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Abstract

Similarity is a fundamental concept that extends across numerous fields such as artificial

intelligence, natural language processing, cognitive science and psychology. Similarity

provides the basis for learning, generalization and recognition. Similarity can be broadly

divided into two types: semantic (or attributional) similarity, and relational similarity. At-

tributional similarity is the correspondence between the attributes of two objects. If two

objects have identical or close attributes, then those two objects are considered attribution-

ally similar. For example, the two concepts, car and automobile, both have an identical

set of attributes: four wheels, doors, and both are used for transportation. Consequently,

the two words car and automobile show a high degree of semantic (attributional) similarity

and are considered synonymous. On the other hand, relational similarity is the correspon-

dence between the implicit semantic relations that exist between two pairs of words. For

example, consider the two word-pairs (ostrich, bird) and (lion, cat). Ostrich is a large bird

and lion is a large cat. The implicitly stated semantic relation is a large holds between the

two words in each word-pair. Therefore, those two word-pairs are considered relationally

similar. Typically, word analogies show a high degree of relational similarity.

This thesis addresses the problem of measuring both semantic (attributional) and re-

lational similarity between words or pairs of words from the web. I define the two types

of similarity in detail and analyze the concept of similarity from numerous view-points,

its philosophical, linguistic, and mathematical interpretations. In particular, I compare dif-

ferent models such as the contrast model, transformational model and relational model, of

similarity. I presents a supervised approach to measure the semantic similarity between two

words using a web search engine. To measure the attributional similarity between two given

words, first, I search for those words individually and also in a conjunctive combination in a

x



xi

web search engine. I then extract lexical patterns that describe numerous semantic relations

between the two words under consideration. Moreover, I compute popular co-occurrence

measures such as the Jaccard coefficient, Overlap coefficient, Dice coefficient, and point-

wise mutual information, using the page counts retreived from a search engine. All those

measures are integrated with lexical patterns through a machine learning framework. The

training data for the algorithm are selected from synsets in WordNet. The proposed method

reports a high correlation with human ratings in a benchmark dataset for semantic similar-

ity. Moreover, The proposed semantic similarity is used in a community clustering task

and a word sense disambiguation task. Both those tasks show the ability of the proposed

semantic similarity measure to accurately compute the similarity between named-entities.

This is particularly useful because semantic similarity measures that require manually cre-

ated lexical resources such as dictionaries are unable to compute the similarity between

named-entities, which are not well covered by dictionaries.

Chapter 3 studies the problem of relational similarity. Given two word-pairs (A,B)

and (C,D), I propose a relational similarity measure, relsim((A,B), (C, D)) to compute

the similarity between the implicit semantic relations that hold between the two words A

and B, and C and D. To represent the implicitly stated semantic relations between two

words, I extract lexical patterns from the snippets retrieved from a web search engine for

the two words. However, not all lexical patterns describe a different semantic relation.

Some relations can be represented by more than one lexical pattern. For example, both

patterns X is a Y, and Y such as X describe a hypernymic relation between X and Y. Then

the extracted patterns are clustered using distributional similarity to identify the different

patterns that describe a particular semantic relation. Finally, machine learning approaches

are used to compute the relational similarity between two given word-pairs using the lexical

patterns extracted for each word-pair. I experiment with support vector machines, and

information theoretic metric learning approach to learn a relational similarity measure.

The second half of this thesis describes the applications of semantic and relational sim-

ilarity. As a working problem, I concentrate on personal name disambiguation on the web.

A name of a person can be ambiguous on the web because of two main reasons. First,

different people can share the same name (namesake disambiguation problem). Second, a

single individual can have multiple aliases on the web (alias detection problem). Chapter 4
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analyzes the namesake disambiguation problem, whereas, Chapter 5 focuses on the alias

detection problem. I propose fully automatic methods to solve both these problems with a

high accuracy. Extracting attributes for a particular person such as date of birth, nationality,

affiliation, job title, etc. is particularly helpful to disambiguate that person from his or her

namesakes on the web. I present some preliminary work that I have conducted in this area

in Chapter 6. In Chapter 7, I present a relational model of semantic similarity that links

relational and semantic similarity measures that were introduced in the thesis. In contract

to the feature model of semantic similarity, which models objects using their attributes, the

relational model attempts to compute the semantic similarity between two given words di-

rectly using the numerous semantic relations that hold between the two words. In Chapter

8, I conclude this thesis with a description of potential future work in web-based similarity

measurement.
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Chapter 1

Introduction

1.1 The Concept of Similarity

Similarity is a fundamental concept that has been studied across various fields such as

cognitive science, philosophy, psychology, artificial intelligence, and natural language pro-

cessing. The quest for similarity dates back to Plato. The famous Plato’s problem asks how

do people acquire as much knowledge as they do on the basis of as little information as

they get. Landauer and Dumais [78] propose Latent Semantic Analysis, a general theory

of acquired similarity and knowledge representation based on co-occurrences of words, as

a solution to the Plato’s problem.

Similarity plays a fundamental role in categorization. Individuals categorize newly en-

countered objects to existing categories by comparing them using a notion of similarity.

Then a newly encountered object is assigned to the category to which it is most similar.

Once the newly encountered object is properly categorized, we can infer additional prop-

erties about it using the properties of its category. In fact, this is a process adopted by

biologists to categorize newly found species to existing animal or plant classes. For ex-

ample, if we already know that crocodiles are very sensitive to the cold and we found out

that crocodiles and alligators are similar, then we can infer that alligators are also sensitive

to cold. Tanenbaum [143] showed that as the similarity between two concepts A and B

increases, so does the probability of correctly inferring that B has the property X upon

knowing that A has X . This view of similarity as a key concept of categorization was

1
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introduced in 1970s. However, in 1980s a new view emerged that held that similarity was

too weak and vague to ground human categorization. Under this new view, similarity judg-

ments are governed by theories that determine the relevant properties of evaluation. If a

theory describing a category could successfully explain the newly encountered object, then

it would be assigned to that category. However, this theory-based view of similarity has

lead to dissatisfaction among researchers, and richer and more well-developed similarity-

based approaches are being proposed.

Similarity has been studied in theories of learning, a process in which features are

generalized over a set of given training examples to recognize underline patterns. For

example, in Tversky’s feature model of similarity [153], an object is represented by a set of

features. Similarity between two objects is then computed using the common and distinct

features between the two objects. Consequently, if we know a set of objects that belong

to the same category (i.e. positive and negative training instances in a binary classification

setting), then most machine learning algorithms attempt to identify the features that are

common to instances in the category.

Measuring the similarity between words is a fundamental step in numerous tasks in

natural language processing such as word-sense disambiguation [127], language model-

ing [129], synonym extraction [84], and automatic thesauri extraction [34, 97]. In word-

sense disambiguation the goal is to determine which sense of a polysemous word (i.e. a

word that has multiple senses) is used in a given text. Similarity measures have been used

to compare the words that appear in the immediate context of a ploysemous word against

the words that are used in definitions given in a dictionary (i.e. glosses) for each of the

senses. Then the sense that has the highest similarity with the given context is selected as

the correct sense of the polysemous word.

In language modeling the objective is to create a probabilistic model of language using

word-sequence occurrences. If a probabilistic model can accurately predict words in a lan-

guage, then that model can be considered as accurate. In other words, a language model

with a low perplexity value is desirable. Perplexity of a probability distribution p is defined

as 2H(p), where H(p) denotes the entropy of p. A major problem faced during the compu-

tation of word-sequence probabilities is the data sparseness. Certain sequences of words

are rare even in large text corpora and accurately estimating their probabilities is difficult.
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Synonyms have been used to overcome the sparseness problem [129]. In this approach, an

occurrence of a synonym of a word w is also counted as an occurrence of w.

Lin [84] proposed the use of distributional similarity to identify similar words. Sen-

tences are first parsed using a dependency parser and word pairs with a dependency re-

lation are extracted. If two words X and Y frequently have a dependency relation with

a word Z, then X and Y are considered to be similar. Similarity measures have found

useful applications in automatic thesaurus extraction. Matsuo et al. [97] proposed the use

of pointwise mutual information (PMI) computed using web page counts to measure the

association between two words in the web. Thesauri of synonymous or related words are

used in information retrieval to expand the user queries or to suggest related queries to the

user, thereby improving the recall in search.

1.2 Attributional vs. Relational Similarity

Before we further extend our study of similarity it is important to define two types of sim-

ilarities: attributional similarity and relational similarity. Given two objects A and B, the

attributional similarity between A and B is the correspondence between the attributes of A

and B. For example, consider the two words car and automobile. Both cars and automo-

biles have similar attributes: four wheels, doors, and used for transportation. Consequently,

we observe a high degree of attributional similarity between cars and automobiles. Syn-

onyms are typical examples of high degree of attributional similarity. Previous literature

on similarity have also used the term semantic similarity to refer to attributional similarity.

In this thesis, I use semantic similarity as a synonym for attributional similarity.

On the other hand, relational similarity is the correspondence between the relations that

hold between the two words in word pairs. Given two word pairs, (A,B) and (C,D), if

the semantic relations that hold between A and B in the first word pair are similar to the

semantic relations that hold between C and D in the second word pair, we define the two

word pairs to be relationally similar. For example, consider the two word pairs (ostrich,

bird) and (lion, cat). Ostrich is the largest bird on the planet and lion is the largest cat. The

relation is the largest holds between the two words in each word pair. Consequently, those

two word pairs are considered to be relationally similar. Analogies are typical examples
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of high relational similarity. The (ostrich, bird) vs. (lion, cat) example is particularly

interesting because it shows that even through there is almost no attributional similarity

between lions and ostriches, it is still possible to have high relational similarity between

the two word pairs.

All applications of similarity introduced in section 1.1 are examples of attributional

similarity. In comparison to attributional similarity, which has been studied extensively for

its numerous applications [127, 69, 87, 22, 26, 17], the problem of measuring relational

similarity has received less attention. In order to measure relational similarity between two

pairs of words, one must first identify the relations that hold between the two words in each

pair and then compare the relations between the pairs. Turney et al. [152] proposed the

use of Scholastic Aptitude Test (SAT) word-analogy questions as a benchmark to evaluate

relational similarity measures. An SAT analogy question comprises a source-pairing of

concepts/terms and a choice of (usually five) possible target pairings, only one of which

accurately reflects the source relationship. A typical example is shown below.

Question: Ostrich is to Bird as:

a. Cub is to Bear

b. Lion is to Cat

c. Ewe is to Sheep

d. Turkey is to Chicken

e. Jeep is to Truck

Here, the relation is a large holds between the two words in the question (e.g. Ostrich and

Bird), which is also shared between the two words in the correct answer (e.g. Lion is a

large Cat). Solving word analogy question has been difficult even for humans. The average

SAT score reported for the college level students on the SAT word analogy questions is

57%.

Noun-modifier pairs such as flu virus, storm cloud, expensive book, etc are frequent

in English language. In fact, WordNet contains more than 26, 000 noun-modifier pairs.

According to the relations between the noun and the modifier, Natase and Szpakowicz [108]

classified noun-modifiers into five classes: causal (groups relations enabling or opposing
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an occurrence, e.g. flu virus), participant (groups relations between an occurrence and its

participants or circumstances, e.g. student protest), spatial (groups relations that place an

occurrence at an absolute or relative point in space, e.g. outgoing mail), temporal (groups

relations that place an occurrence at an absolute or relative point in time, e.g. weekly game),

and quality (groups the remaining relations between a verb or noun and its arguments, e.g.

stylish writing). Turney [150] used a relational similarity measure to compute the similarity

between noun-modifier pairs and classify them according to the semantic relations that hold

between a noun and its modifier. Using a relational similarity measure, he proposes a k-

nearest neighbor classifier to find the relation between the noun and the modifier.

In word sense disambiguation (WSD) [7], identifying the various relations that hold

between an ambiguous word and its context is vital. For example, the word “plant” can

refer to an industrial plant or a living organism. If the word “food” appears in the immediate

context of “plant”, then a typical WSD approach is to compare the attributional similarity

between “food” and “industrial plant” to that of “food” and “living organism” and to select

the sense with higher attributional similarity. Considering the fact that industrial plants

often produce food and living orgasms often serve as food, the decision may not be very

clear. However, if we can identify the relation between “food” and “plant” as “food for the

plant” then it strongly suggests that the plant is a living organism. On the other hand, a

relation such as “food at the plant” suggests the plant to be an industrial plant.

An interesting application of relational similarity in information retrieval is to search

using implicitly stated analogies [94, 156]. For example, the query “Muslim Church” is ex-

pected to return “mosque”, and the query “Hindu bible” is expected to return “the Vedas”.

These queries can be formalized as word pairs: (Christian, Church) vs. (Muslim,X), and

(Christian, Bible) vs. (Hindu,Y). We can then find the words X and Y that maximize

the relational similarity in each case. Searching using implicitly stated semantic relations

between word pairs is an interesting novel paradigm of information retrieval. Almost all

existing commercial search engines are “keyword-based”. These search engines usually

return a set of relevant documents for a user query. Although similarity does not always

mean relevance (or vice versa), we can think of existing search engines as measuring attri-

butional similarity between a user query and a document. In contrast, in analogical search,

the underlying mechanism is essentially relational similarity.
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1.3 Similarity in Structure

Measuring the similarity between mathematical structures such as graphs, is important in

identifying equivalences. Two networks can be considered structurally equivalent if there

is a resemblance in the way the nodes connect to each other in the two networks. For

example, in a star network only a single node is connected to rest of the nodes in the

network. If we ignore the number of nodes, the weights and directions of the edges, then

we can consider two star networks to be structurally equivalent. The central node (i.e. the

node that is connected to all the other nodes in the network) plays an important role in a

star network because without it the network will be completely disconnected. On the other

hand, in a clique, each node is connected to all the other nodes (i.e. vertices in a triangle).

There is no clear central player in a clique. Between the two extremes of star networks and

cliques, various other network structures are possible. The ability to measure the structural

equivalence of mathematical structures is particularly helpful to understand the topology

of a given structure. For example, if we are told that a particular organization has a star

structure, then we would expect to find a single important person in the organization. All

shortest paths between rest of the nodes go through this central person. Consequently,

the betweenness value for this central person is one. When more and more edges form

between other nodes in the network (i.e. more relations materialize between other people

in the organization), the betweenness value of the central node decreases. Recent growth

of online large-scale social network systems (SNSs) such as Facebook 1, has increased the

attention on network similarity measures. For example, if two people A and B has the same

set of friends, then it is likely that A and B are also friends. If A is not already a friend of

B, then the SNS can suggest B to A.

Lorrain and White [89] define two actors (i.e. nodes) to be structurally equivalent,

if they have identical ties (i.e. edges) to and from all the other actors in a digraph or a

non-directed graph. Given the adjacency matrix of a network, structural equivalence of

two nodes can be easily detected by comparing corresponding row and column vectors of

the nodes. Vector comparison can be performed using conventional similarity measures

such as cosine measure or Manhattan distance (in the case of binary valued edges). This

1http://www.facebook.com/
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definition of structural equivalence only consider the first order connections (i.e. nodes that

are directly connected). However, it is possible to extend this definition easily to second or

higher order connections by considering the powers of the adjacency matrix. For example,

a non-zero value in the square of the adjacency matrix indicates a second order connection

between the corresponding two nodes. It it noteworthy that if the network has islands (i.e.

disconnected components), then nodes in different islands are unreachable. Consequently,

certain elements in the n-th power of the adjacency matrix can still be zero for a network

with n nodes.

1.4 Similarity vs. Distance

Distance is considered as the inverse of similarity in many applications. However, strict

definition of distance as a metric must satisfy the following conditions. A function d to

become a distance metric, it must satisfy all of the following constraints for any three

different objects A, B, and C.

self-similarity: d(A,A) = d(B, B)

minimality: d(A,B) ≥ d(A,A)

symmetry: d(A, B) = d(B, A)

triangularity: d(A,B) + d(B, C) ≥ d(A,C)

Equivalent transformations of those constrains have also been proposed. For example,

the minimality constraint and self-similarity constrained together suggest that there must

be some constant minimum value dmin to d. We can subtract this value from d and re-

define d such that both minimality and self-similarity constraints can be replaced with a

non-negativity constraint: d(A,B) ≥ 0, where equality holds when A = B. When two

objects are identical the distance between them would be zero and similarity will take its

maximum value. When two objects differ from each other the distance between them in-

creases and similarity reduces. Typically distance metrics are defined to take values in

range [0, +∞), whereas similarity functions are limited to a range [0, 1]. Given a distance
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metric d(A,B), we can define its corresponding similarity function using a monotonously

decreasing function that squashes the [0, +∞) range to [0, 1]. For example, exp(−d(A,B))

is such a function. However, it is noteworthy that similarity functions are not necessarily

required to satisfy the above mentioned metric constraints. Therefore, given a similarity

function we cannot always find a corresponding distance function that satisfies the above

mentioned metric conditions.

The question whether similarity and distance are inversely related, has been debated

in great deal in cognitive science. Psychological experiments have been conducted where

human subjects assign similarity scores and distance scores to some pairs of objects. If

there is a negative correlation between similarity judgments and distance judgments, then

we can conclude that there is an inverse relationship between similarity and distance. In

these experiments, similarity scores are plotted against distance scores and linear regres-

sion analysis is used to find the relationship between the two sets of scores. Hosman and

Kuennapas [65] compare the similarity and difference of lowercase letters and found that

the agreement (product moment correlation) between the judgments to be −0.98 and the

slope of the regression line to be −0.91. Slope of the regression line (or Pearson correla-

tion coefficient) ranges between−1 to 1. Therefore, the strong negative correlation coupled

with the high inter-judge agreement observed by Hosman and Kuennapas indicate that sim-

ilarity is inversely related to distance. Tversky [153] conduct an experiment using 21 pairs

of country names. Similarity and distances scores are assigned to each pair of country

names using a 20-point scale. The results of the experiment show that the sum of the two

judgments for each pair is quite close to 20 in all cases. Moreover, the product moment

correlation between the scores is −0.98.

However, there is also a considerable amount of psychological experimental evidence

that suggest otherwise. Hollingworth [64] asked people to rank samples of handwriting

with respect to their similarity or difference from a standard. Each participant must rank

similarities on two occasions and differences on two occasions. He found that the degree

of correlation between the two difference judgments to be greater than the degree of corre-

lation between similarity judgments. Hollingworth interpreted this experimental result as

a consequence of difference judgments tend to be based on fine details, whereas similarity

judgments are based on more general criteria. This can also be thought to be the case with
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antonyms. Antonyms often share almost the same set of attributes. However, only one at-

tribute value is different between a pair of antonyms. For example, consider the antonyms

hot and cold. One can use both hot and cold as adjectives to modify almost the same set of

nouns (i.e. hot day vs. cold day, hot water vs. cold water, etc.). However, the value of the

attribute temperature is contrastingly different between the two antonyms.

Tversky [153] propose a model of similarity in which he considers both common and

distinct features of two objects to compute the similarity between them. This model is

popularly known as the feature mode or the contrast model of similarity, and is defined as

follows,

S(A,B) = θf(A ∩B)− αf(A−B)− βf(B − A). (1.1)

Here, S(A,B) is the similarity between two objects A and B. It is given as the weighted

sum of three sets of features: f(A ∩ B) (the set of features in common to both A and B),

f(A−B) (the set of features that appear only in A), and f(B−A) (the set of features that

appear only in B. Parameters θ, α, and β respectively determine the weight assigned to the

three sets of features.

In his experiment using names of countries, Tversky [153] observed that the more well-

known or prominent a pair of countries is, more likely that it gets selected as both similar

and dissimilar by humans. He set up an experiment in which he constructed 20 pairs of

four countries on the basis of a pilot test. Each set included two pairs of countries: a

prominent pair (i.e. countries that were well-known to the human subjects such as, USA

and USSR), and a non-prominent pair (i.e. countries that are not well-known to the human

subjects to the degree of prominent pairs such as, Tunis and Morocco). All subjects were

presented with the same 20 sets. One group of 30 subjects selected between the two pairs

in each set the pair of countries that were more similar, whereas, a different group of 30

subjects selected between the two pairs in each set the pair of countries that were more

different. The results of this experiment show that on average, the prominent pairs are

selected more frequently than the non-prominent pairs in both the similarity and difference

tasks. Tversky reports that, for example, 67% of the subjects in the similarity group selected

West Germany and East Germany as more similar to each other than Ceylon and Nepal,
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Figure 1.1: Two sample stimuli used by Medin et al. [99] in their experiments.

while 70% of the subjects in the difference group selected West Germany and East Germany

as more different from each other than Ceylon and Nepal. This interesting result can be

interpreted within the feature model. When measuring the similarity between two objects

using Formula 1.1, humans assign a high weight to common features than distinct features

(i.e. θ > α and θ > β), whereas, when measuring the difference between two objects they

emphasize the unique features of each object (i.e. θ < α and θ < β).

Medin et al. [99] propose another line of argument to explain why similarity mea-

surements and difference measurements might not be inversely related. They provide ex-

perimental evidence to support their hypothesis that relative weighting of attributes and

relations depends on whether we are measuring similarity or difference. They conducted

two interesting experiments using visual stimuli like the ones shown in Figure 1.1. In Fig-

ure 1.1, the picture on the left (geometric) shows two samples A and B being compared

against a standard, T. The standard T is attributionally similar to A because they both have

a checkered circle. B does not contain this attributional similarity to T. However, T and B

are relationally similar because they both share the relation, “same-shading”. The picture

on the right (butterfly) in Figure 1.1 shows three butterflies. T and A are relationally sim-

ilar, because in both cases the left wing is smaller than the right wing. T is attributionally

more similar to B because the left wings of the two butterflies are of the same size.
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In their experiments, they asked human subjects to assign similarity and difference

judgments to the visual stimuli. Results of their experiments show that when human sub-

jects make similarity judgments they focus more on relations, whereas, when they perform

difference judgments they tend to emphasize attributes. To analyze their results they plot

the proportion of times the alternative with the extra relational match was picked on the

similarity trials against the proportion of times it was picked on difference trials. The re-

lational choice was made 58% of the time for the geometric stimuli and 59% time for the

butterfly stimuli. If there was an inverse relation between similarity and difference judg-

ments then these values must be 50% and the majority of data points must lie on the line.

However, in their experiments they observed that the majority of data points lie above the

line (y = −x). Tversky’s feature model does not explicitly incorporate relations between

objects. However, considering the duality of attributes and relations (described later in Sec-

tion 1.8), we can represent a relation R between two objects A and B as a shared feature

between A and B, thereby incorporating relations in an implicit manner within the feature

model. However, Medin et al. [99] show that even after incorporating relations into the

feature model, it still cannot explain the result of their experiment. I will next explain the

analysis that is originally presented by Medin et al.

Consider the left picture in Figure 1.1. Let Ac and Au respectively be the features of

being checkered and not being checkered, Rs and Rd respectively be the relation of same

shading and different shading. Standard T is checkered and the circle and the two triangles

have the same checkered shade. Therefore, the set of features for T can be written as, T =

{Ac, Rs}. In A, the circle is checkered as in T , but the shadings among the three shapes

are different (there are both checkered and non-checkered shapes in A). Consequently, the

set of features for A can be written as, A = {Ac, Rd}. Likewise, the set of attributes for B

can be written as B = {Au, Rs}. Next, using Formula 1.1, we can write the similarity of T

to A, and T to B as follows,

S(T, A) = θf(Ac)− αf(Rs)− βf(Rd), (1.2)

S(T, B) = θf(Rs)− αf(Ac)− βf(Au). (1.3)
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Then, the difference in similarity of choice B to the target T and the choice A to the target

T can be computed by subtraction

S(T, B)− S(T, A) = θf(Rs − Ac)− αf(Ac −Rs)− βf(Au −Rd). (1.4)

For B to be selected both as more similar and more dissimilar to T than A, both sides

of Formula 1.4 must be positive for similarity judgments and negative for dissimilarity

judgments. Only the parameters θ, α, and β can vary from one stimulus to another. Note

that both the checkered/non-checkered attribute and same/different shading relation are

complementary (i.e. in Figure 1.1 the presence of Ac automatically negates Au and vice-

versa). Therefore, we can assume that attributes and relations are counterbalanced in this

example. If we define Rs = Rd = φ and Ac = Ad = σ, then Formula 1.4 reduces to

S(T, B)− S(T, A) = (θ + α + β)f(φ− σ). (1.5)

From Formula 1.5 we see that by adjusting the weights we cannot change the sign of

S(T, B) − S(T, A). Therefore, we cannot use the feature model to explain the experi-

mental results observed by Medin at al [99].

In summary, results from psychological experiments have shown that in some situations

similarity judgments and difference judgments do not have a clear inverse relation. Two

explanations are proposed in previous work investigating this phenomenon. The first pro-

posal, which was made by Tversky is that how well-known the two objects being compared

to the human subjects (more popular a pair of objects, the more likely it gets classified as

both similar and dissimilar). The second proposal, which was made by Medin et al. is

that whether relations or attributes are being focused on (human subjects make similarity

judgments when they focus more on relations, whereas, when they perform difference judg-

ments they tend to emphasize attributes). The two proposals do not contradict each other

nor do they overlap in the sense that they explain different exceptions to the conventional

view-point that similarity and difference (distance or dissimilarity) are inversely related. In

Chapter 2, I propose an alternative model of semantic similarity: the relational model of

similarity.
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It is worth mentioning that contrast model is not the only feature-based model of simi-

larity. Other combinations of its components f(A∩B), f(A−B), and f(B −A) are also

possible. Tversky [153] in his seminal paper proposes the ratio model as another matching

function. Ratio model is defined as follows,

S(A,B) =
f(A ∩B)

f(A ∩B) + αf(A−B) + βf(B − A)
. (1.6)

Therein: parameters α, β ≥ 0. Unlike the contrast model defined in Formula 1.1, the ratio

model has the nice property that the similarity scores are normalized to the range [0, 1].

Moreover, it has one parameter (θ) less than the contrast model. Other combinations based

on popular set theoretic association measures such as Jaccard coefficient, Overlap coeffi-

cient, and Dice coefficient are also possible. I will describe those association measures in

details in the next chapter. The debate between similarity vs. distance is not yet settled.

There can be other reasons for similarity judgments and distance judgments to behave dif-

ferent (i.e. not necessarily inversely), besides the two reasons mentioned above. Further

psychological experiments will shed more light on this matter. However, it must be noted

that in most applications of similarity or distance measures in natural language processing

field this distinction has been ignored for more practical reasons. For example, in the vector

space model, documents are represented by a vector of their words (typically tfidf weighted

vectors computed under the bag-of-words model) and the similarity (or distance) between

two documents is computed using cosine similarity or Euclidean distance between the cor-

responding document vectors. For example, if we consider two L2 normalized vectors a,

and b (i.e. ||a||2 = ||b||2 = 1), the following inverse relation holds between the cosine

similarity cos(a,b), and Euclidean distance Euc(a,b),

Euc(a,b) = 2(1− cos(a,b)).

1.5 Symmetric vs. Asymmetric Similarity

As discussed in Section 1.4, a distance metric is expected to satisfy the symmetry con-

straint. However, whether this constraint is satisfied with similarity measures is a question
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that has received wide attention in cognitive science and psychology. If a similarity measure

S is symmetric, it must satisfy S(A,B) = S(B,A) for any two objects A and B. Tver-

sky [153] conducted an experiment in which 77 human subjects rated 21 pairs of country

names for their similarity using a 20 point scale. The pairs were constructed in a way that

one of the countries in a pair is prominent (well-known to the human subjects) than the

other. For example, the test set contained pairs of country names such as, (USA,Mexico),

(Red China,North Vietnam), (Belgium,Luxemburg), etc. The ordering of two countries

in a pair was determined by asking 69 subjects to select in each pair the country they re-

garded as more prominent. Tversky reports that two thirds of the subjects agreed with the

original ordering. A second additional evaluation of the dataset was conducted by asking

a different group of 69 human subjects to choose between the two phrases “country A is

similar to country B” or “country B is similar to country A”. He found that in all 21 pairs,

most of the subjects chose the phrase in which the less prominent country served as the

subject and the more prominent country served as the referent. Moreover, the average sim-

ilarity for all pairs (A,B) where A is the prominent country and B is the less prominent

country, was significantly different (p < 0.01, t(20) = 2.92 in paired t-test) from that for

pairs (B,A). Interestingly, when the subjects were asked to judge for difference instead of

similarity, Tversky found that again the average difference ratings were also significantly

different for the two orderings (A,B) and (B, A). This experiment shows that similarity

as well as difference is not symmetric. It is noteworthy that both contrast model and ra-

tio model are in general asymmetric. For example, in the contrast model (Formula 1.1),

S(A, B) = S(B, A), if and only if (α− β)f(A−B) = (α− β)f(B −A). This condition

can be satisfied either if α = β or f(A− B) = f(B − A). The first case indicates that the

task is non-directional because we consider features that are unique to A and B equally. In

this case, we can reduce the contrast model to the following more simpler model,

S(A,B) = θf(A ∩B)− α(f(A−B) + f(B − A)). (1.7)

The second term in Formula 1.7 is the set of features that are not in common between

A and B. Therefore, a symmetric similarity measure can be defined as the combination

of common and distinct features between two objects. Moreover, the two sets of features
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are independent and their sum yields the union of individual objects’ feature set. Lin [87]

proposed an information theoretic formalization of Formula 1.7 to compute the attributional

similarity between words.

The second case where a similarity measure can be symmetric is when f(A − B) =

f(B −A). If the feature additivity holds, then in this case we have f(A) = f(B). In other

words, the two sets of features representing A and B must be equal when measured using

f . In this case, the contrast model can be simplified to,

S(A,B) = θf(A ∩B)− (α + β)f(A−B). (1.8)

Note that in both cases Formulas 1.7 and 1.8 express the same functional form. Similar-

ity can be reduced to a linearly weighted combination of common features and different

features of two objects A, B under the feature model – both features unique to A and

B being weighted equally. In particular in the second case, whenever α > β we have

S(A,B) > S(B, A) iff f(B) > f(A). If we assume the parameters α and β as a measure

of salience of a set of features, then the direction of asymmetry can be interpreted as less

salient a stimulus is more similar to the stimulus than vice versa.

Despite the evidence from psychological experiments that similarity can be asymmet-

ric, most semantic similarity measures proposed to measure the similarity between words

are symmetric. The design choice of symmetric measures is more of a practical one. For

example, applications that use similarity measures such as document clustering with cosine

measure between tfidf weighted term vectors, require similarity to be symmetric. However,

there has been some work on asymmetric similarity measures that use ontologies such as

the Ontology Structure based Similarity (OSS) measure proposed by Schickel-Zuber and

Faltings [134]. In the OSS measure an ontology is considered as a directed acyclic graph

(DAG). This is true for most real-world ontologies including WordNet. It then assigns an

a-priori score to each node in the DAG. The similarity between two nodes (or concepts in

an ontology) is then computed as the transfer of score between the two nodes. The OSS

measure makes three assumptions to simplify the computation of the a-priori score: (a) the

score depends on features of the concept, (b) each feature contributes independently to the



16 CHAPTER 1. INTRODUCTION

score, and (c) unknown and disliked features make no contribution to the score. Addition-

ally, they assume that a-priori scores are uniformly distributed in the range [0, 1] over all

nodes in the DAG. The estimated a-priori score can be computed under these assumptions

to be 1/(n + 2), where n is the number of descendants of a node. For leaf nodes (i.e.

n = 0), their a-priori score is 0.5. When we travel up the hierarchy, both the a-priori score

of a node as well as the difference of a-priori scores between nodes decrease. To compute

the similarity between two concepts in the ontology, they find the path that connects the

two concepts via the lowest common ancestor (LCA). In the case of a tree, LCA of two

nodes is uniquely defined. However, in a more general DAG, there can be multiple LCAs.

