +1].
It takes the value +1 if the two sets of orderings are identical and −1 if one is the
reverse of the other.

Similarly, Spearman’s rank correlation coefficient (rs) between orderings π
and σ is defined as follows,

rs = 1 − 6

N(N + 1)(N − 1)

N∑
i=1

(π(i) − σ(i))2. (3.2)

Spearman’s rank correlation coefficient for the example shown in Figure 3.2
is 0. rs lies in the range [−1, +1]. As with Kendall’s τ , rs value of +1 is obtained
for two identical orderings. Whereas rs computed between an ordering and its
revers is −1.
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Okazaki et al. [34] propose a metric that assess continuity of pairwise sen-
tences compared with the gold standard. In addition to Spearman’s and Kendall’s
rank correlation coefficients, I propose an average continuity metric, which ex-
tends the idea of the continuity metric to continuous k sentences.

3.2.1 Average Continuity

A text with sentences arranged in proper order does not interrupt a human’s read-
ing while moving from one sentence to the next. Hence, the quality of a sentence
ordering can be estimated by the number of continuous sentences that are also
reproduced in the reference sentence ordering. This is equivalent to measuring a
precision of continuous sentences in an ordering against the reference ordering. I
define Pn to measure the precision of n continuous sentences in an ordering to be
evaluated as,

Pn =
m

N − n + 1
. (3.3)

Here, N is the number of sentences in the reference ordering; n is the length of
continuous sentences on which we are evaluating; m is the number of continuous
sentences that appear in both the evaluation and reference orderings. In Figure
3.2, the precision of 3 continuous sentences P3 is calculated as:

P3 =
2

5 − 3 + 1
= 0.67. (3.4)

The Average Continuity (AC) is defined as the logarithmic average of Pn over
2 to k:

AC = exp

(
1

k − 1

k∑
n=2

log(Pn + α)

)
. (3.5)

Here, k is a parameter to control the range of the logarithmic average; and α is
a small value in case if Pn is zero. I set k = 4 (i.e., more than five continuous
sentences are not included for evaluation) and α = 0.01. Average continuity is
in range [0, +1]. It becomes 0 when evaluation and reference orderings share no
continuous sentences and +1 when the two orderings are identical. In Figure 3.2,
Average Continuity is calculated as 0.63. The underlying idea of Formula 3.5
was proposed by Papineni et al. [36] as the BLEU metric for the semi-automatic
evaluation of machine-translation systems. The original definition of the BLEU
metric is to compare a machine-translated text with its reference translation by
using the word n-grams.
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Tab. 3.2: Comparison with human-made ordering
Method Spearman Kendall Average Continuity
RND -0.127 -0.069 0.011
TOP 0.414 0.400 0.197
PRE 0.415 0.428 0.293
SUC 0.473 0.476 0.291
CHR 0.583 0.587 0.356
AGL 0.603 0.612 0.459

3.3 Results of semi-automatic evaluation

Table 3.2 reports the resemblance of orderings produced by six algorithms to the
human-made ones with three metrics, Spearman’s rank correlation, Kendall’s rank
correlation, and Average Continuity. The proposed method (AGL) outperforms
the rest in all evaluation metrics, although the chronological ordering (CHR) ap-
peared to play the major role. The one-way analysis of variance (ANOVA) ver-
ified the effects of different algorithms for sentence orderings with all metrics
(p < 0.01). I performed Tukey Honest Significant Differences (HSD) test to com-
pare differences among these algorithms. The Tukey test revealed that AGL was
significantly better than the rest. Even though I could not compare my experiment
with the probabilistic approach [21] directly due to the difference of the text cor-
pora, the Kendall coefficient reported higher agreement than Lapata’s experiment
Her experiments report a Kendall coefficient of 0.48 with lemmatized nouns and
0.56 with verb-noun dependencies.

Experimental results of learning with different kernels are shown in Table 3.3.
I tested five popular kernel types: linear kernel (with-out using any kernel), poly-
nomial kernel (quadratic), polynomial kernel (cubic), radial basis functions (RBF)
kernel, sigmoid kernel. Among the different kernels tested, the best results are
achieved with quadratic kernel. All three automatic evaluation measures used in
Table 3.3 report the maximum value for quadratic kernel. Theoretically, higher de-
gree kernels can capture complex non-linear dependencies between the features.
However, in order to accurately learn in these complex spaces, one needs a lot
of training data. We see a deterioration of performance when we move from
quadratic kernel to cubic kernel. Considering the few number of examples (only
30 summaries and ca. 8000 training instances) this behavior is expected. More-
over, quadratic, radial basis functions and sigmoid kernels perform better than (or
at the same level in the case of RBF and Sigmoid kernels) the linear kernel. This
suggests that the exact combination of the four criteria I discussed in the thesis is
non-linear.
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Tab. 3.3: Performance vs SVM kernel type