Schickel-Zuber and Faltings propose a heuristic criterion to select a path through LCAs in

a DAG that considers both the depth of the LCA (i.e. distance of the longest path between

the root of the DAG and the LCA), and its reinforcement (i.e. the number of different paths

that connect the LCA to the root of the DAG).

When traveling upwards from a node x to the LCA y, we remove features. Because

the score of a node only depend on its set of features (assumption (a)), and features are

independent (assumption (b)), the score that transfers from a node to another node in an

upward movement is determined by the ratio of the a-priori scores,

T (x, y) = α(x, y), (1.9)

α(x, y) = APS(y)/APS(x),

where we define APS as the a-priori score of a node. However, when we travel downwards

from LCA y to its descendant z, we add new features to concepts. It follows from the

assumptions in OSS measure and that we must add the difference in a-priori score that can

be attributable to the new features to the score of the current node. Moreover, assuming the

score of the initial node to be 0.5 (under the assumption that score of any node is uniformly

distributed as discussed earlier), for the transfer of scores in the downward inference is

given by,

T (y, z) =
1

1 + 2β(x, y)
, (1.10)

β(x, y) = APS(z)− APZ(y).
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Furthermore, Schickel-Zuber and Faltings convert the OSS measure to a distance metric

that satisfies the triangular inequality as follows,

D(x, z) = − log(T (x, z)

max D
. (1.11)

Here, max D is the longest distance between any two concepts in the ontology. D(x, z)

is normalized to the range [0, 1] and can be shown to satisfy the triangular inequality. Ex-

perimentally Schickel-Zuber and Faltings show that the OSS measure outperforms existing

semantic similarity measures on two ontologies: WordNet and GeneOntology.

1.6 Transformational Model of Similarity

Hahn et al. [57] define similarity between two representations as the complexity required

to transform one representation into the other. Their model of similarity is based on Repre-

sentational Distortion theory, which aims to provide a theoretical framework of similarity

judgments. If a complex transformation is required to convert one representations into an-

other, then they hypothesize that the similarity between the objects that correspond to those

representations must be low. The representation of an object, which transformations are

allowed on a representation, and how to measure the complexity of a transformation, are

all important choices in this transformational model of similarity. For example, the edit

distance (or Levenshtein distance) between two words is a measure of complexity of lexi-

cal transformations between two words. In edit distance, the transformation operations are

deletion, insertion, and substitution of a letter. Each operation is associated with a cost. The

sequence of transformations with minimum cost that transforms one word to the other is

computed using dynamic programming. Edit distance have been used to find approximate

matches in a dictionary. It can be operated on phonemes instead of letters to find words

that “sounds similar”. For example, the words “spat”, “at” and “pot” are found as similar in

sound to “pat” using this method. Edit distance has been used to correct spelling mistakes

by comparing misspelled words against a dictionary.

Kolomogorov [82] complexity of a string is defined as the length of the computer pro-

gram that can generate the string. For a representation x, its Kolmogorov complexity is
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Figure 1.2: A sample stimuli used by Hanh et al. [57]

written as K(x). The length of a computer program can be measured by the number of

machine instructions required to execute the program. If x can be generated by a simple

program (i.e. few lines of code), then K(x) is small. For example, a string containing only

the digit 1 can be generated by a very simple program irrespective of the length of x. On

the other hand, the text in a novel cannot be generated by a simple computer program. It

is noteworthy that the value of the Kolmogorov complexity is independent of the actual

programming language (i.e. C++, Java, Python, etc.). In fact, the invariance theorem of

Kolmogorov complexity theory states that the Kolmogorov complexity of a representation

is invariant, up to a constant additive factor, with respect to the choice of programming

language.

Hahn et al. [57] conduct a series of interesting experiments to check whether there is

an inverse relation between the number of transformations required to convert one object

to another, and the perceived similarity by humans between the two objects under consid-

eration. In one of their experiments, they asked 35 human subjects to evaluate stimuli, like

the one shown in Figure 1.6, for similarity. Two sequences of filled and unfilled circles are

shown in Figure 1.6. The basic transformations allowed are mirror imaging, reversal, phase

shift, insertion, and deletion. The sequence on the right in Figure 1.6 can be generated from

the sequence on the left by performing a phase shift of one circle to the left. Therefore, the

two sequences can be considered as being highly similar. In their experiments, Hanh et

al. showed 56 pairs of stimuli of different number of transformations. In some pairs, only

a single transformation is needed to convert one sequence to the other, whereas some se-

quences require a combination of basic transformations. Human subjects rated each pair

of stimuli for their similarity using a scale of 1 (very dissimilar) to 7 (very similar). Fi-

nally, the correlation between human ratings and the number of transformations required

to convert one sequence to the other in each pair of stimuli was plotted. Interestingly, they

observed a significantly high negative correlation between those measures (i.e. Spearman’s

rank correlation coefficient of−0.69 (P < 0.005)). Moreover, the inter-judge concordance
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was high as 25 of 35 human subjects showed significant correlations.

If we define the color of a circle at a specific position as a feature of a sequence of

circles, like the two sequences shown in Figure 1.6, then we can use the contrast model

[154] to measure the similarity between the two sequences in Figure 1.6. The circles at

positions 2− 4, 6− 8, and 10− 12 have the same color. Therefore, the overlap of features

in the two sequences is 9/12 or 0.75. Despite the fact that only a phase shift of a single

circle maps one sequence to the other, the similarity computed based upon contrast model

drops by 75%. Moreover, the drop in similarity increases rapidly if we further shift the two

sequences by phase. This observation was confirmed by the results of their experiments that

showed a low correlation between human ratings and similarity scores computed based on

the contrast model (i.e. Spearman rank correlation coefficient of −0.28 (P < 0.05)).

However, it must be noted that similarity scores computed using contrast model (or any

feature model for that reason) depends on the definition of features and the definition of

the overlap measure. A different definition of features that can absorb a phase shift would

produce a high similarity score for the two sequences in Figure 1.6. For example, one can

define the color of the next circle as the feature of the current position in a sequence. Un-

der this definition, we get a perfect similarity score for the two sequences in Figure 1.6.

However, to define such features we must first realize that there exist a simple transforma-

tion between the two sequences. Hanh et al. argue that the “features” upon which featural

models of similarity are based on are salient because of the perceived transformational

relationships which are fundamental to the representational distortion theory. In their ac-

count, transformational relations are primal and the existence of features depends on those

relations. This relations first view-point of similarity is emphasized further in structure

mapping theory [45].

However, transformational similarity is not without unresolved issues. For example,

it is not clear how to explain the asymmetries in similarity observed in previous studies

([154, 99]) using representational distortion theory. To support asymmetry a transforma-

tion and its inverse must have different effects. Moreover, Hanh et al. do not consider the

fact that certain transformations are more complex than others. For example, a phase shift

vs. mirroring or phase shift of one circle vs. phase shift of two or more circles. Asso-

ciating a weight to each transformation could provide a partial solution to this problem.
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However, a function that weights a transformation is not readily obvious. For example, for

the phase shift transformation, we must have a periodical function such that the value of

the weighting function remains invariant under a shift by the total length of the sequence.

The task of finding simple transformations between given representations can be as diffi-

cult or easy as finding salient features in the feature model. Given N distinct objects to be

compared against each other, in the feature model we only need to find features for each

object once. However, in the transformational model we must find transformations for each

pair of objects, which is N(N − 1)/2. This quadratic computational complexity required

by the transformational model can easily turn out to be prohibitively large if we consider

an application such as ranking similar documents on the web. Moreover, pre-computing is

difficult in an online setting with the transformational model, because we will have to find

transformations between a new object and each of the existing objects. Some of the issues

mentioned in this paragraph are not unique to transformational model of similarity and can

be associated with any model of similarity that takes a relational representation, such as

the structure mapping theory or the relational model of attributional similarity described in

Chapter 7.

1.7 Challenges in Web-based Similarity Measurement

Web is the largest collection of text available to any natural language processing algorithm.

The latest estimates of the web reports well over 10 billion web pages. Web is a dynamic

corpus where new words are constantly being coined and existing words are used in novel

senses. It is also a collection of knowledge written by a large number of humans. Web is

an invaluable source of information for similarity measuring algorithms. The algorithms

presented in this thesis utilizes the web to measure both attributional similarity between

a pair of words and relational similarity between two pairs of words. Semantic similar-

ity between two words is measured subjectively by a set of human annotators in bench-

mark datasets such as the Miller-Charles’ dataset, Rubenstein-Goodenough’s dataset, and

WordSimilarity-353 dataset. However, all these datasets average the similarity scores as-

signed by a small number of human annotators. For example, in the case of Miller-Charles’

dataset, the similarity score assigned to a pair of words is the average score by 38 human
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subjects. In contrast, web is a collection of documents written by millions if not billions

of people. Therefore, the web can be considered as the best sample expressing the human

notion of similarity, hence an attractive source of information for any semantic similarity

algorithm. Web has been be used successfully for various tasks in previous work in natural

language processing. Lapata and Keller [74] experimentally showed that simple, unsuper-

vised models can be improved when n-gram counts are obtained from the web rather than

from a large text corpus. Resnik and Smith [128] extracted bilingual sentences from the

web to create parallel corpora for machine translation. Turney [147] defined a informa-

tion retrieval (IR) inspired pointwise mutual information (PMI) measure using the number

of hits returned by a web search engine. By measuring the association between nouns

and adjectives that describe positive or negative (PN) sentiment (e.g. good and bad) using

pointwise mutual information, Turney [144] proposed a method to classify nouns according

to the sentiment associated with them on the web.

Despite the favorable arguments presented above for using the web for measuring sim-

ilarity using the web as a corpus, any algorithm that attempts to process text on the web

must overcome several unique challenges. First, the huge scale of the web means that we

cannot run our algorithm on the entire text on the web. Despite the storage technique de-

veloped for web-scale data processing such as the Google File System [52] and distributed

computational models such as the MapReduce [41] model, it is not feasible to run a state-

of-the-art similarity measure using the entire text on the web because of computational

cost. In contrast, the algorithms described in this thesis use web search engines as an in-

terface to the vast information available on the web. Specifically, we use page counts and

snippets retrieved from a web search engine as the input to the proposed similarity mea-

sures. Page count of a query indicates how many of the indexed web pages contain that

query. This is different from the number of hits of query because unlike for hits, for page

counts, multiple occurrences of a query in a page are not considered. However, most com-

mercially available large scale web search engines provide only an estimated value for page

counts. Therefore, page counts are not exact counts as one would obtain from a fixed text

corpus. Moreover, considering the scale and the noise in web text, one must account for the

random occurrences of words. Therefore, small values of page counts are not statistically

reliable. Snippets are provided by most commercial search engines alongside with search
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results. A snippet is a brief window of text, often of length 10-15 words, extracted from a

web document from the neighborhood of the query in that document. Snippets are useful

in web search because most of the times a user can read the snippet and decide whether

a search result is relevant for his or her query without actually opening a url. If a search

result is clearly irrelevant, then the user does not need to click on the url pointing to the

web document, thereby saving time. Snippets have been recognized as an important com-

ponent in a search engine and have received much attention lately2. Snippets are used as

an approximation of the local context of words by the algorithms described in this thesis.

However, most commercially available search engines impose an upper limit (e.g. 1000)

for the number of search results (thereby snippets) that one can retrieve for a single query.

This is both for efficiency reasons as well as due to the fact that relevance of search results

drops with the ranking. Therefore, an algorithm that uses snippets as the input is limited to

only a fraction of search results. To circumvent the above mentioned limitations associated

with page counts and snippets, the algorithms proposed in this thesis employ a range of

techniques such as, issuing multiple queries and aggregating search results, use snippets to

generate subsequence lexical patterns and use page counts to compute their frequency on

the web, use machine learning approaches to integrate both page counts and snippets in a

single model, and use anchor text co-occurrence statistics.

The quality and the level of noise in web text is a challenge for most natural language

processing systems. In particular, a large number of new words (neologisms) that are not

registered in manually compiled dictionaries such as WordNet exist on the web. For ex-

ample, in Japanese, novel or borrowed words are written in katakana script. Consequently,

processing of words written in katakana is an important component in any Japanese mor-

phological analyzer. Considering newspaper articles, which are written by professional

writers and proof read, the texts found on the web such as Blog entries or on bulletin board

services sometimes do not contain proper punctuation or not properly structured. Algo-

rithms tuned using newspaper corpora have shown suboptimal performance when evaluated

on web texts. The noise in web texts makes most basic text processing tasks such as part-

of-speech (POS) tagging, noun phrase (NP) chunking, syntactic or dependency parsing, or

named-entity recognition (NER) difficult to perform with a high accuracy.

2http://www.wssp.info/2009.html
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The high redundancy in web means that we can expect to find the same piece of infor-

mation duplicated in multiple web sites. This can be simply due to the mirroring of web

sites or different authors writing about the same event. However, it is not always the case

that all web sites agree upon the information they provide. Sometimes web sites might pro-

vide contradictory information. Some web sites intentionally provide false information or

contain web spam. The reliability of information is a difficult challenge for any web-based

NLP system. Two working hypothesis are used indirectly by the algorithms described in

this thesis as a partial solution to the problem of determining the reliability of input. First,

if a statement is repeated in a large number of web sites then we can assume it as true. The

proposed algorithms only consider lexical patterns that occur more than a predefined num-

ber of times on the web (i.e. lexical patterns that have page counts more than a predefined

lower limit). Second, if a web page is linked by many other web pages (i.e. has a large

number of inbound links) then the reliability of that web site can be considered to be high.

The PageRank algorithm [111] utilizes such citation information to compute the static rank

of web pages. The proposed method only processes the top ranking search results, thereby

attempts to avoid processing unreliable information on the web. This is by no means a

perfect solution and further studies must be conducted.

The use of commercial search engines for natural language is processing tasks has sev-

eral drawbacks [75]. Commercial search engines are tuned for one or two word queries is-

sued by web search users and do not always have elaborated searching techniques required

by NLP applications such as regular expression matching or searching by a particular tag.

Commercial search engines does not perform POS tagging or deep parsing of text that is

often required by NLP applications. Moreover, the number of queries that can be issued is

limited. The search APIs provided by commercial search engines entangle adverts etc. and

limit the number of results that can be retrieved at a time. Moreover, the ranking algorithms

used by commercial search engines is often a complex combination of various factors such

as authority of a page, novelty of the content, structure of the page, paid content such as

advert keywords, and refresh/update rate of the page. The exact ranking algorithm is not

disclosed publicly. There is no guarantee that an NLP system can find the information that

it requires within the top ranked search results by a commercial search engine. There has
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been several initiatives to design search engines for natural language processing applica-

tions [75]. However, they still lack the scales achieved by the commercial search engines.

The algorithms proposed in the thesis use shallow linguistics approaches such as stem-

ming, stop word removal and lexical patterns. They do not require POS tagging, NER or

syntactic/dependency parsing that are currently unavailable in commercial search engines.

The web is expected to grow continuously. Web-based NLP algorithms must be de-

signed in such a way that the ever increasing size of the web has a positive effect on the

performance of the algorithm. Techniques that does not slow down an algorithm when the

size of the web increases are desirable. In this regard, the use of web search engines as

the interface to the vast information available on the web is attractive. Irrespective of the

size of the web, the input to the proposed similarity measures will remain at a constant

size because I only use the page counts and the top ranked snippets in the proposed algo-

rithms. Moreover, the increasing size of the web means that we can expect the redundancy

of information also to increase in future. This is beneficial to any algorithm that use statis-

tical information such as page counts of web queries because we can expect to obtain more

reliable page counts when the web grows.

1.8 Attribute-Relation Duality

I defined attributional similarity as the correspondence between attributes of two words,

whereas relational similarity is the correspondence between the relations that exist between

two pairs of words. These definitions implicitly assume that we have a clear distinction

between attributes and relations. Attributes are commonly viewed as properties of entities,

whereas relations are connections between two or more entities. From a predicate logical

view-point, attributes are predicates that take only one argument, whereas relations can

take two or more arguments. For example, if an object X is heavy then we can say that

HEAVY( X) is TRUE. Being heavy is an attribute of X. We can also express the fact that

object X is heavier than an object Y by stating that HEAVIER(X, Y) is TRUE. Here, the

predicate HEAVIER expresses the relation is heavier than between X and Y.

Because the definition of relations as given above involves the consideration of more

than one entity, typically attributes are considered to be more primal than relations. From
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a generative view-point, attributes exist first and relations materialize when we recognize

the connections between the attributes of different objects. Under this view-point relational

are secondary. We will call this the attribute-primal view-point. However, in theories of

analogical learning such as the structure mapping theory, relations are considered more

important than attributes. According to this view-point relations are primal. Relations exist

first and entities are formed by instantiating the relations. Under this view-point attributes

are secondary. We will call this the relation-primal view-point. For example, when we say

that X is heavy, we are implicitly comparing X with other objects known to us (e.g. Y).

Compared to the relations-primal view-point, the attributes-primal view-point has re-

ceived much attention. For example, in computational linguistics numerous attributional

similarity measures have been proposed and successfully used in a variety of tasks. How-

ever, only recently there has been some work on relational similarity measures. Moreover,

relational similarity measures are mostly evaluated on solving word analogy questions and

yet to be evaluated in real-world applications. The comparatively lesser applications of

relational similarity measures can be attributable to the difficulty of measuring relational

similarity between real-word entities.

In machine learning algorithms, training/testing cases are frequently represent as fea-

ture vectors. Features are defined for individual objects and attributes of the object are

selected as features. For example, in a discriminative learning algorithm such as Support

Vector Machines (SVMs) or Conditional Random Fields (CRFs) would learn the features

that discriminates (separates) one class (i.e. positive) from another (i.e. negative). The suc-

cess of discriminative learning algorithms in numerous tasks have enforced the attribute-

primal view-point. However, recently there have been some work on statistical relational

learning algorithms such as the Probabilistic Relational Model [51] that take a relation-

primal view-point.

Turney [145] experimentally showed that relational similarity measures can be used to

measure attributional similarity in the case of proportional analogies. Proportional analo-

gies are a subset of analogies and can be expressed in the form A:B::C:D. It asserts that

A is to B as C is to D. For example, stone:mason::wood:carpenter asserts that stone is

to mason as wood is to carpenter. If the two word pairs (A,B) and (C,D) involved in

the proportional analogy possess a high degree of relational similarity and A and B are
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synonymous then we can expect C and D also to be synonymous. In fact, he provides

experimental evidence to the fact not only synonyms but also antonyms can be learned by

this approach. From the above argument it follows that in some cases (i.e. proportional

analogies) relational similarity subsumes its attributional counterpart. However, Turney

has also shown experimentally that the use of attributional similarity measures to solve

word analogy problems yield poor results. Specifically, using an attributional similarity

measure sima he defined the relational similarity simr in a proportional analogy A:B::C:D

as follows,

simr(A : B :: C : D) =
1

2
(sima(A,B) + sima(C,D)). (1.12)

Turney [150] used numerous previously proposed attributional similarity measures as sima

and computed the performance in solving 374 SAT word analogy questions. The highest

F -score of 35.0 was obtained using the attributional similarity measure proposed by Turney

[146] using pointwise mutual information. However, this is still statistically significantly

low compared to the F -score reported when a relational similarity measure such as the

Vector Space Method-based relational similarity measure (VSM) [151] is used (ca. 47.0).

From the above mentioned empirical results we can conclude that at least in the case of

proportional analogies, relational similarity is more primal compared to attributional sim-

ilarity. A future direction of research in similarity measure would be to confirm whether

this is the case for more complex analogies. The debate as to which view-point is primal is

still open.

1.9 Overview of the thesis

The remainder of this thesis is organized as follows. In Chapter 2, I introduce the problem

of measuring attributional similarity from the web. A supervised approach that uses web

search engines is proposed to measure attributional similarity between two words. Next, in

Chapter 3 I present a supervised approach to measure relational similarity from the web.

The proposed relational similarity measure is evaluated on SAT word analogy dataset as

well as on a named entity dataset. The second half of this thesis is dedicated to applications
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of semantic and relational similarity measures. As a working problem, I consider the person

name disambiguation on the web. In Chapter 4, I analyze the namesake disambiguation

problem (i.e. disambiguating different people with the same name), whereas, in Chapter 5,

I study the name alias problem (i.e. single individual represented by different names).

I propose fully automatic methods to solve both these problems with high accuracy. In

Chapter 7, I propose a relational model to compute the attributional similarity between two

words. Finally, in Chapter 8 I discuss potential future research directions in this field and

conclude this thesis.



Chapter 2

Semantic Similarity

Accurately measuring the semantic similarity between words has been an important prob-

lem in Semantic Web. information retrieval, and natural language processing. Semantic

Web applications such as, community extraction, ontology generation, and entity disam-

biguation, require the ability to accurately measure semantic relatedness between concepts

or entities. In information retrieval, one of the main problems is to retrieve a set of docu-

ments that is semantically related to a given user query. Efficient measurement of semanti-

cally similarity between words is critical for various natural language processing tasks such

as word sense disambiguation (WSD), textual entailment, and automatic text summariza-

tion.

Manually created general-purpose lexical ontologies such as WordNet, group seman-

tically related words (i.e. synsets) for concepts. However, Semantic similarity between

entities changes over time and across domains. For example, apple is frequently associated

with computers on the Web. However, this sense of apple is not listed in most general-

purpose thesauri or dictionaries. A user who searches for apple on the Web, might be

interested in this sense of apple and not apple as a fruit. New words are constantly be-

ing created as well as new senses are assigned to existing words. Manually maintaining

ontologies to capture these new words and senses is costly if not impossible.

I propose an automatic method to measure semantic similarity between words or entities

using Web search engines. It is not feasible to analyze each document separately and

directly because of the vastly numerous documents and the high growth rate of the Web,

28
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Web search engines provide an efficient interface to this vast information. Page counts and

snippets are two useful information sources provided by most Web search engines. Page

count of a query is the number of pages that contain the query words. In general, page

count may not necessarily be equal to the word frequency because the queried word might

appear many times on one page. Page count for the query P AND Q can be considered

as a global measure of co-occurrence of words P and Q. For example, the page count

of the query “apple” AND “computer” in Google1 is 288, 000, 000, whereas the same for

“banana” AND “computer” is only 3, 590, 000. More than 80 times numerous page counts

for “apple” AND “computer” indicate that apple is more semantically similar to computer

than is banana.

Despite its simplicity, using page counts alone as a measure of co-occurrence of two

words presents several drawbacks. First, page count analyses ignores the position of a word

in a page. Therefore, even though two words appear in a page, they might not be actually

related. Secondly, page count of a polysemous word (a word with multiple senses) might

contain a combination of all its senses. For an example, page counts for apple contains page

counts for apple as a fruit and apple as a company. Moreover, given the scale and noise in

the Web, some words might occur arbitrarily, i.e. by random chance, on some pages. For

those reasons, page counts alone are unreliable when measuring semantic similarity.

Snippets, a brief window of text extracted by a search engine around the query term in

a document, provide useful information regarding the local context of the query term. Se-

mantic similarity measures defined over snippets, have been used in query expansion [131],

personal name disambiguation [16], and community mining [26]. Processing snippets is

also efficient because it obviates the trouble of downloading web pages, which might be

time consuming depending on the size of the pages. However, a widely acknowledged

drawback of using snippets is that, because of the huge scale of the web and the large num-

ber of documents in the result set, only those snippets for the top-ranking results for a query

can be processed efficiently. Ranking of search results, hence snippets, is determined by

a complex combination of various factors unique to the underlying search engine. There-

fore, no guarantee exists that all the information we need to measure semantic similarity

between a given pair of words is contained in the top-ranking snippets.

1http:://www.google.com



30 CHAPTER 2. SEMANTIC SIMILARITY

I propose a method that considers both page counts and lexico-syntactic patterns ex-

tracted from snippets, thereby overcoming the problems described above. For example, let

us consider the following snippet from Google for the query Jaguar AND cat.

“The Jaguar is the largest cat in Western Hemisphere and can subdue larger prey than can
the puma”

Figure 2.1: A snippet retrieved for the query Jaguar AND cat.

Here, the phrase is the largest indicates a hypernymic relationship between Jaguar and

cat. Phrases such as also known as, is a, part of, is an example of all indicate various

semantic relations. Such indicative phrases have been applied to numerous tasks with good

results, such as hypernym extraction [60] and fact extraction [112]. From the previous

example, we form the pattern X is the largest Y, where we replace the two words Jaguar

and cat by two variables X and Y.

2.1 Previous Work on Semantic Similarity

Semantic similarity measures are important in many Web-related tasks. In query expan-

sion [21, 105, 159] a user query is modified using synonymous words to improve the rel-

evancy of the search. One method to find appropriate words to include in a query is to

compare the previous user queries using semantic similarity measures. If there exist a pre-

vious query that is semantically related to the current query, then it can be either suggested

to the user, or internally used by the search engine to modify the original query.

Semantic similarity measures have been used in Semantic Web related applications

such as automatic annotation of Web pages [30], community mining [102, 96], and key-

word extraction for inter-entity relation representation [106]. Cimiano et al., [30] proposed

the PANKOW (Pattern-based Annotation through Knowledge on the Web) system to auto-

matically annotate a web page with metadata. Given a web page to annotate, the PANKOW

system first extracts candidate phrases such as proper nouns. It then classifies the extracted

candidate phrases into a set of given concepts (e.g. Country, Hotel), using the number of

hits returned by a Web search engine for lexical patterns such as X is a Y, the X Y, etc.

Matsuo et al., [96] proposed the use of Web hits for extracting communities on the Web.
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They measured the association between two personal names using the overlap (Simpson)

coefficient, which is calculated based on the number of Web hits for each individual name

and their conjunction (i.e., AND query of the two names).

Semantic similarity measures are necessary for various applications in natural language

processing such as word-sense disambiguation [127], language modeling [129], synonym

extraction [84], and automatic thesauri extraction [34]. Manually compiled taxonomies

such as WordNet2 and large text corpora have been used in previous work on semantic

similarity [84, 126, 69, 87]. Regarding the Web as a live corpus has become an active

research topic recently. Simple, unsupervised models demonstrably perform better when

n-gram counts are obtained from the Web rather than from a large corpus [74, 79]. Resnik

and Smith [128] extracted bilingual sentences from the Web to create a parallel corpora

for machine translation. Turney [146] defined a point-wise mutual information (PMI-IR)

measure using the number of hits returned by a Web search engine to recognize synonyms.

Matsuo et. al, [97] used a similar approach to measure the similarity between words and

apply their method in a graph-based word clustering algorithm.

Given a taxonomy of concepts, a straightforward method to calculate similarity between

two words (concepts) is to find the length of the shortest path connecting the two words in

the taxonomy [122]. If a word is polysemous then multiple paths might exist between the

two words. In such cases, only the shortest path between any two senses of the words is

considered for calculating similarity. A problem that is frequently acknowledged with this

approach is that it relies on the notion that all links in the taxonomy represent a uniform

distance.

Resnik [126] proposed a similarity measure using information content. He defined

the similarity between two concepts C1 and C2 in the taxonomy as the maximum of the

information content of all concepts C that subsume both C1 and C2. Then the similarity

between two words is defined as the maximum of the similarity between any concepts that

the words belong to. He used WordNet as the taxonomy; information content is calculated

using the Brown corpus.

Li et al., [160] combined structural semantic information from a lexical taxonomy and

2http://wordnet.princeton.edu/
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information content from a corpus in a nonlinear model. They proposed a similarity mea-

sure that uses shortest path length, depth and local density in a taxonomy. Their experi-

ments reported a Pearson correlation coefficient of 0.8914 on the Miller and Charles [103]

benchmark dataset. They did not evaluate their method in terms of similarities among

named entities. Lin [87] defined the similarity between two concepts as the information

that is in common to both concepts and the information contained in each individual con-

cept.

Cilibrasi and Vitanyi [29] proposed a distance metric between words using only page-

counts retrieved from a web search engine. The proposed metric is named Normalized

Google Distance (NGD) and is given by,

NGD(x, y) =
max{log H(x), log H(y)} − log H(x, y)

log N −min{log H(x), log H(y)} . (2.1)

Here, x and y are the two words between which distance NGD(x, y) is to be computed,

H(x) denotes the page-counts for the word x, and H(x, y) is the page-counts for the query

x AND y. NGD is based on normalized information distance [81], which is defined using

Kolmogorov complexity. Because NGD does not take into account the context in which

the words co-occur, it suffers from the drawbacks described in the previous section that are

characteristic to similarity measures that consider only page-counts.

Sahami et al., [131] measured semantic similarity between two queries using snippets

returned for those queries by a search engine. For each query, they collect snippets from a

search engine and represent each snippet as a TF-IDF-weighted term vector. Each vector is

L2 normalized and the centroid of the set of vectors is computed. Semantic similarity be-

tween two queries is then defined as the inner product between the corresponding centroid

vectors. They did not compare their similarity measure with taxonomy-based similarity

measures.

Chen et al., [26] proposed a double-checking model using text snippets returned by a

Web search engine to compute semantic similarity between words. For two words P and

Q, they collect snippets for each word from a Web search engine. Then they count the

occurrences of word P in the snippets for word Q and the occurrences of word Q in the

snippets for word P . These values are combined nonlinearly to compute the similarity
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Figure 2.2: Outline of the proposed method.

between P and Q. The Co-occurrence Double-Checking (CODC) measure is defined as,

CODC(P,Q) =

{
0 if f(P@Q) = 0

exp
(
log

[
f(P@Q
H(P )

× f(Q@P )
H(Q)

]α)
otherwise. (2.2)

Here, f(P@Q) denotes the number of occurrences of P in the top-ranking snippets for the

query Q in Google, H(P ) is the page count for query P , and α is a constant in this model

which is experimentally set to the value 0.15. This method depends heavily on the search

engine’s ranking algorithm. Although two words P and Q might be very similar, we cannot

assume that one can find Q in the snippets for P , or vice versa, because a search engine

considers many other factors besides semantic similarity, such as publication date (novelty)

and link structure (authority) when ranking the result set for a query. This observation is

confirmed by the experimental results in their paper which reports zero similarity scores

for many pairs of words in the Miller and Charles [103] benchmark dataset.
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2.2 Method

2.2.1 Outline

I propose a method which integrates both page counts and snippets to measure semantic

similarity between a given pair of words. Figure 2.2 illustrates an example of using the

proposed method to compute the semantic similarity between two words, gem and jewel.

First, I query a Web search engine using the two words between which I must compute

semantic similarity, and retrieve page-counts for the two words and for their conjunctive

(i.e. AND) query. In section 2.2.2, I define four similarity scores using page counts. Sec-

ond, I find the frequency of numerous lexico-syntactic patterns in snippets returned for the

conjunctive query of the two words. The lexical patterns I utilize are extracted using the

method described in section 2.2.3. I rank the patterns extracted by the proposed algorithm

according to their ability to express semantic similarity. I use two-class support vector

machines (SVMs) to find the optimal combination of page counts-based similarity scores

and top-ranking patterns. The SVM is trained to classify synonymous word-pairs and non-

synonymous word-pairs. I select synonymous word-pairs (positive training instances) from

WordNet synsets (i.e. a set of synonymous words). Non-synonymous word-pairs (negative

training instances) are automatically created using a random shuffling technique. I convert

the output of SVM into a posterior probability. I define the semantic similarity between

two words as the posterior probability that they belong to the synonymous-words (positive)

class.

2.2.2 Page-count-based Similarity Scores

Page counts for the query P AND Q can be considered as an approximation of co-occurrence

of two words (or multi-word phrases) P and Q on the Web. However, page counts for the

query P AND Q alone do not accurately express semantic similarity. For example, Google

returns 11, 300, 000 as the page count for “car” AND “automobile”, whereas the same is

49, 000, 000 for “car” AND “apple”. Although, automobile is more semantically similar

to car than apple is, page counts for the query “car” AND “apple” are more than four

times greater than those for the query “car” and “automobile”. One must consider the
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page counts not just for the query P AND Q, but also for the individual words P and Q to

assess semantic similarity between P and Q.

I modify four popular co-occurrence measures; Jaccard, Overlap (Simpson), Dice, and

Pointwise mutual information (PMI), to compute semantic similarity using page counts.

For the remainder of this chapter I use the notation H(P ) to denote the page counts for

the query P in a search engine. The WebJaccard coefficient between words (or multi-word

phrases) P and Q, WebJaccard(P, Q), is defined as,

WebJaccard(P, Q) =

{
0 if H(P ∩Q) ≤ c

H(P∩Q)
H(P )+H(Q)−H(P∩Q)

otherwise
. (2.3)

Therein, P ∩Q denotes the conjunction query P AND Q. Given the scale and noise in Web

data, it is possible that two words may appear on some pages purely accidentally. In order

to reduce the adverse effects attributable to random co-occurrences, I set the WebJaccard

coefficient to zero if the page count for the query P∩Q is less than a threshold c3. Similarly,

I define WebOverlap, WebOverlap(P, Q), as,

WebOverlap(P, Q) =

{
0 if H(P ∩Q) ≤ c

H(P∩Q)
min(H(P ),H(Q))

otherwise
. (2.4)

WebOverlap is a natural modification to the Overlap (Simpson) coefficient. I define the

WebDice coefficient as a variant of the Dice coefficient. WebDice(P, Q) is defined as,

WebDice(P, Q) =

{
0 if H(P ∩Q) ≤ c

2H(P∩Q)
H(P )+H(Q)

otherwise
. (2.5)

Pointwise mutual information (PMI) [28] is a measure that is motivated by information

theory; it is intended to reflect the dependence between two probabilistic events. I define

WebPMI as a variant form of pointwise mutual information using page counts as,

WebPMI(P, Q) =

{
0 if H(P ∩Q) ≤ c

log2(
H(P∩Q)

N
H(P )

N
H(Q)

N

) otherwise . (2.6)

3I set c = 5 in my experiments
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Here, N is the number of documents indexed by the search engine. Probabilities in Equa-

tion 2.6 are estimated according to the maximum likelihood principle. To calculate PMI

accurately using Equation 2.6, we must know N , the number of documents indexed by

the search engine. Although estimating the number of documents indexed by a search en-

gine [8] is an interesting task itself, it is beyond the scope of this work. In the present work,

I set N = 1010 according to the number of indexed pages reported by Google.

2.2.3 Extracting Lexico-Syntactic Patterns from Snippets

Text snippets are returned by search engines alongside with the search results. They pro-

vide valuable information regarding the local context of a word. I extract lexico-syntactic

patterns that indicate various aspects of semantic similarity. For example, consider the

following text snippet returned by Google for the query “cricket” AND “sport”.

“Cricket is a sport played between two teams, each with eleven players.”

Figure 2.3: Pattern Extraction Example

Here, the phrase is a indicates a semantic relationship between cricket and sport. Many

such phrases indicate semantic relationships. For example, also known as, is a, part of, is

an example of all indicate semantic relations of different types. In the example given

above, words indicating the semantic relation between cricket and sport appear between

the query words. Replacing the query words by variables X and Y we can form the pattern

X is a Y from the example given above. However, in some cases the words that indicate

the semantic relationship do not fall between the query words. For example, consider the

following example.

“Toyota and Nissan are two major Japanese car manufacturers.”

Figure 2.4: Pattern Extraction Example

Here, the relationship between Toyota and Nissan is that they are both car manufactur-

ers. Identifying the exact set of words that convey the semantic relationship between two

entities is a difficult problem which requires deeper semantic analysis. However, such an

analysis is not feasible considering the numerous ill-formed snippets we need to process on
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the Web. I propose a shallow pattern extraction method to capture the semantic relationship

between words in text snippets.

Algorithm 1 Extract patterns from snippets.
Input: set S of word-pairs
Output: set P of patterns

1: for wordpair (A,B) ∈ S do
2: D ← GetSnippets(“A B”)
3: end for
4: N ← null
5: for snippet d ∈ D do
6: N ← N + GetNgrams(d,A, B)
7: end for
8: P ← CountFreq(N)
9: return P

The proposed pattern extraction algorithm is illustrated in Algorithm 1. Given a set

S of synonymous word-pairs, GetSnippets function returns a list of text snippets for the

query “A” AND “B” for each word-pair (A,B) in S. For each snippet found, I replace the

two words in the query by two variables. Let us assume these variables to be X and Y. For

each snippet d in the set of snippets D returned by GetSnippets, function GetNgrams

extracts word n-grams for n = 2, 3, 4 and 5. I select n-grams which contain exactly one

X and one Y. For example, the snippet in Figure 2.4 yields the patterns X and Y, X and Y

are, X and Y are two. Finally, function CountFreq counts the frequency of each pattern I

extracted. The procedure described above yields a set of patterns with their frequencies in

text snippets obtained from a search engine. It considers the words that fall between X and

Y as well as words that precede X and succeeds Y .

To leverage the pattern extraction process, I select synonymous nouns from Word-

Net [104] synsets. A WordNet synset contains a group of synonymous words. Different

senses of a word have different synsets. The WordNet 2.0 database which I use in my ex-

periments contains 114, 648 nouns and 79, 689 synsets. I randomly select 5000 nouns for

which synsets with more than three entries are available. I do not select abbreviations or

multi-word nouns. For polysemous nouns I select the synonyms for the dominant sense.
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Table 2.1: Contingency table
v other than v All

Frequency in snippets for synonymous word pairs pv P − pv P
Frequency in snippets for non-synonymous word pairs nv N − nv N

The pattern extraction algorithm described in Algorithm 1 yields 4, 562, 471 unique pat-

terns. Of those patterns, 80% occur less than 10 times. It is impossible to train a classifier

with such numerous sparse patterns. We must measure the confidence of each pattern as an

indicator of synonymy. For that purpose, I employ the following procedure.

First, I run the pattern extraction algorithm described in Algorithm 1 with a non-

synonymous set of word-pairs and count the frequency of the extracted patterns. I then

use a test of statistical significance to evaluate the probable applicability of a pattern as an

indicator of synonymy. The fundamental idea of this analysis is that, if a pattern appears a

statistically significant number of times in snippets for synonymous words than in snippets

for non-synonymous words, then it is a reliable indicator of synonymy.

To create a set of non-synonymous word-pairs, I select two nouns from WordNet ar-

bitrarily. If the selected two nouns do not appear in any WordNet synset then I select

them as a non-synonymous word-pair. I repeat this procedure until I obtain 5000 pairs of

non-synonymous words.

For each extracted pattern v, I create a contingency table, as shown in Table 2.1 us-

ing its frequency pv in snippets for synonymous word pairs and nv in snippets for non-

synonymous word pairs. In Table 2.1, P denotes the total frequency of all patterns in

snippets for synonymous word pairs (P =
∑

v pv) and N is the same in snippets for non-

synonymous word pairs (N =
∑

v nv). Using the information in Table 2.1, I calculate the

χ2 [93] value for each pattern as,

χ2 =
(P + N)(pv(N − nv)− nv(P − pv))

2

PN(pv + nv)(P + N − pv − nv)
. (2.7)

I select the top ranking 200 patterns experimentally as described in section 2.3.2, according

to their χ2 values. Some selected patterns are shown in Table 2.2.

Before we proceed to the integration of patterns and page-counts-based similarity scores,
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it is necessary to introduce some constraints to the development of semantic similarity mea-

sures. Evidence from psychological experiments suggest that semantic similarity can be

context-dependent and even asymmetric [154, 99]. Human subjects have reportedly as-

signed different similarity ratings to word-pairs when the two words were presented in the

reverse order. However, experimental results investigating the effects of asymmetry report

that the average difference in ratings for a word pair is less than 5 percent [99]. In this

work, I assume semantic similarity to be symmetric. This is in line with previous work on

semantic similarity described in section 2.1. Under this assumption, I can interchange the

query word markers X and Y in the extracted patterns.

2.2.4 Integrating Patterns and Page Counts

In section 2.2.2 I defined four similarity scores using page counts. Section 2.2.3 described

a lexico-syntactic pattern extraction algorithm and ranked the patterns according to their

ability to express synonymy. In this section I describe the leverage of a robust semantic

similarity measure through integration of all the similarity scores and patterns described in

previous sections.

Algorithm 2 Create a feature vector F for a word pair (A,B).
Input: word pair (A,B)
Output: feature vector F

1: D ← GetSnippets(“A B”)
2: N ← null
3: for snippetd ∈ D do
4: N ← N + GetNgrams(d,A, B)
5: end for
6: SelPats ← SelectPatterns(N,GoodPats)
7: PF ← Normalize(SelPats)
8: F← [PF,WebJaccard, WebOverlap, WebDice,WebPMI ]
9: return F

For each pair of words (A,B), I create a feature vector F as shown in Algorithm 2. First,

I query Google for “A” AND “B” and collect snippets. Then I replace the query words

A and B with two variables X and Y , respectively in each snippet. Function GetNgrams
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extracts n-grams for n = 2, 3, 4 and 5 from the snippets. I select n-grams having exactly

one X and one Y as I did in the pattern extraction algorithm (Algorithm 1). Let us assume

the set of patterns selected based on their χ2 values in section 2.2.3 to be GoodPats. Then,

the function SelectPatterns selects the n-grams from N which appear in GoodPats. In

Normalize(SelPats), I normalize the count of each pattern by dividing it from the total

number of counts of the observed patterns. This function returns a vector of patterns where

each element is the normalized frequency of the corresponding pattern in the snippets for

the query “A” “B”. I append similarity scores calculated using page counts in section 2.2.2

to create the final feature vector xi for the word-pair (Ai, Bi). This procedure yields a

L+4 dimensional (4 page-counts based similarity scores and L number of lexical patterns)

feature vector. I form such feature vectors for all synonymous word-pairs (positive training

examples) as well as for non-synonymous word-pairs (negative training examples). I then

train a two-class support vector machine with the labeled feature vectors.

Once we have trained an SVM using synonymous and non-synonymous word pairs,

we can use it to compute the semantic similarity between two given words. Following the

same method I used to generate feature vectors for training, I create a feature vector x∗ for

a pair of words (A∗, B∗), between which we must measure the semantic similarity. I define

the semantic similarity SemSim(A∗, B∗) between A∗ and B∗ as the posterior probability

P (y∗ = 1|x∗) that the feature vector x∗ corresponding to the word-pair (A∗, B∗) belongs

to the synonymous-words class. I denote the label assigned to a feature vector xi by yi ∈
{−1, 1}. Here, yi = 1 denotes the synonymous-words (positive) class and yi = −1 denotes

the non-synonymous words (negative) class. SemSim(A∗, B∗) is given by,

SemSim(A∗, B∗) = P (y∗ = 1|x∗). (2.8)

Because SVMs are large margin classifiers, the output of an SVM is the distance from

the classification hyperplane. The distance f(x∗) to an instance x∗ from the classification

hyperplane is given by,

f(x∗) = h(x∗) + b.
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Here, b is the bias term and the hyperplane, h(x), is given by,

h(x∗) =
∑

i

yiαiK(xi,x
∗).

Here, αi is the Lagrange multiplier corresponding to the support vector xi
4, and K(xi,x

∗)

is the value of the kernel function for a training instance xi and the instance to classify, x∗.

However, f(x∗) is not a calibrated posterior probability. Following Platt [121], I use sig-

moid functions to convert this uncalibrated distance into a calibrated posterior probability.

The probability, P (y = 1|f(x)), is computed using a sigmoid function defined over f(x)

as follows,

P (y = 1|f(x)) =
1

1 + exp(λf(x) + µ)
.

Here, λ and µ are parameters which are determined by maximizing the likelihood of the

training data. Log-likelihood of the training data is given by,

L(λ, µ) =
N∑

i=1

log P (yi|xi; λ, µ) (2.9)

=
N∑

i=1

{ti log(pi) + (1− ti) log(1− pi)}.

Here, to simplify the formula I have used the notations ti = (yi + 1)/2 and pi = P (yi =

1|xi). The maximization in Formula 2.9 with respect to parameters λ and µ can be done

using various optimization algorithms [109]. Platt [121] used a model-trust minimization

algorithm [53] for the optimization.

2.3 Experiments

Evaluating a semantic similarity measure is a difficult task because the notion of seman-

tic similarity varies across domains and from person to person. To evaluate the proposed

4From K.K.T. conditions it follows that the Lagrange multipliers corresponding to non-support vectors
become zero.
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method I conduct two types of experiments. First, I compare the similarity scores produced

by the proposed measure against a benchmark dataset of semantic similarity. The bench-

mark dataset is detailed in section 2.3.1. The degree of correlation between a benchmark

dataset of semantic similarity and the similarity scores produced by an automatic similarity

measure, can be considered as a measurement of how well the automatic similarity mea-

sure captures the notion of semantic similarity held by humans. I analyze the behavior of

the proposed measure with the number of patterns used as features, the number of snippets

used to extract the patterns, and the size of the training dataset.

Secondly, I apply the proposed measure in two real-world applications: community

mining and entity disambiguation. This enables us to evaluate the performance of the

proposed method in measuring semantic similarity between named entities for which no

manually created lexical resources such as dictionaries exist.

2.3.1 The Benchmark Dataset

I evaluate the proposed method against Miller-Charles [103] dataset, a dataset of 30 word-

pairs5 rated by a group of 38 human subjects. The word pairs are rated on a scale from 0

(no similarity) to 4 (perfect synonymy). Miller-Charles’ data set is a subset of Rubenstein-

Goodenough’s [130] original data set of 65 word pairs. Although Miller-Charles experi-

ment was carried out 25 years later than Rubenstein-Goodenough’s, two sets of ratings are

highly correlated (pearson correlation coefficient=0.97). Therefore, Miller-Charles ratings

is considered as a reliable benchmark for evaluating semantic similarity measures.

2.3.2 Pattern Selection

I trained a linear kernel SVM with top N pattern features (ranked according to their χ2

values) and calculated the correlation coefficient against the Miller-Charles benchmark

dataset. Results of the experiment are shown in Figure 2.5. In Figure 2.5 a steep im-

provement of correlation with the number of top-ranking patterns is apparent; it reaches

a maximum at 200 features. With more than 200 patterns correlation drops below this

5Because of the omission of two word pairs in earlier versions of WordNet, most researchers had used
only 28 pairs for evaluations.



2.3. EXPERIMENTS 43

0 200 400 600 800 100012001400160018002000
0.780

0.782

0.784

0.786

0.788

0.790

0.792

0.794

0.796

0.798

0.800

C
o

rr
e
la

ti
o

n
 C

o
e
ff
ic

ie
n
t 

(r
)

Number of pattern features (N)

Figure 2.5: Correlation vs. No of pattern features

Table 2.2: Features with the highest SVM linear kernel weights
feature χ2 SVM weight

WebDice N/A 8.19
X/Y 33459 7.53

X, Y : 4089 6.00
X or Y 3574 5.83
X Y for 1089 4.49

X . the Y 1784 2.99
with X ( Y 1819 2.85

X=Y 2215 2.74
X and Y are 1343 2.67

X of Y 2472 2.56

maximum. Considering that the patterns are ranked according to their ability to express

semantic similarity and the majority of patterns are sparse, I selected only the top ranking

200 patterns for the remaining experiments.

Features with the highest linear kernel weights are shown in Table 2.2 alongside their

χ2 values. The weight of a feature in the linear kernel can be considered as a rough estimate

of the influence it imparts on the final SVM output. WebDice has the highest kernel weight

followed by a series of pattern-based features. WebOverlap (rank=18, weight=2.45), Web-

Jaccard (rank=66, weight=0.618) and WebPMI (rank=138, weight=0.0001) are not shown

in Table 2.2 because of space limitations. It is noteworthy that the pattern features in Ta-

ble 2.2 agree with intuition. Lexical patterns (e.g., X or Y, X and Y are, X of Y) as well as

syntax patterns (e.g., bracketing, comma usage) are extracted by my method.
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Table 2.3: Performance with different Kernels
Kernel Type Correlation
Linear 0.8345
Polynomial degree=2 0.5872
Polynomial degree=3 0.5387
RBF 0.6632
Sigmoid 0.5277

I experimented with different kernel types as shown in Table 2.3. Best performance is

achieved with the linear kernel. When higher degree kernels such as quadratic (Polynomial

degree=2) and cubic (Polynomial degree=3) are used, correlation with the human ratings

decreases rapidly. Second best is the Radial Basis Functions (RBFs), which reports a cor-

relation coefficient of 0.6632. For the rest of the experiments in this chapter I use the linear

kernel.

2.3.3 Semantic Similarity

I score the word pairs in Miller-Charles’ dataset using the page-count-based similarity

scores defined in section 2.2.2, Web-based semantic similarity measures proposed in pre-

vious work (Sahami [131], Chen [26]), Normalized Google Distance (NGD) [29], and the

proposed method (Proposed). Results are shown in Table 2.4. Because NGD is a distance

measure and all other measures compared in Table 2.4 are similarity scores, for consistency

with other measures, I consider the value after deducting NGD from one in the NGD col-

umn in Table 2.4. All figures, except those for the Miller-Charles ratings, are normalized

into values in [0, 1] range for the ease of comparison. Pearson’s correlation coefficient is

invariant against a linear transformation. Proposed method earns the highest correlation

of 0.834 in my experiments. It shows the highest similarity score for the word-pair magi-

cian and wizard. Lowest similarity is reported for cord and smile I did not use any of the

words in the benchmark dataset or their synsets for training. My reimplementation of Co-

occurrence Double Checking (CODC) measure [26] indicates the second-best correlation

of 0.6936. CODC measure reports zero similarity scores for many word-pairs in the bench-

mark. One reason for this sparsity in CODC measure is that even though two words in a
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Table 2.4: Semantic Similarity of Human Ratings and Baselines on Miller-Charles’ dataset

Word Pair MC Web Web Web Web NGD Sahami CODC Proposed
Jaccard Dice Overlap PMI [131] [26]

automobile-car 3.920 0.650 0.664 0.831 0.427 0.466 0.225 0.008 0.980
journey-voyage 3.840 0.408 0.424 0.164 0.468 0.556 0.121 0.005 0.996
gem-jewel 3.840 0.287 0.300 0.075 0.688 0.566 0.052 0.012 0.686
boy-lad 3.760 0.177 0.186 0.593 0.632 0.456 0.109 0.000 0.974
coast-shore 3.700 0.783 0.794 0.510 0.561 0.603 0.089 0.006 0.945
asylum-madhouse 3.610 0.013 0.014 0.082 0.813 0.782 0.052 0.000 0.773
magician-wizard 3.500 0.287 0.301 0.370 0.863 0.572 0.057 0.008 1.000
midday-noon 3.420 0.096 0.101 0.116 0.586 0.687 0.069 0.010 0.819
furnace-stove 3.110 0.395 0.410 0.099 1.000 0.638 0.074 0.011 0.889
food-fruit 3.080 0.751 0.763 1.000 0.449 0.616 0.045 0.004 0.998
bird-cock 3.050 0.143 0.151 0.144 0.428 0.562 0.018 0.006 0.593
bird-crane 2.970 0.227 0.238 0.209 0.516 0.563 0.055 0.000 0.879
implement-tool 2.950 1.000 1.000 0.507 0.297 0.750 0.098 0.005 0.684
brother-monk 2.820 0.253 0.265 0.326 0.623 0.495 0.064 0.007 0.377
crane-implement 1.680 0.061 0.065 0.100 0.194 0.559 0.039 0.000 0.133
brother-lad 1.660 0.179 0.189 0.356 0.645 0.505 0.058 0.005 0.344
car-journey 1.160 0.438 0.454 0.365 0.205 0.410 0.047 0.004 0.286
monk-oracle 1.100 0.004 0.005 0.002 0.000 0.579 0.015 0.000 0.328
food-rooster 0.890 0.001 0.001 0.412 0.207 0.568 0.022 0.000 0.060
coast-hill 0.870 0.963 0.965 0.263 0.350 0.669 0.070 0.000 0.874
forest-graveyard 0.840 0.057 0.061 0.230 0.495 0.612 0.006 0.000 0.547
monk-slave 0.550 0.172 0.181 0.047 0.611 0.698 0.026 0.000 0.375
coast-forest 0.420 0.861 0.869 0.295 0.417 0.545 0.060 0.000 0.405
lad-wizard 0.420 0.062 0.065 0.050 0.426 0.657 0.038 0.000 0.220
cord-smile 0.130 0.092 0.097 0.015 0.208 0.460 0.025 0.000 0
glass-magician 0.110 0.107 0.113 0.396 0.598 0.488 0.037 0.000 0.180
rooster-voyage 0.080 0.000 0.000 0.000 0.228 0.487 0.049 0.000 0.017
noon-string 0.080 0.116 0.123 0.040 0.102 0.488 0.024 0.000 0.018
Correlation 1.000 0.260 0.267 0.382 0.549 0.205 0.580 0.694 0.834
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pair (P,Q) are semantically similar, we might not always find Q among the top snippets

for P (and vice versa). As might be apparent from the definition of the CODC measure in

Equation 2.2, it returns zero under these conditions. Ranking of snippets, (hence the value

of f(P@Q)), depends directly upon the search engine’s specifications. A search engine

considers various factors such as novelty, authority, link structure, user preferences when

ranking search results. Consequently, CODC measure is influenced by these factors.

Similarity measure proposed by Sahami et al. [131] is placed third, reflecting a corre-

lation of 0.5797. This method use only those snippets when calculating semantic similar-

ity. Among the four page-counts-based measures, WebPMI garners the highest correlation

(r = 0.5489). NGD considers only page-counts and it reports a low correlation (0.205)

with Miller-Charles’ ratings. Overall, the results in Table 2.4 suggest that similarity mea-

sures based on snippets are more accurate than the ones based on page counts in capturing

semantic similarity between words.

2.3.4 Taxonomy-Based Methods

Table 2.5: Comparison with taxonomy-based methods
Method Correlation
Human replication 0.9015
Resnik (1995) 0.7450
Lin (1998) 0.8224
Li et al. (2003) 0.8914
Edge-counting 0.664
Information content 0.745
Jiang & Conrath (1998) 0.8484
Proposed 0.8129

Table 2.5 presents a comparison of the proposed method to the WordNet-based meth-

ods. The proposed method outperforms simple WordNet-based approaches such as Edge-

counting and Information Content measures. It is comparable with Lin (1998) [87] Jiang

& Conrath (1998) [69] and Li (2003) [160] methods. Unlike the WordNet based methods,
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Figure 2.6: Correlation vs. No of snippets

proposed method does not require a hierarchical taxonomy of concepts or sense-tagged def-

initions of words. Therefore, in principle the proposed method could be used to calculate

semantic similarity between named entities, etc, which are not listed in WordNet or other

manually compiled thesauri. However, considering the high correlation between human

subjects (0.9), there is still room for improvement.

2.3.5 Accuracy vs. Number of Snippets

I computed the correlation with the Miller-Charles ratings for different numbers of snippets

to investigate the effect of the number of snippets used to extract patterns upon the semantic

similarity measure. I started with 100 snippets and increased this number by 100 snippets

at a time. Because of the constraints imposed by Google on the maximum number of

snippets that can be collected for a query, we are limited to a maximum of 1000 snippets.

The experimental results are presented in Figure 2.6. From Figure 2.6 it is apparent that

overall the correlation coefficient improves with the number of snippets used for extracting

patterns. The probability of finding better patterns increases with the number of processed

snippets. That fact enables us to represent each pair of words with a rich feature vector,

resulting in better performance.
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2.3.6 Training Data

I used synonymous word pairs extracted from WordNet synsets as positive training exam-

ples and automatically generated non-synonymous word pairs as negative training exam-

ples to train a two-class support vector machine in section 2.2.4. To determine the optimum

combination of positive and negative training examples, I trained a linear kernel SVM with

different combinations of positive and negative training examples and evaluated accuracy

against the human ratings in the Miller-Charles benchmark dataset. Experimental results

are summarized in Figure 2.7. Maximum correlation coefficient of 0.8345 is achieved with

1900 positive training examples and 2400 negative training examples. Generally, in English

language the number of non-synonymous word pairs is much greater than the number of

synonymous word pairs. I infer that the bias shown toward negative training examples in

Figure 2.7 implies that fact. Moreover, Figure 2.7 reveals that correlation does not improve

beyond 2500 positive and negative training examples. Therefore, I can conclude that 2500

examples are sufficient to leverage the proposed semantic similarity measure.
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Table 2.6: Effect of page-counts and snippets on the proposed method.
Dataset WordSimilarity-353 [46] Miller-Charles [103]
page-counts only 0.3571 0.5239
snippets-only 0.4583 0.8078
both 0.8581 0.5183

2.3.7 Page-counts vs. Snippets

The proposed semantic similarity measure integrates two types of features: word associa-

tion measures computed using page-counts, and frequencies of numerous lexical patterns

in snippets. A obvious question that arises in such a hybrid approach is the contribution

of page-counts and snippets towards the overall performance of the proposed algorithm. I

experimentally evaluate the effect of page-counts and snippets as follows. I compute fea-

ture vectors using only the page-counts and train a linear kernel SVM (parameter C is set

to 10) and use this model to compute the semantic similarity between word pairs in two

benchmark datasets: Miller Charles dataset [103], and WordSimilarity-353 [46] dataset.

Only four features will be computed when page-counts are used. Namely, the four features

are WebJaccard, WebDice, WebOverlap, and WebPMI. Likewise, I compute feature vec-

tors representing word pairs only using lexical pattern frequencies in snippets. Because we

selected 200 lexical patterns as described in Section 2.3.2, we can compute 200 features

only using snippets. A linear kernel SVM (parameter C is set to 10) is then trained using

the labelled feature vectors.

As the name implies, WordSimilarity-353 dataset contains human ratings for 353 word

pairs. This dataset is used in previous work on semantic similarity measures as an eval-

uation dataset. Compared to Miller-Charles dataset which has only 30 (ca. only 28 used

by most previous work) pairs of words, WordSimilarity-353 dataset has a comparatively

a large (ca. 353) number of word pairs. Therefore, statistically more reliable evaluations

can be performed using the WordSimilarity-353 dataset. However, it is noteworthy that the

definition of semantic similarity in the WordSimilarity-353 dataset is more relaxed com-

pared to the Miller-Charles dataset. Consequently, we can find many word pairs that are

distinctively related in the WordSimilarity-353 dataset.
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Experimental results are shown in Table 2.6. From Table 2.6 we can see that com-

pared to page-counts, snippets have a higher impact on the performance of the proposed

method. Moreover, the combination of page-counts-based features and snippets-based fea-

tures improves the performance of the proposed method when compared using page-counts

or snippets alone. We already observed in Table 2.4 that similarity measures computed

using snippets have higher correlation coefficients than similarity measures that are lim-

ited to page-counts. This is because snippets-based measures can use the local context of

the two words between which we must measure semantic similarity. Access to the local

context enables snippet-based similarity measures to disambiguate the different senses of

the words and match informative lexical patterns, that cannot be done using page-counts.

Experimental results in Table 2.6 further emphasizes this point. From Table 2.6 and Ta-

ble 2.4 collectively, we can conclude that neither individual page-counts-based similarity

measures, nor a combinations of those measures can outperform a similariy measure that

is defined purely on snippets-based features.

2.3.8 Community Mining

Measuring semantic similarity between named entities is vital in many applications such

as query expansion [131], entity disambiguation (e.g. namesake disambiguation) and com-

munity mining [96]. Because most named entities are not covered by WordNet, similarity

measures that are based on WordNet cannot be used directly in these tasks. Unlike com-

mon English words, named entities are being created constantly. Manually maintaining

an up-to-date taxonomy of named entities is costly, if not impossible. The proposed se-

mantic similarity measure is appealing for these applications because it does not require

pre-compiled taxonomies.

In order to evaluate the performance of the proposed measure in capturing the semantic

similarity between named-entities, I set up a community mining task. I select 50 personal

names from 5 communities: tennis players, golfers, actors, politicians and scientists , (10

names from each community) from the open directory project (DMOZ)6. For each pair of

names in my dataset, I measure their similarity using the proposed method and baselines.

6http://dmoz.org
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I use group-average agglomerative hierarchical clustering (GAAC) to cluster the names in

my dataset into five clusters.

Initially, each name is assigned to a separate cluster. In subsequent iterations, group

average agglomerative clustering process, merges the two clusters with highest correlation.

Correlation, Corr(Γ) between two clusters A and B is defined as the following,

Corr(Γ) =
1

2

1

|Γ|(|Γ| − 1)

∑

(u,v)∈Γ

sim(u, v) (2.10)

Here, Γ is the merger of the two clusters A and B. |Γ| denotes the number of elements

(persons) in Γ and sim(u, v) is the semantic similarity between two persons u and v in Γ.

I terminate GAAC process when exactly five clusters are formed. I adopt this clustering

method with different semantic similarity measures sim(u, v) to compare their accuracy in

clustering people who belong to the same community.

I employed the B-CUBED metric [6] to evaluate the clustering results. The B-CUBED

evaluation metric was originally proposed for evaluating cross-document co-reference chains.

I compute precision, recall and F -score for each name in the data set and average the results

over the dataset. For each person p in the data set, let us denote the cluster that p belongs

to by C(p). Moreover, I use A(p) to denote the affiliation of person p, e.g., A(“Tiger

Woods”) =“Tennis Player”. Then I calculate precision and recall for person p as,

Precision(p) =
No. of people in C(p) with affiliation A(p)

No. of people in C(p)
, (2.11)

Recall(p) =
No. of people in C(p) with affiliation A(p)
Total No. of people with affiliation A(p)

. (2.12)

Since, I selected 10 people from each of the five categories, the denominator in For-

mula 2.12 is 10 for all the names p.

Then, the F -score of person p is defined as,

F(p) =
2× Precision(p)× Recall(p)

Precision(p) + Recall(p)
. (2.13)

Overall precision, recall and F -score are computed by taking the averaged sum over all
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Table 2.7: Results for Community Mining
Method Precision Recall F Measure
WebJaccard 0.5926 0.712 0.6147
WebOverlap 0.5976 0.68 0.5965
WebDice 0.5895 0.716 0.6179
WebPMI 0.2649 0.428 0.2916
Sahami [131] 0.6384 0.668 0.6426
Chen [26] 0.4763 0.624 0.4984
Proposed 0.7958 0.804 0.7897

the names in the dataset.

Precision =
1

N

∑
p∈DataSet

Precision(p) (2.14)

Recall =
1

N

∑
p∈DataSet

Recall(p) (2.15)

F−Score =
1

N

∑
p∈DataSet

F(p) (2.16)

Here, DataSet is the set of 50 names selected from the open directory project. There-

fore, N = 50 in my evaluations.

Experimental results are shown in Table 2.7. The proposed method shows the highest

entity clustering accuracy in Table 2.7 with a statistically significant (p ≤ 0.01 Tukey HSD)

F score of 0.7897. Sahami et al. [131]’s snippet-based similarity measure, WebJaccard,

WebDice and WebOverlap measures yield similar clustering accuracies.

2.3.9 Entity Disambiguation

Disambiguating named entities is important in various applications such as information re-

trieval [35], social network extraction [96, 10, 16], Word Sense Disambiguation (WSD) [98],

citation matching [58] and cross-document co-reference resolution [120, 47].

For example, Jaguar is a cat, a car brand and also an operating system for computers. A

user who searches for Jaguar on the Web, may be interested in either one of these different
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senses of Jaguar. However, only the first sense (Jaguar as a cat) is listed in WordNet.

Considering the number of new senses constantly being associated to the existing words

on the Web, it is costly, if not impossible to maintain sense tagged dictionaries to cover all

senses.