Kernel Type Spearman Kendall Average Continuity
Linear 0.524 0.507 0.294
Polynomial (degree=2) 0.529 0.511 0.311
Polynomial (degree=3) 0.513 0.499 0.311
Radial Basis Functions 0.524 0.507 0.294
Sigmoid Function 0.524 0.507 0.294

Tab. 3.4: Effect of removing a criterion

Criterion removed Spearman Kendall Average Continuity
chronology 0.398 0.363 0.076
topical-closeness 0.532 0.517 0.295
precedence 0.520 0.502 0.311
succession 0.524 0.507 0.294

3.4 Effect of each criterion on coherence

I used four criteria in this thesis and integrated them using support vector machines
to leverage the association strength between two text segments. However, it is
important to know how each criterion contributes to the overall performance. In
order to find out the influence that each criterion imparts on the performance I
conducted the following experiment. I removed a criterion at both learning phase
and ordering phase from the model and repeated this procedure for each criterion.
I evaluate the sentence orderings produced by eliminating a criterion at a time
by comparing them with human-ordered summaries using automatic evaluation
measures. Results from our experiment are summarized in Table 3.4.

If removing a particular criterion from the model deteriorates the performance
then that criterion can be considered as important. According to Table 3.4, re-
moving the chronology criterion results in the poorest performance. This is to
be expected as chronological information have shown to be very useful in decid-
ing the order among extracted sentences in previous work of news summarization
[1, 35]. Surprisingly, removing topical-closeness criterion improves both Spear-
man and Kendall rank correlation coefficient (compare the results with polyno-
mial (degree=2) kernel in Table 3.3). However, removing the topical-closeness
criterion reduces average continuity. Topical-closeness criterion was defined in
2.9 using only the extracted sentences without referring to the source documents.
Therefore, the value of topical-closeness remains unchanged for all permutations
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Fig. 3.3: Precision vs unit of measuring continuity.

of sentences in the two text segments. Therefore, we cannot select the best or-
dering among the all permutations inside a particular text segment using topical-
closeness alone. However, by definition of Equation 2.9, topical-closeness crite-
rion assigns a higher score for pairs of text segments in which the two segments
contain a lot of overlapping words. This results in a better continuity as sentences
which discusses on the same topic are ordered in close proximity.

Figure 3.3 shows precision Pn with different length values of continuous sen-
tence n for the six methods compared in Table 3.2. The number of continuous
sentences becomes sparse for a higher value of length n. Therefore, the precision
values decrease as the length n increases. I considered geometric mean of individ-
ual precision instead of arithmetic mean in order to account for this phenomenon
in Equation 3.5. Although RND ordering reported some continuous sentences
for lower n values, no continuous sentences could be observed for higher n val-
ues. Four criteria described in Section 2.1 (i.e., CHR, TOP, PRE, SUC) produce
segments of continuous sentences at all values of n. AGL ordering obtained the
highest precision for any length n. CHR reports the second highest precision val-
ues for any length n.

3.5 Correlation between subjective gradings and semi-automatic
evaluation measures

In section 3.2 I defined three evaluation measures: Kendall’s τ , Spearman’s rank
correlation coefficient (rs) and average continuity. Ideally, a semi-automatic eval-
uation measure should have a good agreement with subjective gradings. For this
purpose, I measure the correlation between the elicited gradings in section 3.1
and the values reported by the semi-automatic measures described in section 3.2
as follows.

First, I order each set of extracted sentences using three different methods:
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random ordering, chronological ordering and the proposed method. For the 30
topics in my dataset, this procedure yields 90 (30 × 3) summaries. I then com-
pute Kendall’s τ , Spearman’s rs and Average Continuity (AC) for each of the 90
summaries using two reference summaries for each topic. I take the average value
between the two evaluations and consider it to be the automatically evaluated score
of a summary. I then assign a grade based on the automatically evaluated score
for a summary as in Table 3.5.

Tab. 3.5: Assigning grades based on semi-automatic evaluation scores
Grade range of τ range of rs range of AC
Unacceptable [−1,−0.5) [−1,−0.5) [0, 0.25)
Poor [−0.5, 0) [−0.5, 0) [0.25, 0.5)
Acceptable [0, 0.5) [0, 0.5) [0.5, 0.75)
Perfect [0.5, 1.0] [0.5, 1.0] [0.75, 1.0]

It is noteworthy that the three evaluation measures mentioned in Table 3.5
might have different distributions of scores. An equal partitioning as shown in
Table 3.5 might not necessarily be the best way to separate the four gradings.
A different partitioning scheme might yield a better correlation with subjective
gradings. However, the equal partitioning scheme as shown in Table 3.5 is both
simple and intuitive. For example, if we adopt a partitioning scheme that depends
on the number of sentences in the summary, then it would be difficult to compare
evaluations done on different datasets.