Contextual Hypothesis for Sense [135] states that the context in which a word appears

can be used to determine its sense. For example, a Web page discussing Jaguar as a car, is

likely to talk about other types of cars, parts of cars etc. Whereas, a Web page on Jaguar the

cat, is likely to contain information about other types of cats and animals. In this section,

I utilize the clustering algorithm described in section 2.3.8 to cluster the top 1000 snippets

returned by Google for two ambiguous entities Jaguar and Java. I represent each snippet

as a bag-of-words and calculate the similarity SIM(Sa, Sb) between two snippets Sa,Sbas

follows,

SIM(Sa, Sb) =
1

|Sa||Sb|
∑

a∈Sa,b∈Sb

sim(a, b) (2.17)

In Formula 2.17 |S| denotes the number of words in snippet S. I used different semantic

similarity measures for sim in Formula 2.17 and employed the group average agglomera-

tive clustering explained in section 2.3.8. I manually analyzed the snippets for queries Java

(3 senses: programming language, Island, coffee) and Jaguar (3 senses: cat, car, operating

system) and computed precision, recall and F-score for the clusters created by the algo-

rithm. My experimental results are summarized in Table 2.8. Proposed method reports the

best results among all the baselines compared in Table 2.8.

In this chapter I proposed a measure that uses both page counts and snippets to robustly

calculate semantic similarity between two given words or named entities. The method

consists of four page-count-based similarity scores and automatically extracted lexico-

syntactic patterns. I integrated page-counts-based similarity scores with lexico syntactic

patterns using support vector machines. Training data were automatically generated using

WordNet synsets. Proposed method outperformed all the baselines including previously

proposed Web-based semantic similarity measures on a benchmark dataset. A high corre-

lation (correlation coefficient of 0.834) with human ratings was found for semantic similar-

ity on this benchmark dataset. Only 1900 positive examples and 2400 negative examples
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Table 2.8: Entity Disambiguation Results
Jaguar Java

Method Precision Recall F Precision Recall F
WebJaccard 0.5613 0.541 0.5288 0.5738 0.5564 0.5243
WebOverlap 0.6463 0.6314 0.6201 0.6228 0.5895 0.56
WebDice 0.5613 0.541 0.5288 0.5738 0.5564 0.5243
WebPMI 0.5607 0.478 0.5026 0.7747 0.595 0.6468
Sahami [131] 0.6061 0.6337 0.6019 0.751 0.4793 0.5761
CODC [26] 0.5312 0.6159 0.5452 0.7744 0.5895 0.6358
Proposed 0.6892 0.7144 0.672 0.8198 0.6446 0.691

are necessary to leverage the proposed method, which is efficient and scalable because it

only processes the snippets (no downloading of Web pages is necessary) for the top ranking

results by Google. A contrasting feature of my method compared to the WordNet based

semantic similarity measures is that my method requires no taxonomies, such as WordNet,

for calculation of similarity. Therefore, the proposed method can be applied in many tasks

where such taxonomies do not exist or are not up-to-date. In Chapter 3 I investigate the

problem of measuring relational similarity between word pairs. We revisit the problem of

measuring semantic similarity between words from a relational view-point in Chapter 7.



Chapter 3

Relational Similarity

In Chapter 1, I categorized similarity measures into two types: attributional similarity

measures and relational similarity measures. For attributional similarity measures, the

objective is to compute the similarity between two given words by comparing the attributes

of each word. For example, the two words car and automobile share many attributes (e.g.

has wheels, is used for transportation). Consequently, they are considered as synonyms. In

Chapter 2, I showed how to compute attributional similarity using web search engines. On

the other hand, relational similarity is the correspondence between semantic relations that

exist between two word pairs. Word pairs that show a high degree of relational similarity

are considered as analogies. For example, the two word pairs (ostrich, bird) and (lion, cat).

Ostrich is a large bird and lion is a large cat are illustrative of high relational similarity.

The semantic relation, is a large, pertains between the two words in each word-pair. In this

Chapter I study the problem of measuring relational similarity between word pairs.

The information available on the Web can be considered as a vast, hidden network of

classes of objects (e.g. named entities) that is interconnected by various semantic rela-

tions applying to those objects. Measuring the similarity between semantic relations is an

important intermediate step in various tasks in information retrieval and natural language

processing such as relation extraction [32, 33, 161], in which the goal is to retrieve in-

stances of a given relation. For example, given the relation, ACQUIRER-ACQUIREE, a

relation extraction system must extract the instance (Google, YouTube) from the sentence

Google completed the acquisition of YouTube. Bootstrapping methods [113, 23, 43], which

55
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require a few seeds (ca. 10 pairs of instances per relation) have extracted numerous candi-

date instance pairs from a text corpus. Given a set of candidate instance pairs, a relational

similarity measure can be used to compute the similarity between the relations in the seeds

and in the candidates. Candidate instance pairs with high relational similarity with the seed

pairs can then be selected as the correct instances of a relation.

Relational similarity measures have been used to find word analogies [37, 107, 148,

150, 157]. Word analogy questions have been used from the Scholastic Aptitude Test (SAT;

Educational Testing Service) to benchmark relational similarity measures. An SAT word

analogy question consists of a stem word-pair that acts as the question and five choice word

pairs, out of which only one is analogous to the stem. A relational similarity measure is

used to compare the stem word-pair with each choice word-pair and to select the choice

word-pair with the highest relational similarity as the answer.

An interesting application of relational similarity in information retrieval is to search

using implicitly stated analogies [94, 156]. For example, the query “Muslim Church” is

expected to return “mosque”, and the query “Hindu bible” is expected to return “the Vedas”.

These queries can be formalized as word pairs: (Christian, Church) vs. (Muslim,X), and

(Christian, Bible) vs. (Hindu,Y). We can then find the words X and Y that maximize the

relational similarity in each case.

Despite the wide applications of relational similarity measures, accurately measuring

the similarity between implicitly stated relations remains a challenging task for several

reasons. First, relational similarity is a dynamic phenomenon: it varies with time. For

example, two companies can be competitors initially; subsequently one company might

acquire the other. Second, there can be more than one relation between a given word-pair.

For example, between the two words ostrich and bird, aside from the relation is a large,

there is also the relation is a flightless. A relational similarity measure must first extract

all relations between the two words in each word-pair before it can compute the similarity

between the word pairs. Third, there can be more than one way to express a particular

semantic relation in a text. For example, the three patterns – X was acquired by Y, Y com-

pleted the acquisition of X, and Y buys X – all indicate an acquisition relation between

X and Y. In addition to the problems described above, measuring relational similarity be-

tween pairs in which one or both words are named entities (e.g., company names, personal
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names, locations, etc.) is even more difficult because such words are not well covered by

manually created dictionaries such as WordNet1[104].

As described herein, I propose a relational similarity measure that uses a Web search

engine to measure the similarity between implicitly stated semantic relations in two word

pairs. Formally, given two word pairs, (a,b) and (c,d), I design a function, relsim((a, b), (c, d)),

that returns a similarity score in the range [0, 1]. Two different approaches are considered

in this thesis. First, a supervised learning approach using Support Vector Machines is in-

troduced in Section 3.2. Second, a supervised Mahalanobis distance metric approach is

proposed in Section 3.3. Before I detail each of these methods I briefly review the previous

work on measuring relational similarity.

3.1 Previous Work on Relational Similarity

The Structure Mapping Theory (SMT) [45] is based on the premise that an analogy is

a mapping of knowledge from one domain (base) into another (target), which conveys

that a system of relations known to hold in the base also holds in the target. The target

objects need not resemble their corresponding base objects. This structural view of analogy

is based on the intuition that analogies are about relations, rather than simple features.

Although this approach works best when the base and the target are rich in higher-order

causal structures, it can fail when structures are missing or flat [158].

Turney et al. [152] combined 13 independent modules by considering the weighted sum

of the outputs of each module to solve SAT analogy questions. The best performing indi-

vidual module was based on the Vector Space Model (VSM). In the VSM approach [151],

a vector is first created for a word-pair (X,Y) by counting the frequencies of various lexical

patterns containing X and Y. In their experiments, they used 128 manually created patterns

such as “X of Y”, “Y of X”, “X to Y”, and “Y to X”. These patterns are then used as queries

to a search engine. The numbers of hits for respective queries are used as elements in a vec-

tor to represent the word-pair. Finally, the relational similarity is computed as the cosine

of the angle between the two vectors that represent the two word pairs. Turney et al. [152]

introduced a dataset containing 374 SAT analogy questions to evaluate relational similarity

1http://wordnet.princeton.edu/
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measures. An SAT analogy question consists of a stem word-pair that acts as the question,

and five choice word pairs. The choice word-pair that has the highest relational similar-

ity with the stem word-pair is selected by the system as the correct answer. The average

SAT score reported by high school students for word-analogy questions is 57%. The VSM

approach achieves a score of 47% on this dataset.

Turney [148, 150] proposed Latent Relational Analysis (LRA) by extending the VSM

approach in three ways: a) lexical patterns are automatically extracted from a corpus, b)

the Singular Value Decomposition (SVD) is used to smooth the frequency data, and c) syn-

onyms are used to explore variants of the word pairs. Similarly, in the VSM approach,

LRA represents a word-pair as a vector of lexical pattern frequencies. First, using a the-

saurus, he finds related words for the two words in a word-pair and create additional word

pairs that are related to the original word pairs in the dataset. Second, n-grams of words

are extracted from the contexts in which the two words in a word-pair cooccur. The most

frequent n-grams are selected as lexical patterns to represent a word-pair. Then a matrix of

word pairs vs. lexical patterns is created for all the word pairs in the original dataset and the

additional word pairs. Elements of this matrix correspond to the frequency of a word-pair

in a lexical pattern. Singular value decomposition is performed on this matrix to reduce the

number of columns (i.e. patterns). Finally, the relational similarity between two word pairs

is computed as the average cosine similarity over the original word pairs and the additional

word pairs derived from them. In fact, LRA achieves a score of 56.4% on SAT analogy

questions.

Both VSM and LRA require numerous search engine queries to create a vector to rep-

resent a word-pair. For example, with 128 patterns, the VSM approach requires at least 256

queries to create two pattern-frequency vectors for two word pairs before it can compute the

relational similarity. In fact, LRA considers synonymous variants of the given word pairs.

For that reason, it requires even more search engine queries. Methods that require numer-

ous queries impose a heavy load on search engines. Despite efficient implementations,

singular value decomposition of large matrices is time consuming. In fact, LRA takes over

9 days to process the 374 SAT analogy questions [150]. This is problematic when comput-

ing relational similarity on the scale of the Web. Moreover, in the case of named entities,

thesauri of related words are not usually available or are not complete, which becomes a
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problem when creating the additional word pairs required by LRA.

Veale [157] proposed a relational similarity measure based on the taxonomic similarity

in WordNet. The quality of a candidate analogy A:B::C:D (i.e. A to B as C to D) is evalu-

ated through comparison of the paths in the WordNet, joining A to B and C to D. Relational

similarity is defined as the similarity between the A:B paths and C:D paths. However,

WordNet does not fully cover named entities such as personal names, organizations and

locations, which becomes problematic when using this method to measure relational simi-

larity between named entities.

Using a relational similarity measure, Turney [149] proposed an unsupervised learning

algorithm to extract patterns that express implicit semantic relations from a corpus. His

method produces a ranked set of lexical patterns that unambiguously describes the relation

between the two words in a given word-pair. Patterns are ranked according to their expected

relational similarity (i.e. pertinence); they are computed using an algorithm similar to LRA.

To answer an SAT analogy question, first, ranked lists of patterns are generated for each

of the six word pairs (one stem word-pair and five choice word pairs). Then each choice

is evaluated by taking the intersection of its patterns with the stem’s patterns. The shared

patterns are scored by the average of their rank in the stem’s list and the choice’s lists. The

algorithm picks the choice with the lowest scoring shared pattern as the correct answer.

This method reports an SAT score of 54.6%.

Relational similarity measures have been applied in natural language processing tasks

such as generating word analogies [37], and classifying noun-modifier compounds based

on the relation between the head and the modifier [150, 107, 36, 107]. Davidov and Rap-

poport [37] proposed an unsupervised algorithm to discover general semantic relations that

pertain between lexical items. They represent a semantic relation with a cluster of patterns.

They use the pattern clusters to generate SAT-like word analogy questions for English and

Russian languages. The generated questions are then solved by human subjects. They do

not evaluate their method for relational similarity between named entities.

Relational similarity measures have been used to classify the relationships between the

head and the modifier in noun-compounds [150, 107, 36]. For example, in the compound

viral flu, the flu (head) is caused by a virus (modifier). The Diverse dataset of Barker and

Szpakowicz [9], which consists of 600 head-modifier pairs (noun-noun, adjective-noun and



60 CHAPTER 3. RELATIONAL SIMILARITY

A:B

C:D

Web

Search

Engine

pattern

extraction/

selection

(PrefixSpan)

snippets
feature

vectors

Training/

Relational

Similarity

(SVM)

Identify the implicit relations Compare the relations

in the two word-pairs

Figure 3.1: Supervised learning of relational similarity using SVMs.

adverb-noun) is used as a benchmark dataset to evaluate relation classification of noun-

compounds. Each noun-modifier pair in this dataset is annotated with one of the following

five relations: causal, temporal, spatial, participant, and quality. Nakov and Hearst [107]

proposed a linguistically motivated method that utilizes verbs, prepositions, and coordinate

conjunctions that can help make explicit the hidden relations between the target nouns.

They report a classification accuracy of 40.5% on the Diverse dataset using a single nearest

neighbor classifier.

3.2 Method I: Supervised Learning using Support Vector

Machines

The proposed supervised relational similarity measure is outlined in Figure reffig:outline.

It can be described in two main steps: identifying the implicit relations between the two

words in each word-pair and comparing the relations that exist in each word-pair. In order

to measure the relational similarity between two word-pairs A:B and C:D, we must first

identify the relations implied by each word-pair. For example, the relation X is-a-large Y

holds between the the two words in pairs ostrich:bird and lion:cat. I propose the use of

PrefixSpan [119], a sequential pattern mining algorithm, to extract implicit relations from

snippets returned by a web search engine for two words. I train a Support Vector Machine

(SVM) [155] using SAT multiple-choice analogy questions as training data to compare the

extracted relations and identify analogous word-pairs. Next I describe each of these steps
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...lion, a large heavy-built social cat of open rocky areas in Africa ...

Figure 3.2: A snippet returned by Google for the query “lion*******cat”.

in detail.

3.2.1 Pattern Extraction and Selection

I represent the implicit relations indicated by the two words in a word-pair X:Y using auto-

matically extracted lexical patterns. Although automatic pattern extraction methods [124,

139] have been proposed based on dependency parsing of sentences, extracting lexical

patterns from snippets using such methods is difficult because most snippets are not gram-

matically correct complete sentences. However, lexical syntactic patterns have been suc-

cessfully used to extract semantic information such as qualia structures [32] from web text

snippets. Consequently, I employ a shallow pattern extraction method based on sequential

pattern mining.

To identify the implicit relations between two words X and Y, I first query a web search

engine using the phrasal query “X*******Y”. Here, the wildcard operator “*” would match

any word or nothing. This query retrieves snippets that contain both X and Y within a win-

dow of 7 words. For example, Google returns the snippet shown in Figure 3.2 for the

word-pair lion:cat. I use PrefixSpan (i.e., prefix-projected sequential pattern mining) [119]

algorithm to extract frequent subsequences from snippets that contain both X and Y. Pre-

fixSpan extracts all word subsequences which occur more than a specified frequency in

snippets. I select subsequences that contain both query words (eg. lion and cat) and re-

place the query words respectively with variables X and Y to construct lexical patterns. For

example, some of patterns I extract from the snippet in Figure 3.2 are “X a large Y”, “X a

large Y of” and “X, a large social Y”. PrefixSpan algorithm is particularly suitable for the

current task because it can efficiently extract a large number of lexical patterns.

I used the SAT analogy questions dataset which was first proposed by Turney and

Littman [151] as a benchmark to evaluate relational similarity measures, to extract lexi-

cal patterns. The dataset contains 2176 unique word-pairs across 374 analogy questions.
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Table 3.1: Contingency table for a pattern v
v patterns other Total

than v
Freq. in snippets for question
and correct answer pv P − pv P
Freq. in snippets for question
and incorrect answer nv N − nv N

For each word-pair, I searched Google and download the top 1000 snippets. From the pat-

terns extracted by the above mentioned procedure, I select ones that occur more than three

times and have less than seven words. The variables X and Y in patterns are swapped to

create a reversed version of the pattern. The final set contains 9980 unique patterns. How-

ever, out of those patterns only 10% appear in both for a question and one of its choices. It

is impossible to learn with such a large number of sparse patterns. Therefore, I perform a

pattern selection procedure to identify those patterns that convey useful clues about implicit

semantic relations.

First, for each extracted pattern v, I count the number of times where v appeared in any

of the snippets for both a question and its correct answer (pv) and in any of the snippets for

both a question and any one of its incorrect answers (nv). I then create a contingency table

for each pattern v, as shown in Table 3.1. In Table 3.1, P denotes the total frequency of all

patterns that occur in snippets for a question and its correct answer (P =
∑

v pv) and N is

the same for incorrect answers (N =
∑

v nv). If a pattern occurs many times in a question

and its correct answer, then such patterns are reliable indicators of latent relations between

words. To evaluate the reliability of an extracted pattern as an indicator of a relation, I

calculate the χ2 [93] value for each pattern using Table 3.1 as,

χ2 =
(P + N)(pv(N − nv)− nv(P − pv))

2

PN(pv + nv)(P + N − pv − nv)
.

Patterns with χ2 value greater than a specified threshold are used as features for training.

Some of the selected patterns are shown later in Table 3.3.
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3.2.2 Training

For given two pairs of words A:B and C:D, I create a feature vector using the patterns

selected in section 3.2.1. First, I record the frequency of occurrence of each selected pattern

in snippets for each word-pair. I call this the pattern frequency. It is a local frequency count,

analogous to term frequency in information retrieval [132]. Secondly, I combine the two

pattern frequencies of a pattern (i.e., frequency of occurrence in snippets for A:B and that in

snippets for C:D) using various feature functions to compute the feature-values for training.

The different feature functions experimented in this chapter are explained in section 3.2.3.

I model the problem of computing relational similarity as a one of identifying analogous

and non-analogous word-pairs, which can be solved by training a binary classifier. Using

SAT analogy questions as training data, I train a two-class support vector machine (SVM)

as follows. From each question in the dataset, I create a positive training instance by

considering A:B to be the word-pair for the question and C:D to be the word-pair for the

correct answer. Likewise, a negative training instance is created from a question word-pair

and one of the incorrect answers.

The trained SVM model can then be used to compute the relational similarity between

two given word-pairs A:B and C:D as follows. First, I represent the two word-pairs by a

feature vector F of pattern frequency-based features. Second, I define the relational sim-

ilarity RelSim(A : B,C : D) between the two word-pairs A:B and C:D as the posterior

probability Prob(F |analogous) that feature vector F belongs to the analogous-pairs (pos-

itive) class,

RelSim(A : B, C : D) = Prob(F |analogous).

Being a large margin classifier, the output of an SVM is the distance from the decision

hyper-plane. For the purpose of solving SAT questions, I can directly use the distance

from the decision hyper-plane and rank the candidate answers. However, distance from the

decision hyper-plane is not a calibrated posterior probability that lies between [0, 1] range.

I use sigmoid functions to convert this uncalibrated distance into a calibrated posterior

probability (see [121] for a detailed discussion on this topic).
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3.2.3 Experiments

For the experiments in this chapter I used the 374 SAT college-level multiple-choice anal-

ogy questions dataset which was first proposed by Turney et al. [152]. I compute the total

score for answering SAT questions as follows,

score =
no. of correctly answered questions

total no. of questions
. (3.1)

Formula 3.1 does not penalize a system for marking incorrect answers.

Feature Functions

Evidence from psychological experiments suggest that similarity can be context-dependent

and even asymmetric [154, 100]. Human subjects have reportedly assigned different simi-

larity ratings to word-pairs when the two words were presented in the reverse order. How-

ever, experimental results investigating the effects of asymmetry reports that the average

difference in ratings for a word-pair is less than 5 percent [100]. Consequently, in this

chapter I assume relational similarity to be symmetric and limit our discussion to symmet-

ric feature functions. This assumption is in line with previous work on relational similarity

described in section 3.1.

Let us assume the frequency of a pattern v in two word-pairs A:B and C:D to be fAB

and fCD, respectively. I compute the value assigned to the feature corresponding to pattern

v in the feature vector that represents the two word-pairs A:B and C:D using the following

four feature functions.

|fAB − fCD|: The absolute value of the difference of pattern frequencies is considered as

the feature-value.

(fAB − fCD)2: The square of the difference of pattern frequencies is considered as the

feature-value.

fAB × fCD: The product of the pattern frequencies is considered as the feature-value.

JS divergence: Ideally, if two word-pairs are analogous we would expect to see similar

distributions of patterns in each word-pair. Consequently, the closeness between the
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Table 3.2: Performance with various feature weighting methods
Feature function Score
|fAB − fCD| 0.30
(fAB − fCD)2 0.30
fAB × fCD 0.40

JS(v) 0.32

pattern distributions can be regarded as an indicator of relational similarity. I define a

feature function based on Jensen-Shannon divergence [93] as a measure of the close-

ness between pattern distributions. Jensen-Shannon (JS) divergence DJS(P ||Q), be-

tween two probability distributions P and Q is given by,

DJS(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M). (3.2)

Here, M = (P + Q)/2 and DKL is the Kullback-Leibler divergence, which is given

by,

DKL(P ||Q) =
∑

v

P (v) log
P (v)

Q(v)
. (3.3)

Here, P (v) denotes the normalized pattern frequency of a pattern v in the distribution

P . Pattern frequencies are normalized s.t.
∑

v P (v) = 1 by dividing the frequency

of each pattern by the sum of frequencies of all patterns. I define the contribution

of each pattern towards the total JS-divergence in Formula 3.2 as its feature value,

JS(v). Substituting Formula 3.3 in 3.2 and collecting the terms under summation, I

derive JS(v) as,

JS(v) =
1

2
(p log

2q

p + q
+ q log

2p

p + q
).

Here, p and q respectively denote the normalized pattern frequencies of fAB and fCD.

To evaluate the effect of various feature functions on performance, I trained a linear ker-

nel SVM with each of the feature functions. I randomly selected 50 questions from the
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Table 3.3: Patterns with the highest SVM linear kernel weights
pattern χ2 SVM weight
and Y and X 0.8927 0.0105
Y X small 0.0795 0.0090
X in Y 0.0232 0.0087
use Y to X 0.5059 0.0082
from the Y X 0.3697 0.0079
to that Y X 0.1310 0.0077
or X Y 0.0751 0.0074
X and other Y 1.0675 0.0072

a Y or X 0.0884 0.0068
that Y on X 0.0690 0.0067

Table 3.4: Performance with different Kernels
Kernel Type Score
Linear 0.40
Polynomial degree=2 0.34
Polynomial degree=3 0.34
RBF 0.36
Sigmoid 0.36

SAT analogy questions for evaluation. The remainder of the questions (374-50) are used

for training. Experimental results are summarized in Table 3.2. Out of the four feature

functions in Table 3.2, product of pattern frequencies performs best. For the remainder of

the experiments in this chapter I used this feature function. Patterns with the highest linear

kernel weights are shown in Table 3.3 alongside their χ2 values. The weight of a feature

in the linear kernel can be considered as a rough estimate of the influence it imparts on the

final SVM output. Patterns shown in Table 3.3 express various semantic relations that can

be observed in SAT analogy questions.

I experimented with different kernel types as shown in Table 3.4. Best performance is

achieved with the linear kernel. A drop of performance occurs with more complex kernels,

which is attributable to over-fitting. Figure 3.3 plots the variation of SAT score with the

number of snippets used for extracting patterns. From Figure 3.3 it is apparent that overall
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Figure 3.3: Performance with the number of snippets

the score improves with the number of snippets used for extracting patterns. Typically,

with more snippets to process, the number of patterns that can be extracted for a word-pair

increases. That fact enables us to represent a word-pair with a rich feature vector, resulting

in better performance.

Table 3.5 summarizes various relational similarity measures proposed in previous work.

All algorithms in Table 3.5 are evaluated on the same SAT analogy questions. Score is

computed by Formula 3.1. Because SAT questions contain 5 choices, a random guessing

algorithm would obtain a score of 0.2 (lower bound). The score reported by average senior

high-school student is about 0.570 [151] (upper bound). I performed 5-fold cross validation

on SAT questions to evaluate the performance of the proposed method. The first 13 (rows 1-

13) algorithms were proposed by Turney et al. [152], in which they combined these modules

using a weight optimization method. For given two word-pairs, the phrase vector (row

1) algorithm creates a vector of manually created pattern-frequencies for each word-pair

and compute the cosine of the angle between the vectors. Algorithms in rows 2-11 use

WordNet to compute various relational similarity measures based on different semantic

relations defined in WordNet. Similarity:dict (row 12) and Similarity:wordsmith (row

13) respectively use Dictionary.com and Wordsmyth.net to find the definition of
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Table 3.5: Comparison with previous relational similarity measures.
Algorithm score Algorithm score

1 Phrase Vectors 0.382 11 Holonym:member 0.200
2 Thesaurus Paths 0.250 12 Similarity:dict 0.180
3 Synonym 0.207 13 Similarity:wordsmyth 0.294
4 Antonym 0.240 14 Combined [152] 0.450
5 Hypernym 0.227 15 Proposed (SVM) 0.401
6 Hyponym 0.249 16 WordNet [157] 0.428
7 Meronym:substance 0.200 17 VSM [151] 0.471
8 Meronym:part 0.208 18 Pertinence [149] 0.535
9 Meronym:member 0.200 19 LRA [148] 0.561
10 Holonym:substance 0.200 20 Human 0.570

words in word-pairs and compute the relational similarity as the overlap of words in the

definitions. The proposed method outperforms all those 13 individual modules reporting a

score of 0.401, which is comparable with Veale’s [157] WordNet-based relational similarity

measure.

Although LRA (row 19 in Table 3.5) reports the highest SAT score of 0.561 it takes over

8 days to process the 374 SAT analogy questions [150]. On the other hand the proposed

method requires less than 6 hours using a desktop computer with a 2.4 GHz Pentium4 pro-

cessor and 2GB of RAM. In Table 3.6 I compare the proposed method against LRA on

runtime. The runtime figures for LRA are obtained from the original paper [150] and I

have only shown the components that consume most of the processing time. The gain in

speed is mainly attributable to the lesser number of web queries required by the proposed

method. To compute the relational similarity between two word-pairs A:B and C:D using

LRA, I first search in a dictionary for synonyms for each word. Then the original words

are replaced by their synonyms to create alternative pairs. Each word-pair is represented by

a vector of pattern-frequencies using a set of automatically created 4000 lexical patterns.

Pattern frequencies are obtained by searching for the pattern in a web search engine. For

example, to create a vector for a word-pair with three alternatives, LRA requires 12000

(4000 × 3) queries. On the other hand, the proposed method first downloads snippets for

each word-pair and then searches for patterns only in the downloaded snippets. Because

multiple snippets can be retrieved by issuing a single query, the proposed method requires
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Table 3.6: Comparison with LRA on runtime
LRA Hrs:Mins Hardware
Find alternatives 24 : 56 1 CPU
Filter phrases and patterns 143 : 33 16 CPUs
Generate a sparse matrix 38 : 07 1 CPU
Calculate entropy 0 : 11 1 CPU
Singular value decomposition 0 : 43 1 CPU
Evaluate alternatives 2 : 11 1 CPU
Total 209 : 41

Proposed Hrs:Mins Hardware
Download snippets 2 : 05 1 CPU
Pattern extraction 0 : 05 1 CPU
Pattern selection 2 : 56 1 CPU
Create feature vectors 0 : 46 1 CPU
Training 0 : 03 1 CPU
Testing 0.01 1 CPU
Total 5 : 56

only one search query to compute a pattern-frequency vector for a word-pair. Process-

ing snippets is also efficient as it obviates the trouble of downloading web pages, which

might be time consuming depending on the size of the pages. Moreover, LRA is based

on singular value decomposition (SVD), which requires time consuming complex matrix

computations.

3.3 Method II: Mahalanobis Distance Metric Learning

In section 3.2, I described a supervised approach to learn relational similarity using sup-

port vector machines. Although this supervised method produced encouraging results, it

has several limitations. First, although the proposed method extracts a large number of lex-

ical patterns, not all lexical patterns describe unique semantic relations. For example, the

two patterns X acquired Y and X bought Y both describe an acquisition relation between X
and Y. Second, semantic relations themselves can be dependent. For example, the semantic

relations IS A and HAS A are closely related. I next describe a Mahalanobis distance metric
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Google to acquire YouTube for $1.65 billion in stock. Combination will create new oppor-
tunities for users and content owners everywhere...

Figure 3.4: A snippet returned for the query “Google * * * YouTube”.

learning approach to overcome those limitations. I first present a sequential pattern clus-

tering algorithm to identify the different lexical patterns that describe a particular semantic

relation.

3.3.1 Retrieving Contexts

I must first identify the implicitly stated relations that hold between the two words in each

word-pair to compute the relational similarity between two given word pairs. The context

in which two words cooccur provides useful clues about the semantic relations that pertain

between those words. I propose the use of text snippets retrieved using a Web search engine

as an approximation of the context of two words. Snippets (also known as dynamic teasers)

are brief summaries provided by most Web search engines along with the search results.

Typically, a snippet contains a window of text selected from a document that includes the

queried words. Snippets are useful for search because, most of the time, a user can read

the snippet and decide whether a particular search result is relevant, without even opening

the url. Using snippets as contexts is also computationally efficient because it obviates the

need to download the source documents from the Web, which can be time consuming if a

document is large.

A snippet for a query containing two words captures the local context in which they

cooccur. For example, consider the snippet shown in Figure 3.4, returned by Yahoo2 for the

query “Google * * YouTube”. Here, the wildcard operator “*” matches one word or none

in a document. The snippet in Figure 3.4 is extracted from an online newspaper article

about the acquisition of YouTube by Google.

To retrieve snippets for a word-pair (A,B), I use the following seven types of queries:

“A * B”, “B * A”, “A * * B”, “B * * A”, “A * * * B”, “B * * * A”, and A B. The

queries containing the wildcard operator “*” return snippets in which the two words, A and
2http://developer.yahoo.com/search/boss/



3.3. METHOD II: MAHALANOBIS DISTANCE METRIC LEARNING 71

B appear within a window of specified length. I designate such queries wildcard queries. I

search for snippets in which the query words cooccur within a maximum window of three

words (tokens). This process is intended to approximate the local context of two words in

a document. The quotation marks around a query will ensure that the two words appear

in the specified order (e.g. A before B in snippets retrieved for the query “A * B”). As a

fallback in the case that all wildcard queries fail to return any snippets, I use the query A B

(without wildcards or quotations) to retrieve snippets where A and B appear in any order.

Once I collect snippets for a word-pair using the procedure described above, I remove

duplicate search results. I consider two snippets to be duplicates if they contain the exact

sequence of all words. Duplicate snippets exist mainly for two reasons. First, a web page

can be mirrored in more than one location, and the default de-duplication mechanism of

the search engine might fail to filter out the duplicates. Second, the queries I construct for

a word-pair are not independent. For example, a query with two wildcards might return a

snippet that can also be retrieved using a query with one wildcard. However, I observed

that the ranking of search results vary with the number of wildcards used. A search engine

usually returns only the top ranking results (in the case of Yahoo, only the top 1000 snippets

can be downloaded). I use multiple queries per word-pair that induce different rankings,

and aggregate search results to circumvent this limitation.

3.3.2 Extracting Lexical Patterns

Lexical syntactic patterns have been used in various natural language processing tasks such

as extracting hypernyms [60, 139], or meronyms [12], question answering [124], and para-

phrase extraction [13]. Following these previous works, I present a shallow lexical pattern

extraction algorithm to represent the semantic relations between two words. The proposed

method requires no language-dependent preprocessing such as part-of-speech tagging or

dependency parsing, which can be both time consuming at Web scale, and likely to produce

incorrect results because of the fragmented and ill-formed snippets. The pattern extraction

algorithm consists of the following three steps.

Step 1: Given a context S, retrieved for a word-pair (A, B) according to the procedure

described in section 3.3.1, I replace the two words A and B, respectively, with two
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variables X and Y . Legal abbreviations such as Inc., Ltd., Corp., and titles such

as Mr., Ms., Prof., Dr., Rev. are considered as occurrences of the query terms. For

example, Google Inc. is considered as an occurrence of the entity Google. I replace

all numeric values by D, a marker for digits. Punctuation marks are not removed.

Step 2: I generate all subsequences of the context S that satisfy all of the following condi-

tions.

1. A subsequence must contain exactly one occurrence of each X and Y (i.e.,

exactly one X and one Y must exist in a subsequence).

2. The maximum length of a subsequence is L words.

3. A subsequence is allowed to have gaps. However, I do not allow gaps of more

than g number of words. Moreover, the total length of all gaps in a subsequence

should not exceed G words.

4. I expand all negation contractions in a context. For example, didn’t is expanded

to did not. I do not skip the word not when generating subsequences. For

example, this condition ensures that from the snippet X is not a Y, I do not

produce the subsequence X is a Y.

Step 3: I count the frequency of all generated subsequences for all word pairs in the

dataset. I select subsequences with frequency greater than N as lexical patterns to

represent the semantic relations between words.

My pattern extraction algorithm has four parameters (ca. L, g, G and N). I set the values

of those parameters experimentally, as explained later in section 3.3.5. It is noteworthy that

the proposed pattern extraction algorithm considers all the words in a snippet, and is not

limited to extracting patterns only from the mid-fix (i.e., the portion of text in a snippet

that appears between the queried words). Moreover, the consideration of gaps enables

us to capture relations between distant words in a snippet. I use a modified version of

the prefixspan algorithm [119] to generate subsequences. The conditions in Step 2 are

used to prune the search space, thereby reducing the number of generated subsequences in

prefixspan. For example, some patterns extracted form the snippet shown in Figure 3.4 are:

X to acquire Y, X acquire Y, and X to acquire Y for.
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Figure 3.5: Distribution of four lexical patterns in word pairs.

3.3.3 Identifying Semantic Relations

A semantic relation can be expressed using more than one pattern. For example, consider

the two distinct patterns, X acquired Y, and X completed the acquisition of Y. Both these

patterns indicate that there exists an acquisition relation between X and Y. It is important to

know whether any correspondence pertains between the sets of patterns extracted for each

word-pair when I compute the relational similarity between two word pairs. We can expect

a high relational similarity if there are many related patterns between two word pairs.

I use the distributional hypothesis [59] to find semantically related lexical patterns. The

distributional hypothesis states that words that occur in the same context have similar mean-

ings. The distributional hypothesis has been used in various related tasks, such as identi-

fying related words[85], discovering inference rules[88], and extracting paraphrases[13].

If two lexical patterns are similarly distributed over a set of word pairs (i.e. occurs with

the same set of word pairs), then from the distributional hypothesis it follows that the two

patterns must be similar. For example, consider the distributions shown in Figure 3.5 for
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four lexical patterns: X buys Y, X acquires Y, Y CEO X, and Y chief executive X, over a

set of 100 word pairs. Each distribution is normalized such that the sum of frequencies

over all word pairs equals one. Figure 3.5 shows that the distributions of patterns Y CEO

X, and Y chief executive X have a high overlap (i.e., cosine similarity of 0.969). Similarly,

the distributions of patterns X buys Y, and X acquires Y show a high overlap (i.e. cosine

similarity of 0.853). However, almost no overlap is apparent between other combinations

of distributions. Consequently, to recognize semantically related patterns, I cluster lexical

patterns using the similarity of their distributions over word pairs.

I represent a pattern p by a vector p of word-pair frequencies. I designate p, the word-

pair frequency vector of pattern p. It is analogous to the document frequency vector of a

word, as used in information retrieval. The value of the element corresponding to a word-

pair (ai, bi) in p, is the frequency, f(ai, bi, p), that the pattern p occurs with the word-pair

(ai, bi). As demonstrated later in the experiments of this study, the proposed pattern extrac-

tion algorithm typically extracts numerous lexical patterns (more than 140, 000). Clustering

algorithms based on pairwise comparisons among all patterns are not feasible when the pat-

terns are numerous. Next, I present a sequential clustering algorithm to efficiently cluster

the extracted patterns.

Given a set P of patterns and a clustering similarity threshold θ, Algorithm 3 returns

clusters (of patterns) that express similar semantic relations. First, in Algorithm 3, the

function SORT sorts the patterns into descending order of their total occurrences in all

word pairs. The total occurrence of a pattern p is the sum of frequencies over all word pairs

(i.e.,
∑

i f(ai, bi, p)). After sorting, the most common patterns appear at the beginning in

P , whereas rare patterns (i.e., patterns that occur with only few word pairs) get shifted to

the end. Next, in line 2, I initialize the set of clusters, C, to the empty set. The outer

for-loop (starting at line 3), repeatedly takes a pattern pi from the ordered set P , and in the

inner for-loop (starting at line 6), finds the cluster, c∗ (∈ C) that is most similar to pi. First,

I represent a cluster by the centroid of all word-pair frequency vectors corresponding to the

patterns in that cluster to compute the similarity between a pattern and a cluster. Next, I

compute the cosine similarity between the cluster centroid (cj), and the word-pair frequency

vector of the pattern (pi). If the similarity between a pattern pi, and its most similar cluster,

c∗, is greater than the threshold θ, I append pi to c∗ (line 14). I use the operator⊕ to denote
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the vector addition between c∗ and pi. Then I form a new cluster {pi} and append it to the

set of clusters, C, if pi is not similar to any of the existing clusters beyond the threshold θ.

The only parameter in Algorithm 3, the similarity threshold, θ, ranges in [0, 1]. It

decides the purity of the formed clusters. Setting θ to a high value ensures that the patterns

in each cluster are highly similar. However, high θ values also yield numerous clusters

(increased model complexity). In section 2.3, I investigate, experimentally, the effect of θ

on the overall performance of the proposed relational similarity measure.

The computational time complexity of Algorithm 3 is O(n|C|), where n is the number

of patterns to be clustered and |C| is the number of clusters. Usually, n is much larger

than |C| (i.e. n À |C|). Therefore, the overall time complexity of Algorithm 3 linearly

scales with the number of patterns. The sequential nature of the algorithm avoids pairwise

comparisons among all patterns. Moreover, sorting the patterns by their total word-pair

frequency prior to clustering ensures that the final set of clusters contains the most common

relations in the dataset.

3.3.4 Measuring Relational Similarity

Evidence from psychological experiments suggest that similarity can be context-dependent

and even asymmetric [154, 100]. Human subjects have reportedly assigned different simi-

larity ratings to word pairs when the two words were presented in reverse order. However,

experimental results investigating the effects of asymmetry, report that the average dif-

ference in ratings for a word-pair is less than 5 percent [100]. Consequently, I assume

relational similarity to be symmetric and limit ourselves to symmetric similarity measures.

This assumption is in line with previous work on relational similarity described in sec-

tion 3.1.

I model the problem of measuring relational similarity between word pairs as one of

learning a Mahalanobis distance metric from a given set of relationally similar and dissimi-

lar word pairs. Given two points xi, xj, the (squared) Mahalanobis distance between them,

dA(xi,xj), is parametrized using a positive definite matrix A as follows,

dA(xi,xj) = (xi − xj)
TA(xi − xj). (3.4)
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Algorithm 3 Sequential pattern clustering algorithm.
Input: patterns P = {p1, . . . ,pn}, threshold θ
Output: clusters C

1: SORT(P )
2: C ← {}
3: for pattern pi ∈ P do
4: max ← −∞
5: c∗ ← null
6: for cluster cj ∈ C do
7: sim ← cosine(pi, cj)
8: if sim > max then
9: max ← sim

10: c∗ ← cj

11: end if
12: end for
13: if max > θ then
14: c∗ ← c∗ ⊕ pi

15: else
16: C ← C ∪ {pi}
17: end if
18: end for
19: return C

The Mahalanobis distance is a straightforward extension of the standard Euclidean dis-

tance. In fact, if I let A be the identity matrix, then the Mahalanobis distance reduces to

the Euclidean distance.

The motivation behind using Mahalanobis distance to measure relational similarity is

two-fold. First, Mahalanobis distance can be learned from a few data points, and effi-

cient algorithms that can scale well to high-dimensional feature spaces are known [40, 39].

Second, unlike Euclidean distance, Mahalanobis distance does not assume that features

are independent. This is particularly important for relational similarity measures because

semantic relations are not always independent. A posterior analysis of the Mahalanobis

matrix (A) can provide useful information related to the correlation between semantic re-

lations.

To learn a Mahalanobis distance metric, I first represent each word-pair (ai, bi) as a



3.3. METHOD II: MAHALANOBIS DISTANCE METRIC LEARNING 77

feature vector xi. The j-th element of xi is the total frequency of the word-pair (ai, bi) in

the j-th cluster; it is given as
∑

p∈cj
f(ai, bi, p). Here, p is a pattern in the cluster cj , and

f(ai, bi, p) is the number of times that the word-pair (ai, bi) appears with the pattern p. I

L2 normalize all feature vectors.

Given a set of relationally similar pairs S and dissimilar pairs D, the problem of learn-

ing a relational similarity measure becomes one of finding a positive definite matrix A,

such that dA(xi,xj) ≤ u for all (i, j) ∈ S, and dA(xi,xj) ≥ l for all (i, j) ∈ D. Here u

and l respectively signify upper and lower bounds of the decision threshold, and are set ex-

perimentally as described later in section 3.3.5. Intuitively, word pairs that share identical

semantic relations must have a higher relational similarity. I set an additional constraint

that the learned Mahalanobis matrix A must be “close” to the identity matrix I to incor-

porate this prior knowledge in the learning problem at hand. This keeps the Mahalanobis

distance similar to the Euclidean distance; it also helps to prevent overfitting of the data.

I follow the information theoretic metric learning (ITML) approach proposed by Davis et

al. [40] to optimize the matrix A.

We observe the fact that there exists a simple bijection (up to a scaling function) be-

tween the set of Mahalanobis distances and the set of equal mean multivariate Gaussian

distributions to quantify the “closeness” between A and I. Assuming the equal mean to

be µ, for a Mahalanobis distance parameterized by A, the corresponding Gaussian is given

by p(x; A) = 1
Z

exp(−1
2
dA(x, µ)), where Z is a normalizing constant and A−1 is the co-

variance of the distribution. Then, the closeness between A and I is measurable using the

Kullback-Liebler (KL) divergence between their corresponding multivariate Gaussians:

KL(p(x; I) ‖ p(x; A)) =

∫
p(x; I) log

p(x; I)

p(x; A)
dx. (3.5)

Using Formula 3.5, the learning problem can be stated as

min
A

KL(p(x; I) ‖ p(x; A)) (3.6)

s.t dA(xi,xj) ≤ u (i, j) ∈ S

dA(xi,xj) ≥ l (i, j) ∈ D.
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The integral form of the KL divergence presented in Formula 3.5 is difficult to numerically

optimize directly. However, it has been shown that the KL divergence between two multi-

variate Gaussians can be expressed as the convex combination of a Mahalanobis distance

between mean vectors and the LogDet divergence between the covariance matrices [38].

Therefore, assuming that the means of the Gaussians are equal, we have

KL(p(x; I) ‖ p(x; A)) =
1

2
Dld(A, I). (3.7)

Here, Dld(A,B) is the LogDet divergence of n × n positive-definite matrices A, B. It is

given as

Dld(A,B) = tr(AB−1)− log det(AB−1)− n. (3.8)

Finally, I incorporate slack variables into the formulation 3.6 to guarantee the existence of

a feasible solution for A, and pose the following optimization problem:

min
Aº0,ξ

Dld(A, I) + γDld(diag(ξ), diag(ξ0)) (3.9)

s.t. tr(A(xi − xj)(xi − xj)
T ) ≤ ξc(i,j) (i, j) ∈ S

tr(A(xi − xj)(xi − xj)
T ) ≥ ξc(i,j) (i, j) ∈ D,

where c(i, j) is the index of the (i, j)-th constraint, ξ is a vector of slack variables, initial-

ized to ξ0 (components of ξ0 are initialized to u and v, respectively, for similar and dis-

similar constraints), and γ is the parameter that controls the tradeoff between satisfying the

constraints and minimizing Dld(A, I). Algorithm 4 solves the optimization problem 3.9 by

repeatedly projecting the current solution onto a single constraint. Unlike Latent Relational

Analysis [150], Algorithm 4 requires no eigen-decomposition, which is time consuming for

large matrices. In Algorithm 4, a single iteration of looping through all constraints costs

O(cd2), where c signifies the number of constraints, and d represents the dimensionality of

feature vectors.

Once I obtain a Mahalanobis matrix A from Algorithm 4, I can use Formula 3.4 to

compute relational distances. Distance and similarity are inversely related. Therefore, it
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Algorithm 4 Information-theoretic metric learning.
Input: X, (d × n matrix); S, set of similar pairs; D, set of dissimilar pairs; u, l: distance

thresholds; I, identity matrix; γ, slack parameter; c, constraint index function
Output: A: Mahalanobis matrix

1: A ← I, λij ← 0 ∀i, j
2: ξc(i,j) ← u for (i, j) ∈ S; otherwise ξc(i,j) ← l
3: repeat
4: Pick a constraint (i, j) ∈ S or (i, j) ∈ D
5: p ← (xi − xj)

TA(xi − xj)
6: δ ← 1 if (i, j) ∈ S, −1 otherwise
7: α ← min

(
λij,

δ
2

(
1
p
− γ

ξc(i,j)

))

8: β ← δα/(1− δαξc(i,j))
9: ξc(i,j) ← γξc(i,j)/(γ + δαξc(i,j))

10: λij ← λij − α

11: A ← A + βA(xi − xj)(xi − xj)
TA

12: until convergence
13: return A

is possible to use Formula 3.4 directly to compare word pairs. However, if one wants to

convert distance values ranging in [0, +∞) to similarity scores ranging in [0, 1], it can be

done using sigmoid functions [121].

3.3.5 Experiments

I use two different datasets to evaluate the proposed relational similarity measure in two

tasks: classifying semantic relations between named entities, and solving SAT word-analogy

questions. Solving SAT word analogy questions was first proposed by Turney et al. [152]

as a benchmark to evaluate relational similarity measures. An SAT analogy question con-

sists of a stem word-pair that acts as the question, and five choice word pairs. A relational

similarity measure under evaluation will compare the stem word-pair with each choice

word-pair separately, and select the choice word-pair with the highest relational similarity

as the correct answer. The dataset contains 374 questions.

A limitation frequently associated with the SAT dataset is that it contains no named

entities or relations that Web users are typically interested in, such as relations pertaining
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Table 3.7: Overview of the relational similarity dataset.

Relation Type Total contexts Examples (20 in all for each relation type)
ACQUIRER-ACQUIREE 91439 (Google, YouTube), (Adobe Systems, Macromedia),

(Yahoo, Inktomi)
PERSON-BIRTHPLACE 72836 (Franz Kafka, Prague), (Charlie Chaplin, London),

(Marie Antoinette, Vienna)
CEO-COMPANY, 82682 (Terry Semel, Yahoo), (Eric Scmidt, Google),

(Steve Jobs, Apple)
COMPANY-HEADQUARTERS 100887 (Microsoft, Redmond), (Yahoo, Sunnyvale),

(Google, Mountain View)
PERSON-FIELD 99660 (Albert Einstein, Physics), (Roger Federer, Tennis),

(Shane Warne, Cricket)

to companies or people. Consequently, in addition to the SAT dataset, I created a dataset3

containing only entity pairs to evaluate the proposed relational similarity measure. Here-

inafter, I designate this as the ENT dataset. The ENT dataset contains 100 instances (i.e.

named-entity pairs) of the following five relation types.

ACQUIRER-ACQUIREE This relation holds between pairs of company names (A,B),

where the company B (acquiree) is acquired by the company A (acquirer). I only

consider acquisitions that have already completed.

PERSON-BIRTHPLACE This relation holds between pairs (A,B), where A is the name

of a person, and B is the location (place) where A was born. I consider city names

and countries as locations.

CEO-COMPANY This relation holds between pairs (A,B), where A is the chief execu-

tive officer (CEO) of a company B. I consider both current as well as past CEOs of

companies.

COMPANY-HEADQUARTERS This relation holds between pairs A,B, where company

A’s headquarters is located in a place B. I select names of cities as B.

3http://www.miv.t.u-tokyo.ac.jp/danushka/reldata.zip
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PERSON-FIELD This relation holds between pairs (A,B), where a person A is an expert

or is known for his or her abilities in a field B. Instances of this relation contain

scientists and their field of expertise, athletes and the sports they are associated with,

and artists and the genre in which they perform.

I selected the relation types described above because previous studies of relation detection

on the Web have frequently used those relations in evaluations [23]. I manually selected 20

instances for each of the five relation types. Instances were selected from various informa-

tion sources such as Wikipedia4, online newspapers, and company reviews5.

For word pairs in SAT and ENT datasets using the YahooBOSS API6, I download snip-

pets as described in section 3.3.1. For each relation type in ENT dataset, in Table 3.7, I

show some instances and the total number of contexts. I randomly split the ENT dataset

into five equal-sized partitions to conduct five-fold cross validation. Four partitions are

used to extract patterns, clustering and training. The remaining partition is used for testing.

For ENT data, positive training instances are generated by coupling word pairs that belong

to the same relation type (i.e., 5 × (20 × 19)/2 = 950 instances), and an equal number of

negative training instances are generated by randomly coupling word pairs that belong to

different relation types.

I run the pattern extraction algorithm described in section 3.2.1 on the contexts in my

dataset to extract lexical patterns. Experimentally, I set the values for the various parame-

ters in the pattern extraction algorithm: L = 5, g = 2, and G = 4. The proposed pattern

extraction algorithm identifies numerous lexical patterns. For example, for ENT train-

ing data, the algorithm extracts 473910 unique patterns. However, of those, only 148655

(31.36% of the total) occur more than twice. Patterns that only occur once contain mis-

spellings or badly formatted text. I only select the patterns that occur at least twice to

filter-out this noise. The remaining experiments described in this chapter are performed us-

ing those patterns. I first compute the distribution of Euclidean distances over the training

data to determine the values for distance thresholds u and l in Algorithm 4. I then respec-

tively select the 5-th and 95-th percentiles of distance distribution as u (1.96) and l (0.22).

4http://wikipedia.org/
5http://www.forbes.com/
6http://developer.yahoo.com/search/boss/
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Slack parameter γ is set to 0.01 experimentally.

Relation Classification

I evaluate the proposed relational similarity measure in a relation classification task. Given

an entity pair, the goal is to select a relation out of the five relation types in the ENT dataset

that describes the relation between the two entities. This is a multi-class classification

problem. I use k-nearest neighbor classification to assign a relation to a given entity pair.

Specifically, given an entity pair (a, b), for which a relation R holds, I compute the rela-

tional similarity between (a, b) and the remaining entity pairs in the dataset. I then sort the

word pairs in the descending order of relational similarity with (a, b), and select the most

similar k entity pairs. I then find the relation that is given to most of those k entity pairs

and assign this relation to (a, b). Ties are resolved randomly. This procedure is repeated for

each entity pair in the ENT dataset. Overall accuracy of relation classification is computed

as

Accuracy =
No. of correctly classified entity pairs

Total no. of entity pairs
. (3.10)

A good relational similarity measure must assign higher similarity scores to word pairs

with similar implicit relations. However, the classification accuracy does not evaluate the

relative rankings of similarity scores. I use average precision [132] to evaluate the top k

most similar entity pairs to a given entity pair. Average precision integrates the precision

at different ranks. It is frequently used as an evaluation measure in retrieval tasks. The

average precision for a particular relation type R is defined as

AveragePrecision =

∑k
r=1 Pre(r)× Rel(r)

No of relevant word pairs
. (3.11)

Here, Rel(r) is a binary valued function that returns 1 if the entity pair at rank r has the

same relation (i.e., R) as in (a, b). Otherwise, it returns zero. Furthermore, Pre(r) is the

precision at rank r, which is given as

Pre(r) =
no. of entity pairs with relation R in top r pairs

r
. (3.12)
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The number of relevant entity pairs is 20 for all five relation types in my dataset. I consider

the 10 most similar entity pairs (i.e., k = 10) for nearest neighbor classification. The

average precision is computed for those top 10 entity pairs.

I use ENT training data to investigate the effect of clustering threshold θ (Algorithm 3)

on relation classification performance. Results are summarized in Figure 3.6. Overall, in

Figure 3.6, we see that performance increases with θ. This is because higher values of θ

result in highly similar pattern clusters that represent specific semantic relations. However,

a slight drop of performance can be observed for high θ values, because it produces a large

number of pattern clusters (i.e., increased model complexity), which results in over fitting

the data. The best performance is reported for θ = 0.905. The remaining experiments

described in this section use this value of theta.

In Table 3.8, I show the top 10 clusters with the largest number of lexical patterns. The

number of patterns in each cluster is shown within brackets in the first column. For each

cluster in Table 3.8, I show the top four patterns that occur in the greatest number of entity

pairs. For explanatory purposes, I label the clusters with the five relation types as clusters 1

and 4 (acquirer-acquiree); clusters 2, 3, 6, and 7 (person-field); cluster 5 (CEO-company);

cluster 8 and 10 (company-headquarters); cluster 9 (person-birthplace). Table 3.8 clarifies

that patterns representing various semantic relations are extracted by the proposed pattern

extraction algorithm. Moreover, we see that each cluster contains different lexical patterns

that express a specific semantic relation. We can also find multiple clusters even among the

top few clusters shown in Table 3.8 that represent a particular relation type. For example,

cluster 1 and 4 both represent an acquirer-acquiree relation, although the patterns in cluster

1 are derived from the verb acquire, whereas the patterns in cluster 4 are derived from the

verbs buy and purchase. We can expect a certain level of correlation among such clusters,

which justifies the use of the Mahalanobis distance instead of Euclidean distance when

computing relational similarity.

I compare the proposed relational similarity measure (PROP) to the Euclidean distance

baseline (EUC), vector space model-based relational similarity [152] (VSM) and the state-

of -the-art Latent Relational Analysis [150] (LRA). Next, I explain each of those relational

similarity measures in detail.

VSM: This is the vector space model-based approach proposed by Turney et al. [152].



84 CHAPTER 3. RELATIONAL SIMILARITY

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1

Pe
rf

or
m

an
ce

Clustering Threshold

Accuracy
Average Precision

Figure 3.6: Performance of the proposed method against the clustering threshold (θ)

First, each word-pair is represented using a vector of pattern frequencies. Then the

relational similarity between two word pairs is computed as the cosine of the angle

between the two vectors representing the two word pairs. This approach is equivalent

to computing relational similarity using Formula 3.4, if I define feature vectors as

pattern frequency vectors and take the identity matrix as A.

LRA: This is the Latent Relational Analysis (LRA) proposed by Turney [150]. First, a ma-

trix is created, in which the rows represent word pairs and the columns represent lex-

ical patterns. An element of the matrix corresponds to the frequency of occurrence of

a word-pair in a particular lexical pattern. Next, singular value decomposition (SVD)

is performed on this matrix to reduce the number of columns. Finally, the relational

similarity between two word pairs is computed as the cosine of the angle between the

corresponding row vectors. I re-implemented LRA as described in the original paper.

However, I do not use related word thesauri to find additional word pairs, because

such resources are not available for named entities. Following, Turney’s proposal, I

used the most frequent 4000 lexical patterns in the matrix and reduced the number of
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Table 3.8: Most frequent patterns in the largest clusters.

cluster 1 (2868) X acquires Y X has acquired Y X’s Y acquisition
X, acquisition, Y Y goes X

cluster 2 (2711) Y legend X was X’s championship Y Y star X was
X autographed Y ball Y star X robbed

cluster 3 (2615) Y champion X world Y champion X X teaches Y
X’s greatest Y Y players like X

cluster 4 (2008) X to buy Y X and Y confirmed X buy Y is
Y purchase to boost X X is buying Y

cluster 5 (2002) Y founder X Y founder and CEO X X, founder of Y
X says Y X talks up Y

cluster 6 (1364) X revolutionized Y X professor of Y in Y since X
ago, X revolutionized Y X’s contribution to Y

cluster 7 (845) X and modern Y genius: X and modern Y Y in DDDD, X was
on Y by X X’s lectures on Y

cluster 8 (280) X headquarters in Y X offices in Y past X offices in Y
the X conference in Y X headquarters in Y on

cluster 9 (144) X’s childhood in Y X’s birth in Y Y born X
Y born X introduced the sobbing X left Y to

cluster 10 (49) X headquarters in Y X’s Y headquarters Y - based X
X works with the Y Y office of X

columns to 300 via SVD (i.e., eigenvectors corresponding to the largest 300 eigen-

values are used to approximate the matrix). I used Scientific Python’s SVD library7

for the computation of SVD. LRA is the current state-of-the-art relational similarity

measure.

EUC: I set A in Formula 3.4 to the identity matrix and compute relation similarity using

pattern clusters. This is equivalent to computing relational similarity between two

word pairs as the Euclidean distance between the corresponding two feature vectors

created using pattern clusters. This baseline is a cut-down version of the proposed

method, where all clusters are assumed to be independent. This baseline is expected

to show the decrease in the performance when I do not use Mahalanobis distance

7www.scipy.org
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Table 3.9: Performance of the proposed method and baselines.
Relation VSM LRA EUC PROP
acquirer-acquiree 0.9227 0.9224 0.9147 0.9415
comp.-headquarters 0.8455 0.8254 0.7986 0.8653
person-field 0.4470 0.4396 0.5195 0.5715
CEO-comp. 0.9582 0.9612 0.9058 0.9578
person-birthplace 0.2747 0.2795 0.3343 0.3648
Overall Average Precision 0.6896 0.6856 0.6946 0.7403

Classification Accuracy 0.86 0.88 0.90 0.93

learning.

PROP: This is the proposed relational similarity measure, defined in Formula 3.4. For

both EUC and PROP, I used the same set of clusters. Therefore, any difference

in performance can be attributable to using the Mahalanobis distance when comput-

ing relational similarity. I used the 10447 clusters derived by setting the clustering

threshold θ to the value 0.905.

The four methods described above presented for comparison in Table 3.9. For each

relation type, Table 3.9 shows the average precision scores computed using Formula 3.11.

Moreover, the overall performance is reported using both average precision and classifica-

tion accuracy. The proposed method (PROP) reports the highest overall average precision

(0.7403) in Table 3.9. In fact, PROP has the best average precision scores for four out of the

five relation types. Analysis of variance (ANOVA) reveals that the average precision scores

in Table 3.9 are statistically significant. Moreover, paired t-tests conducted between the

proposed method (PROP) and each of the remaining three methods in Table 3.9, reveal that

the improvement shown by PROP over VSM, EUC, and LRA is statistically significant

(α = 0.01). PROP has the highest classification accuracy (0.93), followed by EUC, LRA,

and VSM, in that order. It is noteworthy that the EUC baseline that does not consider inter-

cluster correlation performs better than the VSM method. This result shows that cluster-

ing similar patterns prior to computing relational similarity indeed improves performance.

Among the five relation types compared in Table 3.9, high average precision scores are

reported for the following three relation types: acquirer-acquiree, company-headquarters,
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Table 3.10: Performance on the SAT dataset.
Algorithm score Algorithm score
Random guessing 20.0% LSA+Predictation [90] 42.0%
Jiang & Conrath [150] 27.3% Veale (WordNet) [157] 43.0%
Lin [150] 27.3% Bicici & Yuret [14] 44.0%
Leacock & Chodrow [150] 31.3% VSM [151] 47.1%
Hirst & St.-Onge [150] 32.1% PROPOSED 51.1%
Resnik [150] 33.2% Pertinence [149] 53.5%
PMI-IR [150] 35.0% LRA [150] 56.1%
SVM [19] 40.1% Human 57.0%

and CEO-company. Lowest performance is reported for the person-birthplace relation. A

closer look into the snippets extracted for the person-birthplace pairs reveals that there were

many snippets that convey information related to places that people associate with places

other than their place of birth. For example, regarding actors, the locations where they

gave their first performance are incorrectly extracted as contexts for the person-birthplace

relation.

Solving SAT Word Analogy Questions

Following the previous work on relational similarity measures, I use the proposed method

to solve SAT word-analogy questions. I split the SAT dataset (374 questions) randomly into

five partitions and select four partitions as training data and the remainder as test data. The

procedure is repeated with different partitions. Then the experimental results are reported

for five-fold cross-validation. For all word pairs in the SAT dataset, I download contexts

from the Web (section 3.3.1), and extract lexical patterns (section 3.2.1). I then cluster the

extracted patterns using Algorithm 3. Next, for each SAT question in the training dataset, I

create a positive training instance by coupling the stem word-pair with the correct answer.

Similarly, negative training instances are created by coupling the stem word-pair with in-

correct answers. I then use Algorithm 4 to learn a Mahalanobis distance matrix from the

training data. To solve an SAT question in the test dataset, I compute the relational similar-

ity (alternatively distance) between the stem word-pair and each choice word pairs using

Formula 3.4, and select the choice with the highest relational similarity (lowest distance)
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as the correct answer. The SAT score is computed as the percentage of correctly answered

questions to the total questions in the dataset.

As shown in Table 3.10 the proposed method reports an SAT score of 51.1%; it is ranked

3rd among 16 systems. The average SAT score reported by high-school students is 57%.

Randomly guessing one out of five choices gives the lower bound of 20%. The proposed

method outperforms WordNet-based relational similarity measures (Veale [157]) as well as

various corpus-based approaches. The two systems that perform better than the proposed

method (i.e., Pertinence and LRA) use a synonym dictionary to find similar word pairs.

However, the proposed method requires no external resources such as synonym dictionaries

to compute relational similarity. In fact, synonym dictionaries for named entities are either

not available or incomplete. Moreover, as stated in the original paper, LRA takes over 9

days to answer the 374 questions in the SAT dataset, whereas the proposed method requires

less than 6 hours to answer the same set of questions. The gain in processing time can

be attributable to two factors. First, unlike LRA and Pertinence, the proposed method

requires no singular value decomposition (SVD). Performing SVD on large matrices is

time consuming. For example, in LRA the data matrix consists of 2176 word pairs (rows)

and 4000 patterns (columns). Second, compared to LRA, the proposed method requires

much fewer search engine queries. In LRA, to compute the feature vector for a word-pair

we must issue a query for each pattern extracted. For example, with 4000 patterns, LRA

requires at least 8000 (4000×2 word pairs) search engine queries to compute the relational

similarity between two word-pairs. On the other hand, the proposed method searches for

patterns only within the snippets downloaded for a word-pair. Because multiple snippets

can be downloaded by issuing a single query, the proposed method requires only two search

engine queries to compute the relational similarity between two word pairs. Moreover, the

number of search engine queries is independent of the number of patterns. Therefore, the

proposed method is more appropriate in an online setting (e.g., web search), in which we

must quickly compute relational similarity for unseen word pairs.

The definition of relational similarity, as given in Formula 3.4 can be viewed as a gen-

eral framework into which all existing relational similarity measures can be integrated.