Tab. 3.6: Spearman coefficient vs Subjective grading
Grade Spearman Agree Disagree Ratio
Perfect 37 17 20 0.459
Acceptable 14 5 9 0.357
Poor 21 9 12 0.428
Unacceptable 18 12 6 0.667
Total 90 43 47 0.478

Tables 3.6, 3.7 and 3.8 show the agreement between human gradings and grad-
ings assigned based on each of the semi-automatic evaluation measures. In 57
out of the 90 summaries human grades and grades assigned based on the value
of Average Continuity agreed, giving rise to the highest overall agreement rate
of 0.633 among the three evaluation measures. Kendall’s τ had the second best
overall agreement ratio of 0.567. Agreement between grades assigned based on
Spearman’s coefficient and human grades was the lowest (agreement ratio=0.478).
Moreover, Table 3.8 reports a perfect agreement (agreement ratio=1.0) between
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Tab. 3.7: Kendall coefficient vs Subjective grading
Grade Kendall Agree Disagree Ratio
Perfect 32 17 15 0.531
Acceptable 17 9 8 0.529
Poor 25 12 13 0.480
Unacceptable 16 13 3 0.812
Total 90 51 39 0.567

Tab. 3.8: Average continuity vs Subjective grading
Grade Average Continuity Agree Disagree Ratio
Perfect 14 14 0 1.000
Acceptable 7 5 2 0.714
Poor 8 2 6 0.250
Unacceptable 61 36 25 0.590
Total 90 57 33 0.633

the grades assigned by Average Continuity and human grades for perfectly or-
dered summaries. This means that average continuity is a very reliable measure
to judge perfectly ordered summaries. However, average continuity rejects 61 out
of the 90 summaries as Unacceptable. On the other hand, Kendall’s τ reports
a higher agreement with subjective grades for Unacceptable summaries (agree-
ment ratio=0.812 in Table 3.7). This means when Kendall’s τ measure rejects a
summary as being Unacceptable, its judgment is very reliable. This contrasting
behavior of Average Continuity and Kendall’s τ is particularly important when
evaluating sentence orderings for a specific application. For instance, if we want
to select a few summaries with very good sentence orderings then the judgment
based on Average Continuity is appropriate. Average Continuity has a high preci-
sion but a low recall in identifying perfect summaries. Average Continuity might
miss out certain number of perfect summaries. On the other hand, Kendall’s τ will
judge several non-perfect summaries as perfect. If we want to adopt a more con-
servative evaluation measure which penalizes improper orderings, then average
continuity would be the better choice.



4. PAIR-WISE SENTENCE COMPARISON APPROACH

4.1 Pair-wise comparison of sentences

In chapter 2 I described a bottom-up approach to sentence ordering for multi-
document summarization. In this chapter I explain a different approach to the
same problem. In this approach we compare only sentence-pairs. For a set of N
sentences there are N(N − 1)/2 number of different sentence-pairs. Moreover,
the two sentences in each pair can be ordered in two different ways. This gives
rise to an interesting combinatorial problem where you have to generate a total
ordering among a set of N things (in this case we have to create a summary for
a set of sentences) such that the total ordering is optimal in some sense. In our
case, we are interested in finding the total ordering among sentences that forms
the most coherent summary.

However, there are two difficulties in this approach. First, it is computation-
ally prohibitive to generate all possible orderings of N items and evaluate each
one of them for their degree of coherence. Theoretically there are N ! ways of or-
dering N different sentences. We take a greedy search algorithm in this thesis to
reduce the search space. Secondly, the criterion we need to optimize, coherence
in a text, is not a well defined function. Although various factors that contribute
to coherence in a text have been identified by previous work on linguistics [11]
the exact combination of these factors in multi-document summaries remains un-
known. In this thesis, we attempt to define various criteria (some of these criteria
were already discussed in chapter 2) and use a machine learning approach to find
the best combination among them.

For sentences taken from the same document we keep the order in that docu-
ment as done in single document summarization. However, we have to be careful
when ordering sentences which belong to different documents. To decide the or-
der among such sentences, we implement five ranking experts: Chronological,
Probabilistic, Topical relevance, Precedent and Succedent. These experts return
precedence preference between two sentences. Cohen [5] proposes an elegant
learning model that works with preference functions and we adopt this learning
model to our task. Each expert e generates a pair-wise preference function defined
as following:

PREFe(u, v, Q) ∈ [0, 1]. (4.1)
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Where, u, v are two sentences that we want to order; Q is the set of sentences
which has been already ordered. The expert returns its preference of u to v. If the
expert prefers u to v then it returns a value greater than 0.5. In the extreme case
where the expert is absolutely sure of preferring u to v it will return 1.0. On the
other hand, if the expert prefers v to u it will return a value lesser than 0.5. In the
extreme case where the expert is absolutely sure of preferring v to u it will return
0. When the expert is undecided of its preference between u and v it will return
0.5.

The linear weighted sum of these individual preference functions is taken as
the total preference by the set of experts as follows:

PREFtotal(u, v, Q) =
∑
e∈E

wePREFe(u, v, Q). (4.2)

Therein: E is the set of experts and we is the weight associated to expert e ∈ E.
These weights are normalized so that the sum of them is 1. We use the Hedge
learning algorithm to learn the weights associated with each expert’s preference
function. Then we use the greedy algorithm proposed by Cohen [5] to get an
ordering that approximates the total preference.