The existing approaches differ in their definition of matrix A. For example, in VSM, A

is the identity matrix, and in LRA it is computed via SVD. The proposed method learns
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a Mahalanobis distance matrix as A using training data. The task of designing relational

similarity measures can be modeled as searching for a matrix A that best reflects the notion

of relational similarity possessed by humans.

The full potential of relational similarity measures in Semantic Web is largely unex-

plored. Measuring the similarity between relations is important for Semantic Web search.

A relational similarity measure can be used to find similar relations in an ontology to im-

prove the recall in semantic search. For example, consider the two analogous SPARQL

queries ?X isCapitalOf ?Y and ?X isStateCapitalOf ?Y. We can expect a high degree of

relational similarity between the entity pairs that satisfies each of those relations. Conse-

quently, given the result set (entity pairs) for one query, we can use a relational similarity

measure to find results for the other.

So far in this thesis I have studied semantic (attributional) similarity (Chapter 2) and

relational similarity (Chapter 3) separately. As described in Section 1.8, attributes and rela-

tions have a dual connection. Therefore, a natural question that arises from our discussion

is whether there is any relationship between the two types of similarities. For example,

“given a relational similarity measure can we use it to measure attributional similarity?”,

or vice versa. I will discuss the relationship between the two types of similarity measures

in detail in Chapter 7, where I propose a relational model of similarity.



Chapter 4

Personal Name Disambiguation

In this thesis, so far I have proposed and experimentally evaluated both semantic and re-

lational similarity measures that use web search engines. As already discussed in chapter

1, similarity measures are useful in a wide range of numerous related tasks such as docu-

ment/term clustering, solving analogy questions, query expansion, automatic thesauri, and

word sense disambiguation. A thesis on similarity measures would not be complete if it

does not consider the potential applicability of the proposed similarity measure. I dedicate

this and next chapters to evaluate the contribution of similarity measures in real-world web

applications. Specifically, I investigate the problem of person name disambiguation on the

web. Disambiguating a person on the web can be difficult because of two main problems:

namesakes (i.e. different people with the same name), and name aliases (i.e. a particular

individual being referred to by more than one name). This chapter concentrates on the

namesake problem. The name alias problem is investigated in chapter 5.

The problem of measuring similarity and the problem of entity resolution are closely

related. By entity resolution, I collectively refer to both namesake disambiguation problem

and name alias detection problem. In natural language processing field these two tasks are

commonly known as word sense disambiguation (WSD) and cross-document co-reference

resolution. If we consider an entity e, it can be represented by the set of attributes it has. In

general, an entity can have multiple appearances on the web. What we find on the web are

these appearances of an entity and not the entity itself. To differentiate the appearance of

an entity from the actual entity itself, I refer to the former as an instance of an entity. Let

90
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us illustrate this distinction by an example. Consider the case where e is a person whose

name is n. The set of web pages that contain n are potential instances of e. However, a

name is only one of the many attributes of an entity. For example, for a person there can

be other attributes beside a name such as the date of birth, nationality, affiliation, etc. As

we shall see in Chapter 6, extracting attributes of an entity is a challenging task. However,

to facilitate our discussion here let us assume that given an entity, we can represent it

by its set of attributes. Then, the entity resolution problem can be solved by measuring

the attributional similarity between instances of entities. In particular, if we consider the

feature model of similarity, then the set of attributes acts as the set of features in similarity

computations. The namesake disambiguation problem is where the attribute name takes

the exact value (a string) for two or more entities. The alias detection problem is where the

attribute name takes multiple values in different instances of the same entity.

The Internet has grown into a collection of billions of web pages. Web search engines

are important interfaces to this vast information. We send simple text queries to search

engines and retrieve web pages. However, due to the ambiguities in the queries, a search

engine may return a lot of irrelevant pages. In the case of personal name queries, we may

receive web pages for other people with the same name (namesakes). For example, if we

search Google 1 for Jim Clark, even among the top 100 results we find at least eight different

Jim Clarks. The two popular namesakes; Jim Clark the Formula one world champion (46

pages), and Jim Clark the founder of Netscape (26 pages), cover the majority of the pages.

What if we are interested only in the Formula one world champion and want to filter out

the pages for the other Jim Clarks? One solution is to modify our query by including a

phrase such as Formula one or racing driver with the name, Jim Clark. This paper presents

an unsupervised method to extract such phrases from the Web.

Identifying proper names is a vital first step in information integration. The same proper

name could appear across different information sources. An information integration system

needs to resolve these ambiguities in order to correctly integrate information regarding a

particular entity. IJCAI held the workshop on Information Integration on the Web (IIWeb)

in 2003, Web People Search Task (WePS) workshops2 held in conjunction with ACL 2008

1www.google.com
2http://nlp.uned.es/weps/
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and WWW 2009 are some of the recent attempts by the research community to address the

name disambiguation problem.

Two tasks that can readily benefit from automatically extracted key phrases to disam-

biguate personal names are query suggestion and social network extraction. In query sug-

gestion [50], a search engine returns a set of phrases to the user alongside with the search

results. The user can then modify the original query using these phrases to narrow down

the search. Query suggestion helps the users to easily navigate through the result set. For

personal name queries, the key phrases extracted by the proposed algorithm can be used as

suggestions to reduce ambiguity and narrow down the search on a particular namesake.

Social networking services (SNSs) have been given much attention on the Web recently

as an application of Semantic Web. SNSs can be used to register and share personal infor-

mation among friends and communities. There have been recent attempts to extract social

networks using the information available on the Web3 [102, 96]. In both Matsuo’s [96] and

Mika’s [102] algorithms, each person is represented by a node in the social network and

the strength of the relationship between two people is represented by the length of the edge

between the corresponding two nodes. As a measure of the strength of the relationship be-

tween two people A and B, these algorithms use the number of hits obtained for the query

A AND B in a web search engine. However, this approach fails when A or B has namesakes

because the number of hits in these cases includes the hits for the namesakes. To overcome

this problem, we could include phrases in the query that uniquely identify A and B from

their namesakes.

In this chapter, I follow a three-stage approach to extract phrases that identify people

with the same name. In the first stage I represent each document containing the ambiguous

name by a term-entity (TE) model, as described in section 4.2.3. I define a pair wise

contextual similarity metric based on snippets returned by a search engine, to calculate the

similarity between term-entity models. In the second stage, I cluster the TE-models using

the similarity metric. In the final stage, I select key phrases from the clusters that uniquely

identify each namesake.

3http://flink.semanticweb.org/. The system won the 1st place at the Semantic Web Challenge in
ISWC2004.
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Personal Name Disambiguation in Social Networks

Social networks have grown both in size and popularity over the recent years. mixi4, a

popular social network system in Japan, reported over ten million registered users at the

turn of the year 2007. As more and more people join these social networks, it is highly

likely that more than one person with identical names exist in the network. In order to

identify a particular person in a social network by his or her name, we must first resolve

the ambiguity for that name. The proposed method can be used to annotate people using

automatically extracted keywords, thereby reducing the ambiguity in the social network.

Disambiguating personal names is an essential first step in many social network ex-

traction algorithms [102, 96]. Given a pair of names, social network extraction algorithms

attempt to capture the degree of association between the two people from the Web. Various

association measures such as the Jaccard coefficient [102], and Overlap coefficient [96]

have been proposed to find the relationships between personal names on the Web. They

use page-counts returned by a web search engine for the individual names and the conjunc-

tive (AND) query to compute association measures. Page-count of a query is the number

of different web pages in which the query words appear. Most major web search engines

provide page-counts (or approximated page-counts) for user queries. However, if one or

both of the names are ambiguous (i.e. if there are other people with the same names),

then page-counts do not accurately reflect the association of the two persons that we are

interested. One solution to this problem is to include a keyword that uniquely identifies the

person under consideration from his or her namesakes. The keywords extracted by the pro-

posed method have been successfully utilized to disambiguate real-world large-scale social

networks [95].

The context of a person in a social network can be useful to disambiguate that person.

For example, if you know one or more friends of a person, then you can use that information

to disambiguate a person. Bekkerman and McCallum [10] showed that it is possible to

disambiguate a group of people collectively in this manner. The underlying assumption

here is that two ambiguous people are unlikely to have the same set of friends. However,

to utilize the social context of a person to disambiguate that person, we must first either

4http://mixi.jp/
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obtain a social network covering that person (i.e. Facebook search page indicating some

of the friends of the target person) or must mine her social network from the web. The

first approach has privacy issues and might not be possible when a person does not disclose

her friends to the public. The second approach (as discussed in the previous paragraph)

requires name disambiguation to be performed before hand.

The friend of a friend (FOAF) project5 is an initiative to create an annotated web of

people [101]. In FOAF, users can describe themselves using keywords, provide links to

their home pages and introduce their friends. FOAF uses RDF (Resource Description

Framework) to represent the information provided by the users. We can boost the man-

ual annotation process in FOAF by automatically extracting keywords from the Web that

describe individuals.

Personal Name Disambiguation in Ontologies

Ontologies are an important tool for formally specifying the vocabulary and relationships

between concepts used on the Semantic Web. However, manually creating large-scale on-

tologies from scratch can be time consuming and tedious. Several methods have been pro-

posed to boost the process of ontology creation by aligning and merging existing ontologies

to create larger ontologies [110, 71, 56], and extracting ontologies from the Web [30].

Moreover, proper alignment of ontologies is important for evaluating ontologies [44],

where an ontology is compared against a gold-standard using various evaluation metrics6.

However, ambiguity among concepts in different ontologies lead to inaccurate alignments.

For example, consider merging two ontologies representing employees in two companies.

A particular personal name might appear multiple times in the two ontologies. A single

person can be associated with different projects in an internal ontology of a company. Be-

fore merging the two ontologies one must first resolve the ambiguities for the concepts.

Annotating concepts (in this Chapter I focus on personal names) with extra keywords is a

useful way to disambiguate entries in an ontology.

5http://www.foaf-project.org/
6http://oaei.ontologymatching.org/2007/
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4.1 Related Work

Personal name disambiguation can be seen as a special case of word sense disambiguation

(WSD) [135, 98] problem which has been studied extensively in Natural Language Pro-

cessing. However, there are several fundamental differences between WSD and personal

name disambiguation. WSD typically concentrates on disambiguating between 2-4 possi-

ble meanings of a word, all of which are a priori known. However, with personal names on

the Web, the number of different namesakes can be much larger and unknown. Moreover,

WSD algorithms have access to sense annotated dictionaries and corpora. However, it is

not feasible to create or maintain such resources for ambiguous personal names on the Web.

In large citation databases, author names can easily become ambiguous. In order to

efficiently search for a particular publication, one must first disambiguate the author names.

Besides the author names, a citation usually contains information such as the title of the

publication, conference or journal name, year of publication and the number of pages.

Such information have been utilized in previous work on citation disambiguation to design

both supervised and unsupervised algorithms [58, 72, 141, 66, 67]. However, compared

to a web page, a citation has a short and semi-structured format. One must first extract

salient information related to the ambiguous name, to disambiguate personal names on the

Web, This extra step involved when disambiguating names on the Web makes it a more

challenging task.

Research on multi-document personal name resolution [6, 91, 47, 125] focuses on the

related problem of determining if two instances with the same name and from different doc-

uments refer to the same individual. Bagga and Baldwin [6] first perform within-document

co-reference resolution to form co-reference chains for each entity in each document. They

then use the text surrounding each reference chain to create summaries about each entity

in each document. These summaries are then converted to a bag-of-words feature vector

and are clustered using the standard vector space model, often employed in information

retrieval. The use of simplistic bag-of-words clustering is an inherently limiting aspect of

their methodology. On the other hand, Mann and Yarowsky [91] propose a richer docu-

ment representation involving automatically extracted features. However, their clustering
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technique can be basically used only for separating two people with the same name. Fleis-

chman and Hovy [47] constructs a maximum entropy classifier to learn distances between

documents that are subsequently clustered. However, their method requires a large training

set.

Pedersen et al. [118, 117] propose an unsupervised approach to resolve name ambigu-

ity by representing the context of an ambiguous name using second order context vectors

derived using singular value decomposition (SVD) on a co-occurrence matrix. They then

agglomeratively cluster the vectors using cosine similarity. Li et al. [83] propose two ap-

proaches to disambiguate entities in a set of documents: a supervisedly trained pairwise

classifier and an unsupervised generative model. They do not assign keywords to different

people with an ambiguous name.

Bekkerman and McCallum [10] present two unsupervised methods for finding web

pages referring to a particular person: one based on link structure and another using Ag-

glomerative/Conglomerative Double Clustering (A/CDC). Their scenario focuses on simul-

taneously disambiguating an existing social network of people, who are closely related.

Therefore, their method cannot be applied to disambiguate an individual whose social net-

work (for example, friends, colleagues) is not known.

Guha and Grag [54] present a re-ranking algorithm to disambiguate people. The algo-

rithm requires a user to select one of the returned pages as a starting point. Then, through

comparing the person descriptions, the algorithm re-ranks the entire search results in such a

way that pages referring to the same person described in the user-selected page are ranked

higher. A user needs to browse the documents in order to find which one matches the user’s

intended referent, which puts an extra burden on the user.

4.2 Automatic annotation of ambiguous personal names

4.2.1 Problem definition

Definition 1 Given an entity e which has the name n, I call it ambiguous if there is at least

one other entity e′ which has the same name n.

For example, in the case of people, if two or more people have the same personal name n,
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Figure 4.1: A TEM is created from each search result downloaded for the ambiguous name.
Next, TEMs are clustered to find the different namesakes. Finally, discriminative keywords
are selected from each cluster and used for annotating the namesakes.

then they are collectively called as namesakes of the ambiguous name n.

Definition 2 Given an ambiguous entity e, the problem of automatic annotation of e is

defined as the task of finding a set of words (or multiword expressions) W (e), that uniquely

identify e from his or her namesakes.

For example, in our example of Jim Clark, the set of words (or multiword expressions)

racing driver, formula one, scotsman can identify the Formula One racing champion Jim

Clark from the other Jim Clarks in the Web. It is noteworthy that the name string (i.e. jim

clark itself is not unique and does not belong to the set of words. In practice, whether a

particular word (or a multiword expression) can uniquely identify a namesake of a given

ambiguous name, can be difficult to decide. In this thesis, I take a pragmatic approach

and decide a word (or a multiword expression) can uniquely identify a person, if that word

together with the person’s name (e.g. in a conjunctive query) can return results only for

that person in a web search engine.

4.2.2 Outline

The proposed method is outlined in Figure 4.1. Given an ambiguous personal name, the

first step in my algorithm is to collect information regarding the different people with that
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name from the Web. Retrieving a relevant set of documents for a query, is a fundamental

problem that has been studied extensively in information retrieval [5]. I assume the avail-

ability of a web search engine and query for a given ambiguous personal name to collect

information regarding the different people who are represented on the web by that name.

Specifically, given an ambiguous personal name n, I download the top N ranked search

results and only consider the namesakes with name n that appear in this set of N results.

How to represent information about people and their web activities, is an important

problem that any web-based identity disambiguation method must consider. For this pur-

pose, I propose Term-Entity Models (TEMs). TEMs are sets of terms and/or named entities

that are closely associated with the people with an ambiguous name on the web. I formally

define TEMs in Section 4.2.3, and describe an unsupervised method to create TEMs for a

given personal name in Section 4.2.4. To determine whether two documents disclose infor-

mation about the same person, we must compare the TEMs created for the two documents.

However, measuring the similarity between TEMs is not a trivial task. For example, con-

sider the two phrases Formula One and Racing Championship. The two phrases are closely

related because Formula One is a racing championship. However, there are no words in

common (i.e. zero word overlap) between those two phrases. To infer that the two TEMs

in this example correspond to two documents that are about the racing champion Jim Clark,

we must accurately measure the similarity between phrases (terms and/or named-entities).

I employ a contextual similarity measure (Section 4.2.5) for this purpose.

I make the assumption that all occurrences of a given ambiguous personal name within a

document (e.g. a web page) refer to the same individual. Under this assumption, identifying

the different namesakes for a given name can be modeled as a document clustering problem.

Initially, a TEM is created from each downloaded document. Next, I cluster those TEMs

to identify the different people (namesakes) for the ambiguous personal name. I use group-

average agglomerative hierarchical clustering for this purpose. A document is assigned

to only one cluster (i.e. hard clustering). Ideally, each final cluster formed by this process

must represent a different namesake. Therefore, the number of clusters must be equal to the

number of different namesakes of the given name. However, in reality it is not possible to

know in advance the number of different namesake of a given name on the web. Therefore,

I terminate the agglomerative clustering process when the overall cluster quality (defined
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in Section 4.2.6) drops below a pre-defined threshold value. The threshold is determined

using a development dataset. Finally, I select unique keywords from each cluster, and

annotate the different namesakes using the extracted keywords.

4.2.3 Term-Entity Models

When searching for an individual who has numerous namesakes on the Web, one quick

solution that we frequently adopt is to append the query with one or two keywords that

identify the person we are interested in from his or her namesakes. For example, if we

want to search for Jim Clark the racing driver we could append the query with keywords

such as Racing Driver, Formula One or Scotsman. These keywords enable us to filter-out

the search results for other Jim Clarks. I extend this idea and propose a keyword-based

model to represent individuals on the Web.

Definition 3 A Term-Entity Model (TEM) of a person p is a set of terms or named-entities

that uniquely describes that person from his or her namesakes. Terms and/or named entities

that construct a TEM are called elements of the TEM.

I use the notation T (p) to denote the TEM of a person p. Then with the conventional

set notation we can write,

T (p) = {e1, e2, . . . , en}. (4.1)

Here, e1, e2, . . . , en are the elements of T (p) and can be terms or named entities.

For example, TEM for JimClarkdriver, the racing champion, could be,

T (JimClarkdriver) = {Formula One, Racing Driver, Champion}. (4.2)

In this example, Racing Driver and Champion are terms whereas, Formula One is a named-

entity. I use the subscript notation here to indicate a namesake of a name.

TEMs capture the essence of the keyword-based boolean web queries we are accus-

tomed to. For simplicity, if we limit ourselves to conjunctive queries (AND queries), then

the elements of an TEM act as the literals of the boolean query that identifies a person

with the ambiguous name. Moreover, TEMs can be considered as a scaled down version
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of the bag-of-words (BOW) model [92], which is commonly used in information retrieval.

Bag-of-words model represents a document as a set of words. However, considering all the

words as identifiers of a person is noisy and inefficient. The reasons for using both terms

and named-entities in TEMs are two fold. Firstly, there are multi-word phrases such as the

secretary of state, chief executive officer, racing car driver which are helpful when identify-

ing people on the web but are not recognized as named-entities. Secondly, automatic term

extraction [48] can be carried out using statistical methods, and does not require extensive

linguistics resources such as named entity dictionaries, which might not be readily avail-

able for some domains. It is noteworthy that I do not distinguish terms from named-entities

once I have cerated a TEM for a person. All elements in a TEM are considered equally,

irrespective of whether they are terms or named-entities in the subsequent processing. In

practice, some terms (e.g. secretary of state) can also be extracted by certain named-entity

recognizers (NERs) (i.e. secretary of state as a PERSON entity), and vice-versa. The mo-

tivation of using both named-entities as well as terms in the model is to obtain a better

representation of a person.

4.2.4 Creating Term-Entity Models from the Web

Given an ambiguous personal name, I extract terms and named entities from the contexts

retrieved from a web search engine for the name to create its TEM. If the ambiguous name n

appears in a document D, then the context of n could be for example a paragraph containing

n, a fixed window of words including n, or the entire text in document D. Other than for

some exceptional cases, such as a search results page for an ambiguous name from a search

engine or a disambiguation entry in Wikipedia, usually a single web page does not include

more than one namesake of an ambiguous name. In fact, all previous work in web-based

name disambiguation have modeled this problem as a web page clustering problem, where

each cluster represents a different person of the given ambiguous name. Following these

lines, I consider the entire document where an ambiguous name appears as its context.

For automatic multi-word term extraction, I use the C-value measure proposed by

Frantzi et al. [48]. The C-value approach combines linguistic and statistical information,

emphasis being placed on the statistical part. The linguistic information consists of the



4.2. AUTOMATIC ANNOTATION OF AMBIGUOUS PERSONAL NAMES 101

part-of-speech tagging of the document being processed, the linguistic filter constraining

the type of terms extracted, and a stop word list. First, the context from which we need to

extract terms is tagged using a part of speech tagger. Next a set of pre-defined POS patterns

are used to extract candidate terms. For example, the POS pattern (NN+) extracts noun

phrases, and (AdJ)(NN+) extracts noun phrases modified by an adjective. Here, NN

represents a single noun, Adj represents a single adjective, and + matches one or more

occurrences of the preceding term. A list of stop words can be used to prevent extracting

common words that are not considered as terms in a particular domain. Having a stop

words list improves the precision of term extraction. However, in my experiments I did not

use a stop words list because it is not possible to determine in advance the domain which a

namesake belongs to.

The sequences of words that remain after this initial filtering process (here onwards

referred to as candidates) are evaluated for their termhood (likeliness of a candidate to be a

term) using the C-value measure which is defined as,

C-value(a) =

{
log2 |a| · f(a) a is not nested,

log2 |a|(f(a)− 1
P (Ta)

∑
b∈Ta

f(b)) otherwise
. (4.3)

Here, a is the candidate string, f(a) is its frequency of occurrence in a corpus, |a| is the

length of the candidate string in words, Ta is the set of extracted candidate terms that

contain a, P (Ta) is the number of candidate terms.

C-value is built using statistical characteristics of the candidate string, such as the to-

tal frequency of occurrence of the candidate string in the document, the frequency of the

candidate string as part of other longer candidate strings, the number of these longer candi-

date terms, and the length of the candidate string (measured in the number of words). The

higher the C-value of a candidate, more likely it is a term. In my experiments I select can-

didates with C-value greater than 2 as terms. (see [48] for more details on C-value-based

multi-word term extraction). However, there are cases where the terms extracted from the

C-value method tend to be exceedingly longer and meaningless. For example, I get the term

Search Archives Contact Us Table Talk Ad from a page about the Netscape founder, Jim

Clark. This term is a combination of words extracted from a navigation menu and is not a

genuine term. To avoid such terms I use two heuristics. First, I ignore any terms which are
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longer than four words. Second, for the remaining terms, I check their page-counts I obtain

from a web search engine. The assumption here is that, if a term is a meaningful, then it

is likely to be used in many web pages. I ignore any terms with less than five page-counts.

Those heuristics allow us to extract more expressive and genuine terms.

To extract entities for TEMs, the contexts are tagged using a named entity tagger de-

veloped by the Cognitive Computation Group at UIUC7. From the tagged contexts I select

personal names, organization names and location names to include in TEMs. UIUC named-

entity tagger has an F1-score of 90.80% on CoNLL03 evaluation dataset [123].

4.2.5 Contextual Similarity

We must calculate the similarity between TEMs derived from different contexts, in order

to decide whether they represent the same namesake or not. WordNet8 based similarity

metrics have been widely used to compute the semantic similarity between words in sense

disambiguation tasks [7, 98]. However, most of the terms and entities are proper names or

multi-word expressions which are not listed in the WordNet.

Sahami et al. [131] proposed the use of snippets returned by a Web search engine to

calculate the semantic similarity between words. A snippet is a brief text extracted from a

document around the query term. Many search engines provide snippets alongside with a

link to the original document. Snippets help a web search engine user to decide whether a

search result is relevant without actually having to click the link. Because snippets capture

the immediate surrounding of the query in a document, we can consider a snippet to be the

context of the query term. Using snippets is also efficient because it obviates the need to

download the source documents from the web, which can be time consuming depending

on the size of the page. To calculate the contextual similarity between elements (terms and

entities) in TEMs, I first collect snippets for each element by querying a web search engine

for that element. I then represent each snippet Si as a vector ~vi of words that appear in Si.

Each word in a snippet is weighted using TF-IDF weighting method [5]. Weight wij of a

7http://l2r.cs.uiuc.edu/˜cogcomp/
8http://wordnet.princeton.edu/perl/webwn
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word Tj that appears in a snippet Si is defined as follows,

wij = tfij log2

N

dfj

. (4.4)

Here, tfij is the term-frequency of word Tj in the snippet Si (i.e. the number of times

that Tj occurs in Si). N is the total number of snippets retrieved from the search engine

for the query, and dfj is the document-frequency of word Tj (i.e. the number of snippets

that contained the word Tj). I then compute the centroid vector, ~C(a), for a query a by

averaging all the snippet-word vectors ~vi as follows,

~C(a) =
1

N

N∑
i=1

~vi. (4.5)

Moreover, I normalize centroid vectors such that their L2 norm is 1. Normalizing snippet-

word vectors to unit length enables us to compare snippets with different numbers of words.

I define the contextual similarity, ContSim(a, b), between two elements a, b, in TEMs as

the inner product between their centroid vectors ~C(a), ~C(b).

ContSim(a, b) = ~C(a) · ~C(b) (4.6)

Let us illustrate the above mentioned contextual similarity measure by an example.

Consider computing the association between the two phrases “George Bush” and the

“President of the United States”. First, I issue the query “George Bush” to a web search

engine and download snippets. In this example, I download the top 100 ranked snippets

by Google for the query. I then use TF-IDF method (Equation 4.4) to weight the words in

snippets. Each snippet is represented by a vector of words weighted by TF-IDF. Because

we have 100 snippets in this example we obtain 100 vectors. Next, the centroid vector of

those 100 vectors is computed using Equation 4.5. Similarly, a centroid vector is computed

for the query “President of the United States”. Finally, the similarity between the two

phrases is computed as the inner product between the corresponding centroid vectors using

Equation 4.6.

Figure 4.2 shows the distribution of most frequent words in snippets for these two
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Figure 4.2: Distribution of words in snippets for “George Bush” and “President of the
United States”

queries. We can observe a high overlap between the two distributions. Interestingly, the

words george and bush appear with a high frequency among the snippets for the query

“President of the United States” and word president appears with a high frequency for the

query “George Bush”. The contextual similarity between the two queries is 0.2014.

On the other hand, if we compare snippets for the queries “Tiger Woods” and “Presi-

dent of the United States” (as shown in Figure 4.3) we get a relatively low similarity score

of 0.0691. This indicates “George Bush” is more closely related to the phrase the “Presi-

dent of the United States” than “Tiger Woods” is.

Using the snippet-based contextual similarity measure, I define the similarity sim(T (A), T (B)),

between two TEMs T (A) = {a1, . . . , an} and T (B) = {b1, . . . , bm} of contexts A and B
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Figure 4.3: Distribution of words in snippets for “Tiger Woods” and “President of the
United States”

as follows,

sim(T (A), T (B)) =
1

nm

∑
i,j

ContSim(ai, bj). (4.7)

Therein; ContSim(ai, bj) is the contextual similarity between elements ai and bj , and it is

given by Equation 4.6.

4.2.6 Clustering

I use Group-Average Agglomerative Clustering (GAAC) [35], a hybrid of single-link and

complete-link clustering, to cluster the contexts that belong to a particular namesake. Ini-

tially, I assign a separate cluster for each of the contexts in the collection. Then, GAAC in

each iteration executes the merger that gives rise to the cluster Γ with the largest average
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correlation C(Γ) where,

C(Γ) =
1

2

1

|Γ|(|Γ| − 1)

∑
u∈Γ

∑
v∈Γ

sim(T (u), T (v)). (4.8)

Here, |Γ| denotes the number of contexts in the merged cluster Γ; u and v are two contexts

in Γ, and sim(T (u), T (v)) is given by Equation 4.7.

Ideally, the number of clusters formed by the GAAC process must be equal to the num-

ber of different namesakes for the ambiguous name. However, in reality it is impossible

to exactly know the number of namesakes that appear on the Web for a particular name.

Moreover, the distribution of pages among namesakes is not even. For example, among the

top 100 results retrieved for the name “Jim Clark” from Google, 78 belong to the two fa-

mous namesakes; Founder of Netscape and Formula One world champion. The remaining

22 search results (web pages) are distributed among six other namesakes. If these outliers

get attached to the otherwise pure clusters, both disambiguation accuracy and keywords

selection deteriorate. Therefore, I monitor the quality of clustering and terminate further

agglomeration when the cluster quality drops below a pre-set threshold value. Numerous

metrics have been proposed for evaluating the quality of clustering [73]. I use normalized

cuts measure proposed by Shi and Malik [137].

Let V denote the set of contexts for a name. Consider, A ⊆ V to be a cluster of contexts

taken from V . For two contexts x,y in V , sim(x, y) represents the contextual similarity

between the contexts (Equation 4.7). Then, the normalized cut Ncut(A) of cluster A is

defined by,

Ncut(A) =

∑
x∈A y∈(V−A) sim(x, y)∑

x∈A y∈V sim(x, y)
. (4.9)

For a set, {A1, . . . , An} of non-overlapping n clusters Ai, I define the quality of clustering,

Quality({A1, . . . , An}), as follows,

Quality({A1, . . . , An}) =
1

n

n∑
i=1

Ncut(Ai). (4.10)

For the set of clusters formed at each iteration of the agglomerative clustering process, I

compute the cluster quality using Equation 4.10. I terminate the clustering process, if the
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cluster quality drops below a fixed threshold θ. Finally, I assign the remaining contexts

(singletons) to the already formed clusters based on the correlation (Equation 4.8) between

a context and a cluster. I experimentally determine the cluster stopping threshold θ using a

development dataset as described later in Section 4.4.4.

4.2.7 Automatic annotation of namesakes

GAAC process produces a set of clusters representing each of the different namesakes of the

ambiguous name. To annotate the namesakes represented by the formed clusters, I select

elements (terms and entities) from TEMs in each cluster. To select appropriate keywords

to annotate a person represented by a cluster, I first compute the union of all TEMs in

that cluster. I then remove any elements that appear in other clusters. This process yields

a set of elements that uniquely represents each cluster. Finally, I rank each element in a

cluster according to its similarity with the given ambiguous name. I use Formula 4.6 to

compute the similarity between the given name and an element. The context of a name

is approximated by the top ranking snippets. I used the top ranked 100 snippets in my

experiments. For example, in Section 4.2.5, I computed the similarity between the name

George Bush and the element (a term) President of the United States to be 0.2014. The

motivation behind ranking elements is to identify the keywords which are closely related

to the namesake. Each namesake is annotated using the top ranking elements in his or her

cluster.

Alternatively, we can first rank all the elements in each cluster using the similarity be-

tween the name and the element using Equation 4.6, and subsequently remove any elements

that are ranked below a certain rank. Optionally, we can remove elements that appear in

more than one cluster to obtain a set of keywords that uniquely identify a cluster. This alter-

native approach is particularly useful when there are multiple namesakes who are popular

in a particular field. However, this approach requires more web search queries compared

to the previous approach, because we must first compare all elements in a cluster with the

given name in order to rank them. On the other hand, first removing common elements

in different clusters can significantly reduce the number of comparisons (thereby the web
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search queries). Furthermore, during my preliminary experiments with this second ap-

proach I did not notice any significant improvement in the quality of keywords obtained

at the cost of additional web queries. Therefore, I adopted the first approach which re-

quire comparatively lesser number of web search queries, where I first remove elements

that appear in multiple clusters and subsequently rank the remaining elements.

4.3 Evaluation Datasets

To evaluate the ability to disambiguate and annotate people with the same name, I create a

dataset for ambiguous personal names; Jim Clark and Michael Jackson. For each of those

names, I query Google and download the top ranking search results. I then manually an-

notate each search result by reading the content in each downloaded web page. I exclude

pages that only contain non-textual data, such as images. A web page is assigned to only

one namesake of the ambiguous personal name under consideration. Moreover, I evalu-

ate on two datasets created in previous work on namesake disambiguation: Pedersen and

Kulkarni [116, 115]’s dataset (5 ambiguous names: Richard Alston, Sarah Connor, George

Miller, Michael Collins and Ted Pedersen), and Bekkerman and McCallum [10]’s dataset

(12 ambiguous names: Adam Cheyer, William Cohen, Steve Hardt, David Israel, Leslie

Pack Kaelbling, Bill Mark, Andrew McCallum, Tom Mitchell, David Mulford, Andrew Ng,

Fernando Pereira and Lynn Voss. By using the same datasets used in previous work, I can

directly compare the proposed method with previous work on namesake disambiguation.

To create a gold standard for namesake disambiguation one must first manually annotate

each search result retrieved for an ambiguous personal name. All datasets mentioned above

take this approach. As an alternative approach that does not require manual annotation of

search results, Pedersen et al. [118] propose the use of pseudo ambiguous names. In this

approach, first a set of unambiguous personal names are manually selected. For each of the

names in this set there must be only one individual in the web. Next, a web search engine is

queried with each of the unambiguous names separately and search results are downloaded.

Finally, each occurrence of the queried name is replaced by an identifier (e.g. person-

X) and the search results retrieved for all the unambiguous names are conflated to create

a single dataset. This conflated dataset can be considered as containing namesakes for
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the pseudo-ambiguous name, person-X. Moreover, we know which search result belongs

to which namesake without any manual annotation because we replace a name with an

identifier by ourselves. Although this process obviates the need for manual annotation,

thereby enabling us to easily create a large dataset, it is sometimes criticized because it

does not reflect the natural distribution of namesakes for real-world ambiguous personal

names. Following the previous work on this line, for automated pseudo-name evaluation

purposes, I select the four names (Bill Clinton, Bill Gates, Tom Cruise and Tiger Woods)

for conflation. I download the top 100 ranking search results from Google for each of these

names and manually confirmed that the search results did not contain any namesakes of the

selected names. I then replace the ambiguous personal name by the string “person-X” in

the collection, thereby artificially introducing ambiguity. The complete dataset that I used

for experiments is shown in Table 4.1. I have grouped the names in Table 4.1 according

to the datasets that they belong to. Moreover, names within a particular dataset are sorted

alphabetically.

4.4 Experiments and Results

4.4.1 Outline

In this section I present the numerous experiments I conduct to evaluate the proposed per-

sonal name disambiguation algorithm. In my experiments, I query Google9 for a given

ambiguous personal name and download the top ranked 100 web pages. I eliminate pages

that do not contain any text. I use Beautiful Soup10, an HTML parser, to extract text from

HTML pages. Next, I create a TEM from each resulting web page as described in Section

4.2.4. The set of web pages downloaded for the given ambiguous personal name is then

clustered using the clustering algorithm described in Section 4.2.6. I use contextual similar-

ity (Equation 4.6) to compute the similarity between elements (i.e. terms or named-entities

that appear in a term-entity model) in TEMs created for web pages. In Formula 4.6, I use

the top ranking 100 snippets returned by Google for an element as its context.

9http://code.google.com/
10http://www.crummy.com/software/BeautifulSoup/
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Table 4.1: Experimental Dataset
Name number of namesakes number of contexts
person-X 4 137
Jim Clark 8 100
Michael Jackson 2 82

Pedersen and Kulkarni’s dataset [116, 115]
George Miller 3 286
Michael Collins 4 359
Richard Alston 2 247
Sarah Connor 2 150
Ted Pedersen 4 333

Bekkerman and McCallum’s dataset [10]
Adam Cheyer 2 97
Andrew McCallum 8 94
Andrew Ng 29 87
Bill Mark 8 94
David Israel 16 92
David Mulford 13 94
Fernando Pereira 19 88
Leslie Pack Kaelbling 2 89
Lynn Voss 26 89
Steve Hardt 6 81
Tom Mitchell 37 92
William Cohen 10 88

Total 205 2779

In Section 4.4.2, I describe disambiguation accuracy, the evaluation measure used in

the experiments. In Section 4.4.3, I compare disambiguation accuracy with cluster quality

introduced in Section 4.2.6. I determine the cluster stopping threshold θ using development

data in Section 4.4.4. In Section 4.4.5, I compare the performance of the proposed method

against baseline methods and previous work on namesake disambiguation. Moreover, in

Section 4.4.6, I employ the keywords selected for different namesakes of an ambiguous

personal name in an information retrieval task
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4.4.2 Evaluation Measure

To evaluate the clusters produced by the proposed method I compare them with the gold-

standard clusters for a name in a dataset. For each ambiguous personal name, the gold

standard contains a set of contexts (web pages) downloaded and assigned to a namesake.

In the gold standard a web page is assigned to only one of the namesakes of the given name.

Therefore, we can consider the set of contexts in the gold standard for a particular name as

a set of non-overlapping clusters. I compare the set of clusters in the gold standard with the

set of clusters produced the proposed method. If the two sets of clusters are similar, then

we can conclude that the proposed method can accurately disambiguate namesakes for a

given personal name.

First, I assign each cluster to the namesake that has the most number of contexts (web

pages) for him or her in that cluster. If there is more than one namesake in a cluster with

the highest number of contexts, then I randomly select one of those namesakes and assign

to the cluster. This process assigns a cluster to one of the namesakes for the given personal

name. The purpose of this assignment is to automatically label a cluster by the namesake

that it represents. Identifying a cluster with a namesake enables us to compare the set of

clusters produced by a namesake disambiguation algorithm against a set of gold standard

clusters. Next, I evaluate experimental results based on the confusion matrix A, where

A[i.j] represents the number of contexts for “person i” predicted as “person j”. A[i, i] rep-

resents the number of correctly predicted contexts for “person i”. I define disambiguation

accuracy as the sum of diagonal elements divided by the sum of all elements in the matrix

as follows,

Disambiguation Accuracy =

∑
i A(i, i)∑

i,j A(i, j)
. (4.11)

If all contexts are correctly assigned for their corresponding namesakes then the confu-

sion matrix A becomes a diagonal matrix and the disambiguation accuracy becomes 1. In

practice, the number of clusters produced by a namesake disambiguation system might not

necessarily be equal to the number of namesakes for an ambiguous personal name. The

above mentioned cluster assignment procedure can assign multiple clusters to a particular

namesake, or not assign any cluster for some namesakes, depending on the set of clusters

produced by a system. However, it is noteworthy that disambiguation accuracy can still be
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Figure 4.4: Accuracy vs Cluster Quality for person-X data set.

computed using the definition in Equation 4.11 even under such circumstances.

4.4.3 Correlation between cluster quality and disambiguation accu-
racy

In Section 4.2.6, I proposed the use of cluster quality (which can be computed unsuper-

visedly without using the gold standard clustering) to determine when to stop the agglom-

erative clustering process. However, it remains unknown whether the cluster quality can

accurately approximate the actual accuracy of a clustering algorithm. In order to evaluate

how well does normalized cuts-based cluster quality reflects the accuracy of clustering, I

compare disambiguation accuracy (computed using the gold-standard) with cluster qual-

ity (computed using Equation 4.10) for person-X collection as shown in Figure 4.4. For

the data points shown in Figure 4.4, we observe a high correlation between accuracy and

quality (Pearson correlation coefficient between accuracy and quality is 0.865). This result

enables us to guide the clustering process and determine the optimal number of clusters

using cluster quality.
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4.4.4 Determining the Cluster Stopping Threshold θ

In Section 4.2.6 I described a group-average agglomerative hierarchical clustering algo-

rithm to cluster the contexts (i.e. web pages). I empirically determine the cluster stopping

threshold θ using person-X collection as a development dataset. Figure 4.5 shows the ac-

curacy of clustering against various threshold values. According to Figure 4.5 I set the

threshold at 0.935 where accuracy maximizes for person-X collection. Threshold θ is fixed

at this value (0.935) for the remainder of the experiments described in the paper.

4.4.5 Clustering Accuracy

Table 4.2 summarizes experimental results for the accuracy of the clustering. For each am-

biguous name in the dataset, the second column in Table 4.2 shows the number of different

people in the collection with that name. Moreover, I have visualized the experimental re-

sults in Figure 4.6 to show the overall trend. I compare the proposed method against the

following three baselines.

Jaccard (Jaccrad coefficient-based clustering) : This method computes the similarity be-

tween two TEMs using the Jaccard coefficient. Jaccard coefficient between two sets
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Table 4.2: Comparing the proposed method against baselines.
Name Namesakes Jaccard Overlap Proposed Majority
person-X 4 0.8382(4) 0.7941(4) 0.7941(4) 0.6985(1)
Jim Clark 8 0.8475(3) 0.8305(3) 0.8475(3) 0.6949(1)
Michael Jackson 2 0.9706(2) 0.9706(2) 1.0000(2) 0.6765(1)

Pedersen and Kulkarni’s dataset [116, 115]
George Miller 3 0.9441(3) 0.9231(3) 0.9895(3) 0.7762(1)
Michael Collins 4 0.9777(4) 0.9861(4) 0.9889(4) 0.8357(1)
Richard Alston 2 0.9109(2) 0.9069(2) 0.9960(2) 0.7368(1)
Sarah Connor 2 0.9333(2) 0.9333(2) 0.9867(2) 0.7267(1)
Ted Pedersen 4 0.9820(4) 0.9670(4) 0.9850(4) 0.8378(1)

Bekkerman and McCallum’s dataset [10]
Adam Cheyer 2 0.9897(1) 0.9897(1) 0.9897(1) 0.9897(1)
Andrew McCallum 8 0.7447(3) 0.7340(3) 0.7766(4) 0.7660(1)
Andrew Ng 29 0.5172(7) 0.4943(6) 0.5747(5) 0.6437(1)
Bill Mark 8 0.6702(2) 0.6383(2) 0.8191(4) 0.6064(1)
David Israel 16 0.5217(3) 0.5217(4) 0.6739(4) 0.5435(1)
David Mulford 13 0.6702(3) 0.6809(2) 0.7553(4) 0.7128(1)
Fernando Pereira 19 0.4886(5) 0.4886(6) 0.6364(6) 0.5455(1)
Leslie Pack Kaelbling 2 0.9888(1) 0.9888(1) 0.9888(1) 0.9888(1)
Lynn Voss 26 0.4607(7) 0.4045(4) 0.6404(9) 0.5056(1)
Steve Hardt 6 0.8642(2) 0.8148(2) 0.8148(2) 0.8272(1)
Tom Mitchell 37 0.3478(9) 0.3696(8) 0.4891(13) 0.5870(1)
William Cohen 10 0.7955(2) 0.7841(2) 0.8295(3) 0.7955(1)

Overall Average 0.7732 0.7610 0.8288 0.7247

A and B is defined as follows,

Jaccard =
|A ∩B|
|A ∪B| . (4.12)

Here, |A ∩ B| denotes the number of elements in the intersection of sets A and B,

|A ∪ B| is the number of elements in the union of sets A and B. If two TEMs

share many elements then the Jaccard coefficient computed over the two TEMs will

be high. Using the Jaccard coefficient as the similarity measure, I perform group

average agglomerative clustering with cluster stopping enabled to discriminate the
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Figure 4.6: Comparing the proposed method against baselines.

namesakes. This baseline shows the effect of the contextual similarity measure (Sec-

tion 4.2.5) on the proposed method.

Overlap (Overlap coefficient-based clustering): This approach computes the similarity

between two TEMs using the overlap (Simpson) coefficient between them. Overlap

coefficient between two sets A and B is defined as follows,

Overlap =
|A ∩B|

min(|A|, |B|) . (4.13)

If one of the TEMs that we compare contains a lot of elements, then it is likely to

share many elements in common with smaller TEMs. Overlap coefficient attempts to

normalize the bias due to the difference in size (i.e., number of elements in a TEM)

when computing similarity. Using the overlap coefficient as the similarity measure

I perform group average agglomerative clustering with cluster stopping enabled to

discriminate the namesakes. Overlap coefficient has been used in previous work
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on social network mining to measure the association between two names on the web

[96]. Likewise the Jaccard baseline, Overlap baseline is expected to show the effect

of using contextual similarity measure (Section 4.2.5) on the proposed method.

Proposed: This is the proposed namesake disambiguation algorithm. This approach uses

the contextual similarity measure described in Section 4.2.5 to compute the similar-

ity between TEMs. The clustering is performed using group average agglomerate

clustering with cluster stopping enabled.

Majority: Majority sense clustering assigns all the contexts in a collection to the person

that has the most number of contexts in the collection (dominant sense). Majority

sense acts as a baseline for sense disambiguation. In personal name disambiguation

on web, although there are lots of people with the same name, only a few are very

popular. Assigning all the documents to this popular namesake can still report high

clustering accuracies. For this reason, majority sense has been used as a baseline in

previous work on name disambiguation [47, 115, 116].

Disambiguation accuracies and the number of correctly identified namesakes (shown

within brackets) for the different approaches are reported in Table 4.2. From Table 4.2, we

see that the proposed method (Proposed) reports the highest disambiguation accuracy of

0.8288. Moreover, all three methods; Jaccard, Overlap and Proposed report significant

improvements (pair-wise t-tests with α = 0.05) over the Majority sense baseline. The

proposed method, which uses contextual similarity, outperforms both Jaccard and Overlap

baselines because those similarity measures are computed using exact matches between

elements. They do not utilize the snippet-based contextual similarity described in sec-

tion 4.2.5. Therefore, both Jaccard and Overlap baselines suffer from data sparseness (i.e.

only few elements appear in common for two TEMs). It is interesting to note that the

majority sense baseline has similar or better performance to the proposed method for the

names Adam Cheyer, Leslie Pack Kaelbling, Andrew McCallum, Steve Hardt, Tom Mitchell,

Andrew Ng. All those names appear in the dataset proposed by Bekkerman and McCallum

[10]. The datasets for those names are highly skewed and the majority of the documents

collected for a name belong to one namesake. For example, in the case of Adam Cheyer,

96 out of the total 97 documents are about the founder of Siri Inc. However, the majority
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sense baseline can only find one namesake and performs poorly when there are more than

one popular namesake for an ambiguous personal name.

For collections person-X, Michael Jackson, Richard Alston, Sarah Connor, George

Miller, Michael Collins,Ted Pedersen all three methods: Jaccard, Overlap, and Proposed,

correctly identify all the different namesakes. Correct identification of the number of name-

sakes is essential because the selection of keywords depends on it. However, Jaccard and

Overlap do not perform well with ambiguous names with lots of different namesakes, such

as Tom Mitchell (37 namesakes), Andrew Ng (29 namesakes), Lynn Voss (26 namesakes)

and Fernando Pereira (19 namesakes). In particular, Tom Mitchell is a very ambiguous

name in the dataset containing 37 namesakes and only 15 out of 92 contexts is for the dom-

inant sense (CMU professor). The quality and the length of text in a document affects the

performance of term extraction and named-entity extraction. In particular, the statistical

computations in the C-value method depends on the length (i.e. number of words) in a

document. Moreover, the named-entity tagger, which is trained using newspaper articles,

produces invalid entities when tested on web documents, which are noisy. Better term and

entity extraction methods can produce more accurate TEMs, thereby improving overall

performance of the proposed method.

Table 4.3 compares the number of clusters produced by the proposed cluster stopping

approach against the number of namesakes for a name in the gold standard. For each name

in the dataset, Table 4.3 shows the number of namesakes in the gold standard dataset, the

number of clusters produced by the proposed method, the number of namesakes correctly

detected by the proposed method, and the number of undetected namesakes (i.e. total

namesakes in the dataset minus no. of correctly detected namesakes). From Table 4.3 we

see that for 11 out of the 20 names in our dataset the cluster stopping approach produces

exactly the same number of clusters as the number of namesakes. Moreover, for 6 of those

names, all namesakes are accurately detected. In particular, for Pedersen and Kulkarni’s

dataset, I have perfectly detected all namesakes.

Table 4.4 compares the proposed method against the best F-scores reported by Peder-

sen and Kulkarni [115] for the names in their dataset. Although there are differences in

definitions of the evaluation metrics, both F-score and disambiguation accuracy compare a

clustering produced by a system against a gold-standard. From Table 4.4 we can see that
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Table 4.3: The number of namesakes detected by the proposed method
Name no. of namesakes no. of clusters detected undetected
person-X 4 4 4 0
Jim Clark 8 8 3 5
Michael Jackson 2 2 2 0

Pedersen and Kulkarni’s dataset [116, 115]
George Miller 3 3 3 0
Michael Collins 4 4 4 0
Richard Alston 2 2 2 0
Sarah Connor 2 2 2 0
Ted Pedersen 4 4 4 0

Bekkerman and McCallum’s dataset [10]
Adam Cheyer 2 2 1 1
Andrew McCallum 8 8 4 4
Andrew Ng 29 8 5 24
Bill Mark 8 4 4 4
David Israel 16 7 4 12
David Mulford 13 10 4 9
Fernando Pereira 19 13 6 13
Leslie Pack Kaelbling 2 2 1 1
Lynn Voss 26 12 9 17
Steve Hardt 6 5 2 4
Tom Mitchell 37 17 13 24
William Cohen 10 5 3 7

the proposed method performs better than the method proposed by Pedersen and Kulkarni

[115].

In Table 4.5, I compare the proposed method against the previous work on namesake

disambiguation by Bekkerman and McCallum [10]. Bekkerman and McCallum consider

the namesake disambiguation problem as a one of separating a set of given documents

collected for an ambiguous personal name into two clusters: a cluster with all documents

relevant to a particular namesake of the given name, and a cluster with all other docu-

ments. I compute disambiguation accuracy for those two clusters using Formula 4.11 for

each name as shown in Table 4.5. However, it must be emphasized that their method can

find only one namesake of the given ambiguous personal name. Moreover, they assume the
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Table 4.4: Comparison with results reported by Pedersen and Kulkarni [115]

Name Pedersen and Kulkarni (F-score) Proposed (disambiguation accuracy)
George Miller 0.7587 0.9895
Michael Collins 0.9304 0.9889
Richard Alston 0.9960 0.9960
Sara Connor 0.9000 0.9867
Ted Pedersen 0.7658 0.9850

Table 4.5: Comparison with results reported by Bekkerman and McCallum [10] using dis-
ambiguation accuracy

Name Bekkerman and McCallum [10] Proposed
Adam Cheyer 0.6495 0.9897
Andrew McCallum 0.9787 0.7766
Andrew Ng 0.9080 0.5747
Bill Mark 0.8511 0.8191
David Israel 0.9456 0.6739
David Mulford 1.0000 0.7553
Fernando Pereira 0.7159 0.6364
Leslie Pack Kaelbling 0.9438 0.98888
Lynn Voss 0.9888 0.6404
Steve Hardt 0.3827 0.8148
Tom Mitchell 0.9348 0.4891
William Cohen 0.9545 0.8295

availability of information regarding the social network of the person that they attempt to

disambiguate. In contrast, the proposed method attempts to disambiguate all namesakes of

a given personal name and does not require any information regarding the social network

of a person. Despite the fact that the proposed method does not require external informa-

tion regarding a namesake, such as his or her social network, and attempts to identify all

namesakes, it has comparative performance with Bekkerman and McCallum’s method.

Tables 4.6 and 4.7 shows the top ranking keywords extracted for Michael Jackson and

Jim Clark. First cluster for Michael Jackson represents the singer while the second cluster

stands for the expert on beer. The two Michael Jacksons are annotated with very different
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Table 4.6: Clusters for Michael Jackson
CLUSTER 1 CLUSTER 2
fan club beer hunter
trial ultimate beer FAQ
world network christmas beer
superstar great beer
new charity song pilsner beer
neverland ranch bavaria

Table 4.7: Clusters for Jim Clark
CLUSTER 1 CLUSTER 2
racing driver entrepreneur
rally story
scotsman silicon valley
driving genius CEO
scottish automobile racer silicon graphics
british rally news SGI/Netscape

TEMs. Jim Clark the Formula one champion is represented by the first cluster in Table 4.7,

whereas the second cluster stands for the founder of Netscape.

4.4.6 Information Retrieval Task

I conduct an information retrieval task to evaluate the ability of the extracted keywords

to uniquely identify an individual. I use a keyword k, selected for a namesake p, of an

ambiguous name n to retrieve documents that contain k from a collection of documents D

downloaded from the web using n as the query. If a document d ∈ D contains the keyword

k then I retrieve the document. I use the top 5 ranked keywords selected by the proposed

method for all the namesakes it identifies for the 19 names in our gold standard datasets

shown in Table 4.1 (person-X is not considered in this evaluation because it is not an actual

name). If a keyword can accurately retrieve documents regarding a particular namesake,

then such keywords are useful when searching for that person. I measure the ability of a

keyword to retrieve documents related to a particular namesake using precision, recall and
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Figure 4.7: Performance vs. the keyword rank

F1-score. The precision of a keyword k, precision(k), is defined as follows,

precision(k) =
no. of documents that contain k, and belongs to p

no. of documents that contain k
. (4.14)

Likewise, recall of a keyword k, recall(k), is defined as follows,

recall(k) =
no. of documents that contain k, and belongs to p

no. of documents that belong to p
. (4.15)

The F1-score of a keyword k, F1-score(k), can then be computed as follows,

F1-score(k) =
2× precision(k)× recall(k)

precision(k) + recall(k)
. (4.16)

For the top 5 ranked keywords extracted for each detected namesake by the proposed

method, I compute their precision, recall and F1-score using the above mentioned equations
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Figure 4.8: Performance vs. combinations of top ranking keywords

and take the average over the 19 names selected from the gold standard. Experimental re-

sults are shown in Figure 4.7. From Figure 4.7, we see that using any one of the top ranking

keywords, on average, we obtain a precision of around 0.38. Moreover, a slight decrease

in precision can be observed with the rank of the keywords used. However, the low recall

(therefore the F1-score) indicates that using a single keyword alone is not sufficient to re-

trieve all the documents related to a namesake. A combination of top ranking keywords

can be useful to improve recall. To evaluate the effect of using multiple keywords on re-

trieval performance, I combined the top r ranked keywords in a disjunctive (OR) query.

Specifically, I retrieve a document for a namesake, if any one of the top k ranked keywords

selected for that namesake appears in that document. I experiment with top 1-5 ranks as

shown in Figure 4.8. From Figure 4.8 we see that combining the top ranked keywords in-

deed improve the recall. Although a slight drop in precision can be seen when we combine

lower ranked keywords, overall, the F1-score improves as a result of the gain in recall.

As a specific example of how the keywords extracted by the proposed method can
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Table 4.8: Effectiveness of the extracted keywords to identify an individual on the web.
Keyword person-1 person-2 others Hits
NONE 41 26 33 1,080,000
racing driver 81 1 18 22,500
rally 42 0 58 82,200
scotsman 67 0 33 16,500
entrepreneur 1 74 25 28,000
story 17 53 30 186,000
silicon valley 0 81 19 46,800

be used in a real-world web search scenario, I search Google for the namesakes of the

ambiguous personal name Jim Clark using the extracted keywords. I first search Google

only using the name Jim Clark. I then modify the query by including a keyword selected for

a particular namesake. I manually check the top 100 ranked search results and determine

how many results are relevant for the namesake that I am searching for. Experimental

results are summarized in Table 4.8.

In Table 4.8 I classify Google search results into three categories. “person-1” is the

formula one racing world champion, “person-2” is the founder of Netscape, and “other”

category contains remainder of the pages that I could not classify to previous two groups

(some of these pages were on other namesakes, and some were not sufficiently detailed to

properly classify). I first search in Google without adding any keywords to the ambiguous

name. Including the keywords rally and scotsman, which are selected from the cluster for

Jim Clark the formula one champion, return no results for the other popular namesake.

Likewise, the keywords entrepreneur and silicon valley yield results largely for the founder

of Netscape. However, the keyword story returns results for both namesakes. A close

investigation revealed that, the keyword story is extracted from the title of the book “The

New New Thing: A Silicon Valley Story”, a book on the founder of Netscape.

On a Intel Core2Duo 2.8GHz, 2GB RAM desktop, the proposed method requires ap-

proximately one minute to disambiguate a given name. The major portion of time is spent

on querying a web search engine to compute contextual similarity. I cache the search re-

sults to reduce the amount of web accesses. The proposed method is used to disambiguate

people in a social network system with more than 200, 000 people [95].
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Figure 4.9: The histogram of within-class and cross-class similarity distributions in
”person-X” dataset. X axis represents the similarity value. Y axis represents the number
of document pairs from the same class (within-class) or from different classes (cross-class)
that have the corresponding similarity value.

4.4.7 Evaluating Contextual Similarity

In section 4.2.5, I defined the similarity between documents (i.e., term-entity models cre-

ated from the documents) using a web snippets based contextual similarity (Formula 4.6).

However, how well such a metric represents the similarity between documents, remains

unknown. Therefore, to evaluate the contextual similarity among documents, I group the

documents in ”person-X” dataset into four classes (each class representing a different per-

son) and use Formula 4.7 to compute within-class and cross-class similarity histograms, as

illustrated in Figure 4.9.

Ideally, within-class similarity distribution should have a peak around 1 and cross-class

similarity distribution around 0, whereas both histograms in Figure 4.9(a) and 4.9(b) have

their peaks around 0.2. However, within-class similarity distribution is heavily biased to-

ward to the right of this peak, and cross-class similarity distribution to the left. Moreover,

there are no document pairs with more than 0.5 cross-class similarity. The experimental

results guarantees the validity of the contextual similarity metric.



Chapter 5

Name Alias Detection

Precisely identifying entities in web documents is necessary for various tasks such as re-

lation extraction [96], search and integration of data [55] and entity disambiguation [91].

Nevertheless, identification of entities on the web is difficult for two fundamental reasons:

first, different entities can share the same name (lexical ambiguity); secondly, a single en-

tity can be designated by multiple names (referential ambiguity). As an example of lexical

ambiguity the name Jim Clark is illustrative. Aside from the two most popular namesakes,

the formula-one racing champion and the founder of Netscape, at least 10 different people

are listed among the top 100 results returned by Google for the name. On the other hand,

referential ambiguity occurs because people use different names to refer to the same entity

on the web. For example, the American movie star Will Smith is often called the the Fresh

Prince in web contents. Although lexical ambiguity, particularly ambiguity related to per-

sonal names, has been explored extensively in the previous studies of name disambiguation

[91, 10], the problem of referential ambiguity of entities on the web has received much less

attention. In this Chapter, I specifically examine on the problem of automatically extracting

the various references on the web to a particular entity.

For an entity e, I define the set A of its aliases to be the set of all words or multi-word

expressions that are used to refer to e on the web. For example, Godzilla is a one-word alias

for Hideki Matsui, whereas the alias the Fresh Prince contains three words and refers to

Will Smith. Various types of terms are used as aliases on the web. For instance, in the case

of an actor, the name of a role or the title of a drama (or a movie) can later become an alias

125
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for the person (e.g., Fresh Prince, Knight Rider). Titles or professions such as president,

doctor, professor, etc. are also frequently used as aliases. Variants or abbreviations of

names such as Bill for William and acronyms such as J.F.K. for John Fitzgerald Kennedy

are also types of name aliases that are observed frequently on the web.

Identifying aliases of a name is important for extracting relations among entities. For

example, Matsuo et al. [96] propose a social network extraction algorithm, in which they

compute the strength of the relation between two individuals A and B by the web hits for

the conjunctive query, “A” AND “B”. However, both persons A and B might also appear

in their alias names in web contents. Consequently, by expanding the conjunctive query

using aliases for the names, a social network extraction algorithm can accurately compute

the strength of a relationship between two persons.

Searching for information about people on the web is an extremely common activity of

Internet users. Around 30% of search engine queries include personal names [2]. However,

retrieving information about a person merely using his or her real names is insufficient

when that person has nicknames. Particularly with keyword-based search engines, we will

only retrieve pages which use the real name to refer to the person about whom we are

interested in finding information. In such cases, automatically extracted aliases of the name

are useful to expand a query in a web search, thereby improving recall.

The Semantic Web is intended to solve the entity disambiguation problem by providing

a mechanism to add semantic metadata for entities. However, an issue that the Semantic

Web currently faces is that insufficient semantically annotated web contents are available.

Automatic extraction of metadata [31] can accelerate the process of semantic annotation.

For named entities, automatically extracted aliases can serve as a useful source of metadata,

thereby providing a means to disambiguate an entity.

Along with the recent rapid growth of social media such as blogs, extracting and classi-

fying sentiment on the web has received much attention [144]. Typically, a sentiment anal-

ysis system classifies a text as positive or negative according to the sentiment expressed in

it. However, when people express their views about a particular entity, they do so by refer-

ring to the entity not only using the real name but also using various aliases of the name. By

aggregating texts that use various aliases to refer to an entity, a sentiment analysis system

can produce an informed judgment related to the sentiment.
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I propose a fully automatic method to discover aliases of a given personal name from

the web. Our contributions can be summarized as follows.

• I propose a lexical pattern-based approach to extract aliases of a given name using

snippets returned by a web search engine. The lexical patterns are generated au-

tomatically using a set of real-world name-alias data. I evaluate the confidence of

extracted lexical patterns and retain the patterns that can accurately discover aliases

for various personal names. Our pattern generation algorithm does not assume any

language specific pre-processing such as part-of-speech tagging or dependency pars-

ing etc., which can be both inaccurate and computationally costly in web-scale data

processing.

• To select the best aliases among the extracted candidates, I propose numerous ranking

scores based upon three approaches: lexical pattern frequency, word-cooccurrences

in an anchor text graph, and page-counts on the web. Moreover, using real world

name alias data, I train a ranking support vector machine to learn the optimal combi-

nation of individual ranking scores to construct a robust alias extraction method.

• I conduct a series of experiments to evaluate the various components of the pro-

posed method. I compare the proposed method against numerous baselines and pre-

viously proposed name alias extraction methods on three datasets: an English per-

sonal names dataset, an English place names dataset, and a Japanese personal names

dataset. Moreover, I evaluate the aliases extracted by the proposed method in an

information retrieval task and a relation extraction task.

5.1 Related work

The problem of extracting aliases of a given name can be considered as a special case of the

more general problem of extracting the words Y that have a given relation R with a word

X . For example, extracting hyponyms [60], synonyms [86], meronyms [12] are specific

instances of this general problem of relation extraction. Manually created or automatically

extracted lexico-syntactic patterns have been successfully used to identify various relations
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between words [124, 140]. For example, patterns such as X is a Y and X such as Y are

typically used to introduce hypernyms, whereas, X of a Y and X’s Y are frequently used

with meronyms. However, alias extraction poses several unique challenges that separates it

from the more general relation extraction problem. Firstly, personal names and their aliases

are not typically listed in manually created dictionaries. Therefore, an alias extraction algo-

rithm must first extract a possible set of candidate aliases for a given name and then verify

each extracted candidate. Secondly, names and aliases can be multi-word expressions. For

example, in the case of Will Smith, who has a two-word alias fresh prince, it is inaccurate

to extract fresh as an alias. Thirdly, unlike hypernyms or meronyms, it is not obvious as to

which lexical patterns convey useful clues related to aliases of a given name. This makes it

difficult to manually create a sufficiently large list of lexical patterns to cover various types

of name aliases. In addition to above mentioned challenges, the lack of evaluation bench-

mark dataset for aliases makes it difficult to compare and evaluate different approaches.

Although it is relatively easy to manually verify whether an extracted candidate is a correct

alias of a given name, it is not always possible to obtain a list of all the aliases of a name,

which makes it difficult to compute the recall or coverage of an alias extraction algorithm.

Alias identification is closely related to the problem of cross-document coreference res-

olution, in which the objective is to determine whether two mentions of a name in different

documents refer to the same entity. Bagga and Baldwin [6] proposed a cross-document

coreference resolution algorithm by first performing within-document coreference resolu-

tion for each individual document to extract coreference chains, and then clustering the

coreference chains under a vector space model to identify all mentions of a name in the

document set. However, the vastly numerous documents on the web render it impractical

to perform within-document coreference resolution to each document separately and then

cluster the documents to find aliases.