4.1.1 Chronological Expert

Chronological expert emulates conventional chronological ordering [22] which
arranges sentences according to the dates on which the documents were published
and preserves the appearance order for sentences in the same document. We define
a preference function for the expert as follows:

PREFchro(u, v, Q) =

⎧⎪⎪⎨
⎪⎪⎩

1 T (u) < T (v)
1 [D(u) = D(v)] ∧ [N(u) < N(v)]
0.5 [T (u) = T (v)] ∧ [D(u) �= D(v)]
0 otherwise

. (4.3)

Therein: T (u) is the publication date of sentence u; D(u) presents the unique
identifier of the document to which sentence u belongs; N(u) denotes the line
number of sentence u in the original document. Chronological expert gives 1
(preference) to the newly published sentence over the old and to the prior over the
posterior in the same article. Chronological expert returns 0.5 (undecided) when
comparing two sentences which are not in the same article but have the same
publication date.

4.1.2 Probabilistic Expert

Lapata [21] proposes a probabilistic model to predict sentence order. Her model
assumes that the position of a sentence in the summary depends only upon the
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sentences preceding it. For example let us consider a summary T which has sen-
tences S1, . . . , Sn in that order. The probability P (T ) of getting this order is given
by:

P (T ) =
n∏

i=1

P (Sn|S1, . . . , Sn−i). (4.4)

She further reduces this probability using bi-gram approximation as follows.

P (T ) =
n∏

i=1

P (Si|Si−1) (4.5)

She breaks each sentence into features and takes the vector product of features as
follows:

P (Si|Si−1) =
∏

(a<i,j>,a<i−1,k>)∈Si×Si−1

P (a<i,j>, a<i−1,k>). (4.6)

Feature conditional probabilities can be calculated using frequency counts of fea-
tures as follows:

P (a<i,j>|a<i−1,k>) =
f(a<i,j>, a<i−1,k>)∑

a<i,j>
f(a<i,j>, a<i−1,k>)

. (4.7)

Lapata [21] uses nouns,verbs and dependency structures as features. Where as
in our expert we implemented only nouns and verbs as features. We performed
back-off smoothing on the frequency counts in equation 4.7 as these values were
sparse. Once these conditional probabilities are calculated, for two sentences u,v
we can define the preference function for the probabilistic expert as follows:

PREFprob(u, v, Q) =

{
1+P (u|r)−P (v|r)

2
Q �= �

1+P (u)−P (v)
2

Q = � . (4.8)

Where, Q is the set of sentences ordered so far and r ∈ Q is the lastly ordered
sentence in Q. Initially, Q is null and we prefer the sentence with higher absolute
probability. When Q is not null and u is preferred to v, i.e. P (u|r) > P (v|r),
according to definition 4.8 a preference value greater than 0.5 is returned. If v is
preferred to u, i.e. P (u|r) < P (v|r), we have a preference value smaller than 0.5.
When P (u|r) = P (v|r), the expert is undecided and it gives the value 0.5.

We performed back-off smoothing [19] on the frequency counts in equation
4.7 as these values were sparse. In back-off smoothing, a portion of probabili-
ties of frequently occurring terms are transferred to sparsely occurring terms. For
simplicity, I shall write wm

1 to denote the n-gram of length m, w1, w2, . . . , wm.
C(wm

1 ) is the count of wm
1 in the corpus. Then the smoothed conditional prob-

ability Ps(wi|wi−1
i−n+1) of seeing wi after wi−n+1, . . . , wi−1 is given recursively as

follows, [26]
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Ps(wi|wi−1
i−n+1) =

⎧⎨
⎩ (1 − dwi−1

i−n+1
)

C(wi
i−n+1)

C(wi−1
i−n+1)

C(wi
i−n+1) > k

αwi−1
i−n+1

Ps(wi|wi−n+2 . . . wi−1) otherwise
. (4.9)

In definition 4.9 the first condition applies to terms w i
i−n+1 which exceeds a certain

value k of counts. When using this model to smooth probabilities in sparse data
k is set to zero. Therefore, for terms appearing one or more times in the corpus
the conditional probabilities are reduced by a factor of 0 < dwi−1

i−n+1
< 1. Setting

this value to 0, does not reserve any probabilities to be assigned for sparse data.
These reserved probabilities are then assigned to the unseen n-grams as shown
in the second condition in definition 4.9. The factor αwi−1

i−n+1
is selected as in

equation 4.10 so that the total probability remains a constant.

αwi−1
i−n+1

=
1 −∑

C(wi
i−n+1)>k(1 − dwi−1

i−n+1
)

C(wi
i−n+1)

C(wi−1
i−n+1)

1 −∑
C(wi

i−n+1)<k Ps(wi|wi−n+2)
(4.10)

In the probabilistic expert we need to consider only bi-grams of words which
appear in consecutive sentences. Therefore, the recursive formula in 4.9 con-
siders only bi-grams and uni-gram of words. The only remaining parameter in
formula 4.9 is dwi−1

i−n+1
. Katz [19] proposes a method based on Turing’s estimate

to decide the value of dwi−1
i−n+1

). Before, explaining this method we shall redefine

dwi−1
i−n+1

as Dr, where r = C(wi−1
i−n+1). For higher r values we shall not discount

the probabilities because higher frequencies are reliable.

Dr = 1 for r > R (4.11)

In my experiments I took frequencies over five to be reliable. Therefore, in my
experiments I took R = 5. When, nr is the number of words (n-grams of words)
which occurred exactly r times in the corpus, Turing’s estimate PT for a probabil-
ity of a word (n-grams of words) which occurred in the sample r times is,

PT =
r∗

N
. (4.12)

where,
r∗ = (r + 1)

nr+1

nr
(4.13)

We shall select Dr such that the contribution of probabilities yielded by this
method is proportional to the contributions by the Turing [10] estimate. Taking
the proportional coefficient to be μ, we can write this relation as,

(1 − Dr) = μ(1 − r∗

r
). (4.14)
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The unique solution to the equation 4.14 is,

Dr =
r∗
r
− (k+1)nk+1

n1

1 − (k+1)nk+1

n1

for 1 ≤ r ≤ k (4.15)

4.1.3 Topical Relevance Expert

Fig. 4.1: Topical relevance expert

In MDS, the source documents could contain multiple topics. Therefore, the
extracted sentences could be covering different topics. Grouping the extracted
sentences which belong to the same topic, improves readability of the summary.
Motivated by this fact, we designed an expert which groups the sentences which
belong to the same topic. This expert prefers sentences which are more similar
to the ones that have been already ordered. For each sentence l in the extract we
define its topical relevance, topic(l) as follows:

topic(l) = max
q∈Q

sim(l, q). (4.16)

We use cosine similarity to calculate sim(l, q). The preference function of this
expert is defined as follows:

PREFtopic(u, v, Q) =

⎧⎨
⎩

0.5 [Q = �] ∨ [topic(u) = topic(v)]
1 [Q �= �] ∧ [topic(u) > topic(v)]
0 otherwise

. (4.17)

Where, � represents the null set, u,v are the two sentences under consideration
and Q is the block of sentences that has been already ordered so far in the sum-
mary.

4.1.4 Precedent Expert

When placing a sentence in the summary it is important to check whether the pre-
ceding sentences convey the necessary background information for this sentence
to be clearly understood. Placing a sentence without its context being stated in
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l

Fig. 4.2: Precedent expert

advanced, makes an unintelligible summary. As shown in figure 4.2, for each
extracted sentence l, we can compare the block of text that appears before it in
its source document (P ) with the block of sentences which we have ordered so
far in the summary (Q). If P and Q matches well, then we can safely assume
that Q contains the necessary background information required by l. We can then
place l after Q. Such relations among sentences are called precedence relations.
Okazaki [35] proposes precedence relations as a method to improve the chrono-
logical ordering of sentences. He considers the information stated in the docu-
ments preceding the extracted sentences to judge the order. Based on this idea, we
define precedence pre(l) of the extracted sentence l as follows:

pre(l) = max
p∈P,q∈Q

sim(p, q). (4.18)

Here, P is the set of sentences preceding the extract sentence l in the original doc-
ument. We calculate sim(p, q) using cosine similarity. The preference function
for this expert can be written as follows:

PREFpre(u, v, Q) =

⎧⎨
⎩

0.5 [Q = �] ∨ [pre(u) = pre(v)]
1 [Q �= �] ∧ [pre(u) > pre(v)]
0 otherwise

. (4.19)

4.1.5 Succedent Expert

r l

Fig. 4.3: Succedent expert

When extracting sentences from source documents, sentences which are simi-
lar to the ones that are already extracted, are usually ignored to prevent repetition
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of information. However, this information is valuable when ordering sentences.
For example, a sentence that was ignored by the sentence extraction algorithm
might turn out to be more suitable when ordering the extracted sentences. How-
ever, we assume that the sentence ordering algorithm is independent from the
sentence extraction algorithm and therefore does not possess this knowledge re-
garding the left out candidates. This assumption improves the compatibility of our
algorithm as it can be used to order sentences extracted by any sentence extraction
algorithm. We design an expert which uses this information to order sentences.

Let us consider the situation depicted in Figure 4.3 where a block Q of text
is ordered in the summary so far. The lastly ordered sentence r belongs to docu-
ment D in which a block K of sentences follows r. The author of this document
assumes that K is a natural consequence of r. However, the sentence selection al-
gorithm might not have selected any sentences from K because it already selected
some sentences with this information from some other document. Therefore, we
search the extract L for a sentence that best matches with a sentence in K. We
define succession as a measure of this agreement(4.20) as follows:

succ(l) = max
k∈K

sim(l, k). (4.20)

Here, we calculate sim(l, k) using cosine similarity. Sentences with higher suc-
cession values are preferred by the expert. The preference function for this expert
can be written as follows:

PREFsucc(u, v, Q) =

⎧⎨
⎩

0.5 [Q = �] ∨ [succ(u) = succ(v)]
1 [Q �= �] ∧ [succ(u) > succ(v)]
0 otherwise

. (4.21)

4.2 Ordering Algorithm

Using the five preference functions described in the previous sections, we com-
pute the total preference function of the set of experts as defined by equation 4.2.
Section 4.3 explains the method that we use to calculate the weights assigned to
each expert’s preference. In this section we will consider the problem of finding
an order that satisfies the total preference function. Finding the optimal order for a
given total preference function is NP-complete [5]. However, Cohen [5] proposes
a greedy algorithm that approximates the optimal ordering. Once the unordered
extract X and total preference (equation 4.2) are given, this greedy algorithm can
be used to generate an approximately optimal ordering function ρ̂.



4. Pair-Wise Sentence Comparison Approach 47

let V = X
for each v ∈ V do

π(v) =
∑
u∈V

PREF(v, u, Q) − ∑
u∈V

PREF(u, v, Q)

while V is non-empty do
let t = arg maxu∈V π(u)
let ρ̂(t) = |V |
V = V − {t}
for each v ∈ V do

π(v) = π(v) + PREF(t, u) − PREF(v, t)
endwhile

However, there are some fundamental differences between the algorithm pro-
posed by Cohen [5] and the one used by us. Our preference function has Q, the
so far ordered summary, as a parameter in it. Therefore, the value of preference
function changes while ordering. It remains an open question whether the guar-
antees for the result bounds in Cohen’s original paper still holds for this modified
version of the algorithm.

4.3 Learning Algorithm

Cohen [5] proposes a weight allocation algorithm that learns the weights associ-
ated with each expert in equation 4.2. We shall explain this algorithm in regard to
our model of five experts.

Rate of learning β ∈ [0, 1], initial weight vector 	w1 ∈ [0, 1]5, s.t.
∑

e∈E 	w1
e = 1.

Do for t = 1, 2, . . . , T where T is the number of training examples.

1. Get X t; the set of sentences to be ordered.

2. Compute a total order ρ̂t which approximates,

PREFt
total(u, v, Q) =

∑
e∈E

PREFt
e(u, v, Q).

We used the greedy ordering algorithm described in section 4.2 to get ρ̂t.

3. Order X t using ρ̂t.

4. Get the human ordered set F t of X t. Calculate the loss for each expert.

Loss(PREFt
e, F

t) = 1 − 1

|F |
∑

(u,v)∈F

PREFt
e(u, v, Q) (4.22)
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5. Set the new weight vector,

wt+1
e =

wt
eβ

Loss(PREFt
e,F t)

Zt
(4.23)

where, Zt is a normalization constant, chosen so that,
∑

e∈E wt+1
e = 1

In our experiments we set β = 0.5 and w1
i = 0.2. To explain equation 4.22 let us

assume that sentence u comes before sentence v in the human ordered summary.
Then the expert must return the value 1 for PREF(u,v,Q). However,if the expert
returns any value less than 1, then the difference is taken as the loss. We do this
for all such sentence pairs in F . For a summary of length N we have N(N −1)/2
such pairs. Since this loss is taken to the power of β, a value smaller than 1, the
new weight of the expert gets changed according to the loss as in equation 4.23.

4.4 Evaluation

In addition to Kendall’s τ coefficient, Spearman’s rank correlation coefficient and
Average Continuity which we already defined in chapter 2, I use sentence conti-
nuity [35] and Weighted Kendall coefficient for evaluate the sentence orderings
generated by the proposed algorithm.

4.4.1 Continuity Metric

A summary is usually read from top to bottom in one dimension. The reader
brings together continuous sentences in a text and interpret their meaning. There-
fore, if the summary has a lot of continuous blocks of texts, it helps the reader
to easily comprehend the summary. Okazaki [35] proposes a metric to grasp the
continuity of a summary. A summary which can be read continuously is better
than a one with lots of discontinuities. Using the permutations π, σ of the two
orderings, he defines the continuity metric τc as,

τc =
1

n

n∑
i=1

equals(πσ−1(i), πσ−1(i − 1) + 1). (4.24)

Therein: π(0) = σ(0) = 0;

equals(x, y) =
{

1 x = y
0 otherwise

. (4.25)
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h(d)

d

Fig. 4.4: Weighting function

4.4.2 Weighted Kendall Coefficient

Kendall correlation coefficient, τk was defined in 3.1 using permutations. It can
also be stated more simply using the number of discordant pairs D as,

τk = 1 − 2D
nC2

. (4.26)

However, one major drawback of this metric when evaluating sentence orderings
is that, it does not take into consideration the relative distance between the discor-
dant pairs. On the other hand, Spearman correlation coefficient, τs, considers the
relative distance between all pairs and does not distinguish between discordant
and concordant pairs. None of the above mentioned metrics consider the position
of the sentences in the summary. However, when reading a text a human reader is
likely to be more sensitive to a closer discordant pair than a pair far apart. There-
fore, a closer discordant pair is more likely to harm the readability of the summary
compared to a far apart discordant pair. In order to reflect these difference in our
metric, we use an exponentially decreasing weight function as follows.

h(d) =
{

exp(1 − d) d ≥ 1
0 else

(4.27)

This weighting function can be expressed graphically as in figure 4.4.2. Going by
the traditional Kendall’s τ coefficient we defined our weighted Kendall coefficient
as following, so that it becomes a metric in [1,−1] range.
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Tab. 4.1: Weights learned

Expert Chronological Probabilistic Topical Relevance Precedent Succedent

Weights 0.327947 0.000039 0.016287 0.196562 0.444102

τw = 1 − 2
∑

d h(d)∑n
i=1 h(i)

(4.28)

4.5 Results

We used the 3rd Text Summarization Challenge (TSC) corpus for our experiments.
TSC1 corpus contains news articles taken from two leading Japanese newspapers;
Mainichi and Yomiuri. TSC-3 corpus contains human selected extracts for 30
different topics. However, in the TSC corpus the extracted sentences are not or-
dered to make a readable summary. Therefore, we first prepared 30 summaries
by ordering the extraction data of TSC-3 corpus by hand. We then compared the
orderings by the proposed algorithm against these human ordered summaries. We
used 10-fold cross validation to learn the weights assigned to each expert in our
proposed algorithm. These weights are shown in table 4.1. According to table 4.1,
succedent, chronology and precedent experts have the highest weights among the
five experts and therefore almost entirely control the process of ordering. Whereas
probabilistic and topical relevance experts have almost no influence on their de-
cisions. However, we cannot directly compare Lapata’s [21] approach with our
probabilistic expert as we do not use dependency structure in our probability cal-
culations. Moreover, Topical relevance, Precedent and Succedent experts require
other experts to guide them at the start as they are not defined when Q is null.
This inter-dependency among experts makes it difficult to interpret the results in
table 4.1. However, we could approximately consider the values of the weights in
table 4.1 as expressing the reliability of each expert’s decisions.

We ordered each extract by five methods: Random Ordering (RO); Probabilis-
tic Ordering (PO); Chronological Ordering (CO); Learned Ordering (LO); and
HO (Human-made Ordering) and evaluated the orderings. The results are shown
in table 4.2.

According to table 3.2 LO outperforms RO,PO and CO in all metrics. ANOVA
test of the results shows a statistically significant difference among the five meth-
ods compared in table 3.2 under 0.05 confidence level. However, we could not

1 http://lr-www.pi.titech.ac.jp/tsc/index-en.html
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Tab. 4.2: Comparison with Human Ordering

Spearman Kendall Continuity Weighted Kendall Average Continuity

RO -0.267 -0.160 -0.118 -0.003 0.024
PO 0.062 0.040 0.187 0.013 0.029
CO 0.774 0.735 0.629 0.688 0.511
LO 0.783 0.746 0.706 0.717 0.546
HO 1.000 1.000 1.000 1.000 1.000

Fig. 4.5: Precision vs sentence n-gram length
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Fig. 4.6: Human Evaluation

find a statistically significant difference between CO and LO. Topical relevance,
Precedent and Succedent experts cannot be used stand-alone to generate a total
ordering because these experts are not defined at the start, where Q is null. These
experts need Chronological and Probabilistic experts to guide them at the begin-
ning. Therefore we have not compared these orderings in table 4.2.

Continuity precision, defined in equation 3.3, against the length of continuity
n, is shown in figure 4.5. According to figure 4.5, for sentence n-grams of length
up to 6, LO has the highest precision (defined by equation 3.3) among the com-
pared orderings. PO did not possess sentence n-grams for n greater than two. Due
to the sparseness of the higher order n-grams, precision drops in an exponential-
like curve with the length of sentence continuity n. This justifies the logarithmic
mean in the definition of average continuity in equation 3.5. A similar tendency
could be observed for the BLEU metric [36].

We also performed a human evaluation of our orderings. We asked two human
judges to grade the summaries into four categories. The four grades are; perfect:
no further adjustments are needed, acceptable: makes sense even though there
is some room for improvement, poor: requires minor amendments to bring it up
to the acceptable level, unacceptable: requires overall restructuring rather than
partial revision. The result of the human evaluation of the 60 (2×30) summaries
is shown in figure 4.6. It shows that most of the randomly ordered summaries
(RO) are unacceptable. Although both CO and LO have same number of perfect
summaries, the acceptable to poor ratio is better in LO. Over 60 percent of LO
is either perfect or acceptable. Kendall’s coefficient of concordance (W), which
assesses the inter-judge agreement of overall ratings, reports a higher agreement
between judges with a value of W = 0.937.

Although relatively simple in implementation, the chronological orderings
works satisfactorily in our experiments. This is mainly due to the fact that the
TSC corpus only contains news paper articles. Barzilay [1] shows chronological
ordering to work well with news summaries. In news articles, events normally
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Fig. 4.8: Ordered by the Learned Algorithm
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occur in a chronological order. To evaluate the true power of the other experts in
our algorithm, we need to experiment using other genre of summaries other than
news summaries.

Finally, I show an example of sentence orderings by the learned algorithm.
The summary is about the earthquake in Papua New Guinea in 1998. Figure 4.7
is the randomly ordered extract for the summary. Learned algorithm takes the set
of sentences in figure 4.7 as input and orders them as in figure 4.8.

4.6 Bottom-up vs Pair-wise Approaches

In this thesis, I compared two different approaches: a bottom-up approach and
a pair-wise comparison approach to order a given set of extracted sentences to
create a coherent summary. The bottom-up approach reports better results in both
subjective evaluations and evaluations based on automatic correlation measures.
Reasons for the superiority of the bottom-up approach can be listed as follows.

1. Cyclic Orderings
Pair-wise approach considers a pair of sentences at a time and decide the or-
der between them. However, when we use the ordering algorithm described
in section 4.2 we might end up with a cyclic ordering. To illustrate this fact
let us consider three sentences A, B and C. Let us assume that pair-wise
comparison of these three sentences gives the following partial ordering.
A � B, B � C and C � A. In this case A, B, C yields a cyclic order.
The final ordering produced by the pair-wise ordering algorithm described
in section 4.2 depends on the greedy selection it makes among the many
different acceptable orderings.

2. Pair Clipping
Pair-wise approach can yield sub-optimal orderings even when there are no
cyclic partial orders. For example, let us assume we compared A and B and
decided the partial order between them to be A � B. Furthermore, let us
assume the comparison between C and D gave us the partial order C � D.
From a sentence ordering for a summary point-of-view we would like to
keep sentence B after A and D after C. However, further comparisons be-
tween B and C might force us to select the total order A � C � B � D,
even without comparing A and C (this is possible due to greedy compar-
isons in the ordering algorithm). Such clipping of pairs reduces continuity
in a summary. This is one major source of errors in the pair-wise approach
that results in poor average continuity scores. On the other hand, in the
bottom-up approach once we have merged two segments, we do not break
the merged segment back into sentences. Neither do we clip two segments.
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I believe the better continuity scores reported for the bottom-up approach
are attributable to this nature of the algorithm.

The two approaches have comparable computational complexities. Pair-wise
approach requires comparing all sentence pairs. For a summary with length N ,
this amounts to N(N−1) comparisons (there are N(N−1)/2 number of sentence
pairs and we need to make two comparisons for each sentence pair). Even with
the bottom-up approach in its initial step, we need to compare all text segments
which amounts to exactly the same number of comparisons. However, due to the
hierarchical nature of the clustering the number of segments to compare reduces
one at a time with the progress of the algorithm. In the pair-wise approach we
reduce the number of comparisons just by selecting the best pair as at that point
(greedy selection). Although exact computation of complexity bounds are diffi-
cult due to the complex interactions of support vector machines in the bottom-up
approach, it is effectively a hierarchical clustering algorithm and have ©(N 4).

I believe that bottom-up approach might be closely related to how humans
read and comprehend a text. We first read sentences in paragraphs in a linear
manner. Most texts are read from top to bottom. We then comprehend each para-
graph. Finally, we comprehend the overall text using our understanding of the
individual paragraphs. The hierarchical property and the non-clipping property of
the bottom-up approach closely simulates this process of human understanding of
text.



5. FUTURE WORK

In this thesis, I discussed the problem of automatically ordering a set of sentences
extracted from multiple documents in order to create a coherent summary. In this
chapter, I discuss the future work that I intend to carry on these lines and possible
applications of current work to related problems.

Although I focused on the problem of sentence ordering in the context of
multi-document summaries, the problem of text coherence is by no means lim-
ited to automatic text summarization. The problem of automatically arranging
information in a text to make it coherent, is an old problem in computational
linguistics [11]. Although various factors that contribute to coherence in a text
such as ellipsis, repetition, co-reference have been identified in linguistic litera-
ture, computational method have not successfully made use of them. Automatic
identification of factors that contribute to textual coherence is a challenging task
that needs to be addressed in detail in future research in this field.

Recently, the task of textual entailment 1 has received much attention. Given
two sentences A and B, textual entailment problem attempts to identify whether
one can infer sentence B from sentence A (or vice-versa). If we can infer sentence
B from A, then it is said that sentence A entails sentence B. This is a fundamental
problem that one needs to solve in order to properly order sentences in a text
to make it coherent. Although certain machine learning techniques have been
employed to automatic identification textual entailment the results still remain
sub-optimal. In my future research, I plan to explore the possibility of extending
the method I proposed for sentence ordering for multi-document summarization
to textual entailment problem.

1 http://www.pascal-network.org/Challenges/RTE/
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