In personal name disambiguation the goal is to disambiguate various people that share

the same name (namesakes) [91, 10]. Given an ambiguous name, most name disambigua-

tion algorithms have modeled the problem as one of document clustering, in which all

documents that discuss a particular individual of the given ambiguous name are grouped

into a single cluster. The web people search task (WEPS) at SemEval 2007 1 provided

1http://nlp.uned.es/weps
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a dataset and evaluated various name disambiguation systems. However, the name dis-

ambiguation problem differs fundamentally from that of alias extraction because, in name

disambiguation the objective is to identify the different entities that are referred by the

same ambiguous name; in alias extraction, we are interested in extracting all references to

a single entity from the web.

Approximate string matching algorithms have been used for extracting variants or ab-

breviations of personal names (e.g. matching Will Smith with the first name initialized

variant W. Smith) [49]. Rules in the form of regular expressions and edit-distance-based

methods have been used to compare names. Bilenko and Mooney [15] proposed a method

to learn a string similarity measure to detect duplicates in bibliography databases. How-

ever, an inherent limitation of such string matching approaches is that they cannot identify

aliases which share no words or letters with the real name. For example, approximate string

matching methods would not identify Fresh Prince as an alias for Will Smith.

Hokama and Kitagawa [63] propose an alias extraction method that is specific to the

Japanese language. For a given name p, they search for the query “* koto p” and ex-

tract the context that matches the asterisk. The Japanese word koto, roughly corresponds

to also known as in English. However, koto is a highly ambiguous word in Japanese that

can also mean incident, thing, matter, experience and task. As reported in their paper,

many noisy and incorrect aliases are extracted using this pattern, which requires various

post-processing heuristics that are specific to Japanese language to filter-out the incorrect

aliases. Moreover, manually crafted patterns do not cover various ways that convey infor-

mation about name aliases. In contrast, I propose a method to leverage such lexical patterns

automatically using a training dataset of names and aliases.

5.2 Method

The proposed method is outlined in Figure 5.1 and comprises two main components: pat-

tern extraction, and alias extraction and ranking. Using a seed list of name-alias pairs, I

first extract lexical patterns that are frequently used to convey information related to aliases

on the web. The extracted patterns are then used to find candidate aliases for a given name.
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Figure 5.1: Outline of the proposed method
.

...Rock the House, the duo's debut album of 1987, 

demonstrated that Will Smith, aka the Fresh Prince,

 was an entertaining and amusing storyteller...

Figure 5.2: A snippet returned for the query “Will Smith * The Fresh Prince” by Google

I define various ranking scores using the hyperlink structure on the web and page counts re-

trieved from a search engine to identify the correct aliases among the extracted candidates.

5.2.1 Extracting Lexical Patterns from Snippets

Many modern search engines provide a brief text snippet for each search result by selecting

the text that appears in the web page in the proximity of the query. Such snippets pro-

vide valuable information related to the local context of the query. For names and aliases,

snippets convey useful semantic clues that can be used to extract lexical patterns that are

frequently used to express aliases of a name. For example, consider the snippet returned by

Google2 for the query “Will Smith * The Fresh Prince”.

Here, I use the wildcard operator * to perform a NEAR query and it matches with one

or more words in a snippet. In Figure 5.2 the snippet contains aka (i.e. also known as),

2www.google.com
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which indicates the fact that fresh prince is an alias for Will Smith. In addition to a.k.a.,

numerous clues exist such as nicknamed, alias, real name is, nee, which are used on the

web to represent aliases of a name. Consequently, I propose the shallow pattern extraction

method illustrated in Algorithm 5 to capture the various ways in which information about

aliases of names is expressed on the web. Lexico-syntactic patterns have been used in

numerous related tasks such as extracting hypernyms [60] and meronyms [12].

Algorithm 5 ExtractPatterns(S)
Input: set S of (NAME, ALIAS) pairs
Output: set P of patterns

1: P ← null
2: for (NAME,ALIS) ∈ S do
3: D ← GetSnippets(“NAME ∗ ALIAS ′′)
4: for snippet d ∈ D do
5: P ← P + CreatePattern(d)
6: end for
7: end for
8: return P

Algorithm 6 ExtractCandidates(NAME,P)
Input: set of patterns P , real name NAME
Output: set C of candidates

1: C ← null
2: for pattern p ∈ P do
3: D ← GetSnippets(“NAME p ∗′′)
4: for snippet d ∈ D do
5: C ← C + GetNgrams(d,NAME, p)
6: end for
7: end for
8: return C

Given a set S of (NAME, ALIAS) pairs, the function ExtractPatterns returns a list

of lexical patterns that frequently connect names and their aliases in web-snippets. For

each (NAME, ALIAS) pair in S, the GetSnippets function downloads snippets from a web

search engine for the query “NAME * ALIAS”. Then, from each snippet, the CreatePat-

tern function extracts the sequence of words that appear between the name and the alias.
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Results of our preliminary experiments demonstrated that consideration of words that fall

outside the name and the alias in snippets did not improve performance. Finally, the real

name and the alias in the snippet are respectively replaced by two variables [NAME] and

[ALIAS] to create patterns. For example, from the snippet shown in Figure 5.2, I extract

the pattern [NAME] aka [ALIAS]. I repeat the process described above for the reversed

query, “ALIAS * NAME” to extract patterns in which the alias precedes the name.

Once a set of lexical patterns is extracted, I use the patterns to extract candidate aliases

for a given name as portrayed in Algorithm 6. Given a name, NAME and a set, P of lexical

patterns, the function ExtractCandidates returns a list of candidate aliases for the name. I

associate the given name with each pattern, p in the set of patterns, P and produce queries

of the form: “NAME p *”. Then the GetSnippets function downloads a set of snippets

for the query. Finally, the GetNgrams function extracts continuous sequences of words (n-

grams) from the beginning of the part that matches the wildcard operator *. Experimentally,

I select up to 5-grams as candidate aliases. Moreover, I remove candidates that contain only

stop words such as a, an, and the. For example, assuming that we retrieved the snippet in

Algorithm 5 for the query “Will Smith aka *”, the procedure described above extracts the

fresh and the fresh prince as candidate aliases.

5.2.2 Ranking of Candidates

Considering the noise in web-snippets, candidates extracted by the shallow lexical patterns

might include some invalid aliases. From among these candidates, we must identify those

which are most likely to be correct aliases of a given name. I model this problem of alias

recognition as one of ranking candidates with respect to a given name such that the candi-

dates which are most likely to be correct aliases are assigned a higher rank. First, I define

various ranking scores to measure the association between a name and a candidate alias us-

ing three different approaches: lexical pattern frequency, word co-occurrences in an anchor

text graph, and page-counts on the web. Next, I describe those three approaches in detail.
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5.2.3 Lexical Pattern Frequency

In Section 5.2.1 I presented an algorithm to extract numerous lexical patterns that are used

to describe aliases of a personal name. As we will see later in Section 2.3, the proposed

pattern extraction algorithm can extract a large number of lexical patterns. If the personal

name under consideration and a candidate alias occur in many lexical patterns, then it can

be considered as a good alias for the personal name. Consequently, I rank a set of candidate

aliases in the descending order of the number of different lexical patterns in which they

appear with a name. The lexical pattern frequency of an alias is analogous to the document

frequency (DF) popularly used in information retrieval.

5.2.4 Co-occurrences in Anchor Texts

Anchor texts have been studied extensively in information retrieval and have been used in

various tasks such as synonym extraction, query translation in cross-language information

retrieval, and ranking and classification of web pages [25]. Anchor texts are particularly

attractive because they not only contain concise texts, but also provide links that can be

considered as expressing a citation. I revisit anchor texts to measure the association be-

tween a name and its aliases on the web. Anchor texts pointing to a url provide useful

semantic clues related to the resource represented by the url. For example, if the majority

of inbound anchor texts of a url contain a personal name, it is likely that the remainder of

the inbound anchor texts contain information about aliases of the name. Here, I use the

term inbound anchor texts to refer the set of anchor texts pointing to the same url.

I define a name p and a candidate alias x as co-occurring, if p and x appear in two

different inbound anchor texts of a url u. Moreover, I define co-occurrence frequency (CF)

as the number of different urls in which they co-occur. It is noteworthy that I do not consider

co-occurrences of an alias and a name in the same anchor text. For example, consider the

picture of Will Smith shown in Figure 5.3. Figure 5.3 shows a picture of Will Smith being

linked to by four different anchor texts. According to our definition of co-occurrence, Will

Smith and fresh prince are considered as co-occurring. Similarly, Will Smith and Hancock

is also co-occurring in this example. It is noteworthy that we do not require the resource

that is linked to by an anchor text to be a picture (or any resource related to the person under
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Will Smith

fresh prince

Smith

Hancock
smith.jpg

Figure 5.3: A picture of Will Smith being linked by different anchor texts on the web.

x C − {x} C

p k n− k n
V − {p} K − k N − n−K + k N − n

V K N −K N

Table 5.1: Contingency table for a candidate alias x

consideration for that matter). p and x are considered as co-occurring as long as they are

linked to the same url, irrespective of the resource. Moreover, an anchor text can contain

other texts beside a real name or an alias. I consider all the words in an anchor text and

their bi-grams as potential candidate aliases if they co-occur with the real name according

to our definition.

We can use this definition to create a contingency table like the one shown in Table 5.1.

Therein, C is the set of candidates extracted by the algorithm described in Algorithm 6,

V is the set of all words that appear in anchor texts, C − {x} and V − {p} respectively

denote all candidates except x and all words except the given name p, k is the co-occurrence

frequency between x and p. Moreover, K is the sum of co-occurrence frequencies between

x and all words in V , whereas n is the same between p and all candidates in C. N is the

total co-occurrences between all word pairs taken from C and V .

To measure the strength of association between a name and a candidate alias, using Ta-

ble 5.1 I define nine popular co-occurrence statistics: co-occurrence frequency (CF), tfidf

measure (tfidf), chi-squared measure (CS), Log-likelihood ratio (LLR), hyper-geometric

distributions (HG), cosine measure (cosine), overlap measure (overlap), and Dice coeffi-

cient (Dice). Next, I describe the computation of those association measures in detail.
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Co-occurrence Frequency

This is the simplest of all association measures and was defined already in the previous

section. The value k in Table 5.1 denotes the co-occurrence frequency of a candidate alias

x and a name p. Intuitively, if there are many urls which are pointed to by anchor texts that

contain a candidate alias x and a name p, then it is an indication that x is indeed a correct

alias of the name p.

tfidf

The co-occurrence frequency is biased towards highly frequent words. A word that has a

high frequency in anchor texts can also report a high co-occurrence with the name. For

example, so-called stop words such as particles and articles appear in various anchor texts

and have an overall high frequency. The tfidf measure [133], which is popularly used in

information retrieval, is useful to normalize this bias. In fact, the tfidf measure reduces the

weight that is assigned to words that appear across various anchor texts. The tfidf score of

a candidate x as an alias of name p, tfidf(p, x), is computed from Table 5.1 as

tfidf(p, x) = k log
N

K + 1
. (5.1)

Chi-square Measure (CS)

The χ2 measure has been used as a test for dependence between two words in various nat-

ural language processing tasks including collocation detection, identification of translation

pairs in aligned corpora, and measuring corpus similarity [92]. Given a contingency table

resembling that shown in Table 5.1, the χ2 measure compares the observed frequencies in

the table with the frequencies expected for independence. Then it is likely that the can-

didate x is an alias of the name p if the difference between the observed and expected

frequencies is large for some candidate x.

The χ2 measure sums the differences between observed and expected values in the

contingency table and is scaled by the magnitude of the expected values. Actually, the χ2
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measure is given as

χ2 =
∑
i,j

(Oij − Eij)
2

Eij

. (5.2)

Here, Oij and Eij respectively denote the observed and expected frequencies.

I apply Formula 5.2 to Table 5.1 and define χ2 ranking score, CS(p, x), of a candidate

x as an alias of a name p as follows:

CS(p, x) =
N{k(N −K − n + k)− (n− k)(K − k)}2

nK(N −K)(N − n)
. (5.3)

The CS score is used to rank candidate aliases of a name.

Log Likelihood Ratio (LLR)

The log likelihood ratio (LLR) [42] is defined as the ratio between the likelihoods of two

alternative hypotheses: that the name p and the candidate alias x are independent or the

name p and that the candidate alias x are dependent. Likelihood ratios have been used

often in collocation discovery [92]. Unlike the χ2 measure, likelihood ratios are robust

against sparse data and have a more intuitive definition.

The LLR-based alias ranking score, LLR(p, x), is computed using values in Table 5.1

as

LLR(p, x) = k log
kN

nK
+ (n− k) log

(n− k)N

n(N −K)
(5.4)

+ (K − k) log
N(K − k)

K(N − n)

+ (N −K − n + k) log
N(N −K − n + k)

(N −K)(N − n)
.

Pointwise Mutual Information (PMI)

Pointwise mutual information [28] is a measure that is motivated by information theory; it

is intended to reflect the dependence between two probabilistic events. For values of two
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random variables y and z, their pointwise mutual information is defined as

PMI(y, z) = log2

P (y, z)

P (y)P (z)
. (5.5)

Here, P (y) and P (z) respectively denote the probability of random variables y and z.

Consequently, P (y, z) is the joint probability of y and z. The probabilities in Formula 5.5

can be computed as marginal probabilities from Table 5.1 as

PMI(p, x) = log2

k
N

K
N

n
N

(5.6)

= log2

kN

Kn
.

Hypergeometric Distribution

Hypergeometric distribution [62] is a discrete probability distribution that describes the

number of successes in a sequence of draws from a finite population without replacement.

For example, the probability of the event that “k red balls are contained among n balls

which are arbitrarily chosen from among N balls containing K red balls”, is given by the

hypergeometric distribution, hg(N, K, n, k), as

hg(N, K, n, k) =

(
K
l

)(
N−k
n−l

)
(

N
n

) . (5.7)

I apply the definition 5.7 of hypergeometric distribution to the values in Table 5.1 and

compute the probability HG(p, x) of observing more than k number of co-occurrences of

the name p and candidate alias x. The value of HG(p, x) is give by,

HG(p, x) = − log2(
∑

l≥k

hg(N, K, n, l)) (5.8)

max{0, N + K − n} ≥ l ≥ min{n, K}.

The value HG(p, x) indicates the significance of co-occurrences between p and x. I

use HG(p, x) to rank candidate aliases of a name.
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Cosine Measure

The cosine measure is widely used to compute the association between words. For strength

of association between elements in two sets, X and Y can be computed using the cosine

measure:

cosine(X,Y ) =
|X ∩ Y |√
|X|

√
|Y | . (5.9)

Here, |X| denotes the number of elements in set X .

Letting X be the occurrences of candidate alias x and Y the occurrences of name p, I

define cosine(p, x) as a measure of association between a name and a candidate alias as

cosine(p, x) =
k√

n +
√

K
. (5.10)

Overlap Measure

The overlap between two sets X and Y is defined as

overlap(X, Y ) =
|X ∩ Y |

min(|X|, |Y |) . (5.11)

Assuming that X and Y respectively represent occurrences of name p and candidate

alias x, I define a ranking score based on the overlap measure to evaluate the appropriate-

ness of a candidate alias.

overlap(p, x) =
k

min(n,K)
(5.12)

Dice Coefficient

Smadja [138] proposes the use of the Dice coefficient to retrieve collocations from large

textual corpora. The Dice coefficient is defined over two sets X and Y as

Dice(X,Y ) =
2|X ∩ Y |
|X|+ |Y | . (5.13)

As with cosine and overlap measures, using the co-occurrence values in Table 5.1, I
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Figure 5.4: Discounting the co-occurrences in hubs.

define a ranking score based on the Dice coefficient as

Dice(p, x) =
2k

n + K
.

The Jaccard coefficient, which is monotonic with the Dice coefficient, was not consid-

ered because it gives the exact ranking of nodes as that given by the Dice coefficient. In

general, if the Dice coefficient is g, then the corresponding Jaccard coefficient is given by

g/(2− g).

5.2.5 Hub discounting

A frequently observed phenomenon related to the web is that many pages with diverse

topics link to so-called hubs such as Google, Yahoo, or MSN. Two anchor texts might link

to a hub for entirely different reasons. Therefore, co-occurrences coming from hubs are

prone to noise. Consider the situation shown in Figure 5.4 where a certain web page is

linked to by two sets of anchor texts. One set of anchor texts contains the real name for

which we must find aliases, whereas the other set of anchor texts contains various candidate

aliases. If the majority of anchor texts linked to a particular web site use the real name to do

so, then the confidence of that page as a source of information regarding the person whom

we are interested in extracting aliases increases. I use this intuition to compute a simple

discouting measure for co-occurrences in hubs as follows.

To overcome the adverse effects of a hub h when computing co-occurrence measures, I
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multiply the number of co-occurrences of words linked to h by a factor α(h, p), where

α(h, p) =
t

d
. (5.14)

Here, t is the number of inbound anchor texts of h that contain the real name p, and d

is the total number of inbound anchor texts of h. If many anchor texts that link to h contain

p (i.e. larger t value), then the reliability of h as a source of information about p increases.

On the other hand, if h has many inbound links (i.e. larger d value), then it is likely to be

a noisy hub and gets discounted when multiplied by α(<< 1). Intuitively, Formula 5.14

boosts hubs that are likely to contain information related to p, while penalizing those that

contain various other topics.

5.2.6 Page-count-based Association Measures

In section 5.2.4 we defined various ranking scores using anchor texts. However, not all

names and aliases are equally well represented in anchor texts. Consequently, in this sec-

tion, I define word association measures that consider co-occurrences not only in anchor

texts but in the web overall. Page counts retrieved from a web search engine for the con-

junctive query, “p AND x”, for a name p and a candidate alias x can be regarded as an

approximation of their co-occurrences in the web. I compute popular word association

measures using page counts returned by a search engine.

WebDice

I compute the Dice coefficient, WebDice(p, x) (Section 5.2.4) between a name p and a

candidate alias x using page counts as

WebDice(p, x) =
2× hits(“p AND x”)

hits(p) + hits(x)
. (5.15)

Here, hits(q) is the page counts for the query q.
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WebPMI

I compute the pointwise mutual information, WebPMI(p, x) using page counts as follows:

WebPMI(p, x) = log2

L× hits(“p AND x”)

hits(p)× hits(x)
. (5.16)

Here, L is the number of pages indexed by the web search engine, which I approximated as

L = 1010 according to the number of pages indexed by Google. It should be noted however

that the actual value of L is not required for ranking purposes because it is a constant and

can be taken out from the definition of WebPMI (Equation 5.16) as an additive term. Both

WebDice and WebPMI measures are described in detail in [18].

Conditional Probability

Using page counts, I compute the probability of an alias, given a name, as

Prob(x|p) =
hits(“p AND x”)

hits(p)
. (5.17)

Similarly, the probability of a name, given an alias, is

Prob(p|x) =
hits(“p AND x”)

hits(x)
. (5.18)

Unlike pointwise mutual information and the Dice coefficient, conditional probability is an

asymmetric measure.

5.2.7 Training

Using a dataset of name-alias pairs, I train a ranking support vector machine [70] to rank

candidate aliases according to their strength of association with a name. For a name-alias

pair, I define three types of features: anchor text-based co-occurrence measures, web page-

count-based association measures, and frequencies of observed lexical patterns. The nine

co-occurrence measures described in Section 5.2.4 (CF, tfidf, CS, LLR, PMI, HG, cosine,
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overlap, Dice) are computed with and without weighting for hubs to produce 18(2×9) fea-

tures. Moreover, the four page-count-based association measures defined in Section 5.2.6

and the frequency of lexical patterns extracted by algorithm 5 are used as features in train-

ing the ranking SVM. During training, ranking SVMs attempt to minimize the number of

discordant pairs in the training data, thereby improving the average precision. The trained

SVM model is used to rank the set of candidates that were extracted for a name. Specif-

ically, for each extracted candidate alias and the name under consideration, I compute the

above mentioned feature and represent by a feature vector. The trained SVM model can

then be used to assign a ranking score to each candidate alias. Finally, the highest-ranking

candidate is selected as the correct alias of the name.

5.2.8 Dataset

To train and evaluate the proposed method, I create three name-alias datasets3: the English

personal names dataset (50 names), the English place names dataset (50 names), and the

Japanese personal names (100 names) dataset. Both our English and Japanese personal

name datasets include people from various fields of cinema, sports, politics, science, and

mass media. The place name dataset contains aliases for the 50 U.S. states. Aliases were

manually collected after referring various information sources such as Wikipedia and offi-

cial home pages.

I crawled Japanese web sites and extracted anchor texts and the urls linked by the anchor

texts. A website might use links for purely navigational purposes which do not convey any

semantic clues. In order to remove navigational links in our dataset I prepare a list of

words that are commonly used in navigational menus such as top, last, next, previous,

links, etc and ignore anchor texts that contain these words. Moreover, I remove any links

that point to pages within the same site. After removing navigational links our dataset

contains 24, 456, 871 anchor texts pointing to 8, 023, 364 urls. All urls in the dataset contain

at least two inbound anchor texts. The average number of anchor texts per url is 3.05

and the standard deviation is 54.02. Japanese texts do not use spaces to separate words.

Therefore, tokenizing text is an important pre-processing step. I tokenize anchor texts

3www.miv.t.u-tokyo.ac.jp/danushka/aliasdata.zip
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using the Japanese morphological analyzer MeCab [77].

5.3 Experiments

5.3.1 Pattern Extraction

Algorithm 5 extracts over 8000 patterns for the 50 English personal names in our dataset.

However, not all patterns are equally informative about aliases of a real name. Conse-

quently, I rank the patterns according to their F scores to identify the patterns that accu-

rately convey information about aliases. F score of a pattern s is computed as the harmonic

mean between the precision and recall of the pattern. First, for a pattern s I compute its

precision and recall as follows:

Precision(s) =
No. of correct aliases retrieved by s

No. of total aliases retrieved by s
,

Recall(s) =
No. of correct aliases retrieved by s

No. of total aliases in the dataset
.

Then, its F -score can be computed as:

F (s) =
2× Precision(s)× Recall(s)

Precision(s) + Recall(s)
.

Table 5.2 shows the patterns with the highest F scores extracted using the English per-

sonal names dataset. As shown in Table 5.2, unambiguous and highly descriptive patterns

are extracted by the proposed method. Likewise, Table 5.3 shows the patterns with the

highest F scores extracted using the English location names dataset. The same pattern

extraction algorithm (Algorithm 5) can be used to extract patterns indicating aliases of per-

sonal names as well as aliases of location names, provided that we have a set of name, alias

pairs for each entity type. This is particularly attractive because we do not need to modify

the pattern extraction algorithm to handle different types of named entities. Experimen-

tally, I select the top ranked 200 patterns as features for training. Interestingly, among the

extracted pattens I found patterns written in languages other than English, such as de son

vrai nom (French for his real name) and vero nome (Italian for real name).
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Pattern F -score
* aka [NAME] 0.335
[NAME] aka * 0.322

[NAME] better known as * 0.310
[NAME] alias * 0.286

[NAME] also known as * 0.281
* nee [NAME] 0.225

[NAME] nickname * 0.224
* whose real name is [NAME] 0.205

[NAME] aka the * 0.187
* was born [NAME] 0.153

Table 5.2: Lexical patterns with the highest F -scores for personal names.

Patterns F -score
[NAME] nickname the * 0.739

[NAME] is nicknamed the * 0.723
[NAME] employment nickname * 0.627

[NAME] state flag or * 0.589
[NAME] nicknamed the * 0.5567

[NAME] is called the * 0.3199

Table 5.3: Lexical patterns with the highest F -scores for location names.

5.3.2 Alias Extraction

In Table 5.4, I compare the proposed SVM-based method against various individual ranking

scores (baselines) and previous studies of alias extraction (Hokama and Kitagawa [63]) on

Japanese personal names dataset. I use linear, polynomial (quadratic), and radial basis

functions (RBF) kernels for ranking SVM. Mean reciprocal rank (MRR) [5] is used to

evaluate the different approaches. MRR is defined as follows,

MRR =
1

n

n∑
i=1

1

Ri

. (5.19)

Therein: Ri is the rank assigned to a correct alias and n is the total number of aliases.

MRR is widely used in information retrieval to evaluate the ranking of search results. For-

mula 5.19 gives high MRR to ranking scores which assign higher ranks to correct aliases.
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Method MRR Method MRR
SVM (Linear) 0.6718 Prob(p|x) 0.1414
SVM (Quad) 0.6495 CS(h) 0.1186
SVM (RBF) 0.6089 CF 0.0839
Hokama & Kitagawa 0.6314 cosine 0.0761
tfidf(h) 0.3957 tfidf 0.0757
WebDice 0.3896 Dice 0.0751
LLR(h) 0.3879 overlap(h) 0.0750
cosine(h) 0.3701 PMI(h) 0.0624
CF(h) 0.3677 LLR 0.0604
HG(h) 0.3297 HG 0.0399
Dice(h) 0.2905 CS 0.0079
Prob(x|p) 0.2142 PMI 0.0072
WebPMI 0.1416 overlap 0.0056

Table 5.4: Comparison with baselines and previous work.

If a method ranks the correct aliases of a name on top, then it receives a higher MRR

value. As shown in Table 5.4, the best results are obtained by the proposed method with

linear kernels (SVM(Linear)). Both ANOVA and Tukey HSD tests confirm that the im-

provement of SVM(Linear) is statistically significant (p<0.05). A drop in MRR occurs

with more complex kernels, which is attributable to over-fitting. Hokama and Kitagawa’s

method which uses manually created patterns, can only extract Japanese name aliases.

Their method reports an MRR value of 0.6314 on our Japanese personal names dataset. In

Table 5.4, I denote the hub-weighted versions of anchor text-based co-occurrence measures

by (h). Among the numerous individual ranking scores, the best results are reported by the

hub-weighted tfidf score (tfidf(h)). It is noteworthy that, for anchor text-based ranking

scores, the hub-weighted version always outperforms the non-hub-weighted counterpart,

which justifies the proposed hub-weighting method. Among the four page-count-based

ranking scores, WebDice reports the highest MRR. It is comparable to the best anchor text-

based ranking score, tfidf(h). The fact that Prob(x|p) gives slightly better performance over

Prob(p|x) implies that we have a better chance in identifying an entity given its real name

than an alias.

In Table 5.5, I evaluate the overall performance of the proposed method on each dataset
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Table 5.5: Overall performance
Dataset MRR AP
English Personal Names 0.6150 0.6865
English Place Names 0.8159 0.7819
Japanese Personal Names 0.6718 0.6646

Table 5.6: Aliases extracted by the proposed method
Real Name Extracted Aliases
David Hasselhoff hoff, michael knight, michael
Courteney Cox dirt lucy, lucy, monica
Al Pacino michael corleone
Teri Hatcher susan mayer, susan, mayer
Texas lone star state, lone star, lone
Vermont green mountain state, green,
Wyoming equality state, cowboy state
Hideki Matsui Godzilla, nishikori, matsui

using MRR and average precision (AP) [5]., which is defined as follows,

AveragePrecision =

∑k
r=1 Pre(r)× Rel(r)

No of correct aliases
. (5.20)

Here, Rel(r) is a binary valued function that returns 1 if the candidate at rank r is a correct

alias for the name. Otherwise, it returns zero. Furthermore, Pre(r) is the precision at rank

r, which is given by,

Pre(r) =
no. of correct aliases in top r candidates

r
. (5.21)

Different from the mean reciprocal rank, which focuses only on rank, average precision

incorporates consideration of both precision at each rank and the total number of correct

aliases in the dataset. Both MRR and average precision have been used in rank evaluation

tasks such as evaluating the results returned by a search engine. With each dataset, I per-

form a 5-fold cross validation. As shown in Table 5.5, the proposed method reports high

scores for both MRR and average precision on all three datasets. Best results are achieved
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for the place name alias extraction task.

Table 5.6 presents the aliases extracted for some entities included in our datasets. Over-

all, the proposed method extracts most aliases in the manually created gold standard (shown

in bold). It is noteworthy that most aliases do not share any words with the name nor

acronyms, thus would not be correctly extracted from approximate string matching meth-

ods. It is interesting to see that, for actors the extracted aliases include their roles in movies

or television dramas (e.g. Michael Knight for David Hasselhoff ).

Table 5.7 shows the top three ranking aliases extracted for Hideki Matsui by the pro-

posed SVM (Linear) measure and the various baseline ranking scores. For each candidate

I give its English translation within brackets alongside with the score assigned by the mea-

sure. The correct alias, Godzilla, is ranked first by SVM (RBF). Moreover, the correct

alias is followed by his last name Matsui and the team which he plays for, New York Yan-

kees. tfidf(h), LLR(h), CF(h) all have the exact ranking for the top three candidates. hide,

which is an abbreviated form of Hideki is ranked second by these measures. However,

none of them contain the alias Godzilla among the top three candidates. The non-hub

weighted measures have a tendency to include general terms such as Tokyo, Yomiuri (a

popular Japanese newspaper), Nikkei (a Japanese business newspaper) and Tokyo stock ex-

change. A close analysis revealed that such general terms frequently co-occur with a name

in hubs. Without adjusting the co-occurrences coming from hubs, such terms receive high

ranking scores as shown in Table 5.7. It is noteworthy that the last name Matsui of the

baseball player is ranked by most of the baseline measures as the top candidate.
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Real name only Real name and top alias
Precision Recall F Precision Recall F

.4812 .7185 .4792 .4833 .9083 .5918

Table 5.8: Effect of aliases on relation detection

5.3.3 Relation Detection

I evaluate the effect of aliases on a real-world relation detection task as follows. First, I

manually classified 50 people in the English personal names dataset, depending on their

field of expertise, into four categories: music, politics, movies, and sports. Following ear-

lier research on web-based social network extraction [96, 102], I measure the association

between two people using the pointwise mutual information (Equation 5.16) between their

names on the web.

I then use group average agglomerative clustering (GAAC) [92] to group the people

into four clusters. Initially, each person is assigned to a separate cluster. In subsequent

iterations, group average agglomerative clustering process, merges the two clusters with

the highest correlation. Correlation, Corr(Γ), between two clusters X and Y is defined as

Corr(Γ) =
1

2

1

|Γ|(|Γ| − 1)

∑

(u,v)∈Γ

sim(u, v). (5.22)

Here, Γ is the merger of the two clusters X and Y . |Γ| denotes the number of elements

(persons) in Γ and sim(u, v) is the association between two persons u and v in Γ.

Ideally, people who work in the same field should be clustered into the same group. I

used the B-CUBED metric [6] to evaluate the clustering results. The B-CUBED evaluation

metric was originally proposed for evaluating cross-document coreference chains. I com-

pute the precision, recall and F -score for each name in the dataset and average the results

over the number of people in the dataset. For each person p in our dataset, let us denote the

cluster that p belongs to as C(p). Moreover, I use A(p) to represent the affiliation of person

p, e.g. A(“Bill Clinton”) =“politics”. Then I calculate the precision and recall for person

p as

Precision(p) =
No. of people in C(p) with affiliation A(p)

No. of people in C(p)
, (5.23)
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Recall(p) =
No. of people in C(p) with affiliation A(p)
Total No. of people with affiliation A(p)

. (5.24)

Then, the F -score of person p is defined as

F(p) =
2× Precision(p)× Recall(p)

Precision(p) + Recall(p)
. (5.25)

The overall precision (P), recall (R) and F -score (F) are computed by taking the averaged

sum over all the names in the dataset.

Precision =
1

N

∑
p∈DataSet

Precision(p) (5.26)

Recall =
1

N

∑
p∈DataSet

Recall(p) (5.27)

F−Score =
1

N

∑
p∈DataSet

F(p) (5.28)

Here, DataSet is the set of 50 names selected from the English personal names dataset.

Therefore, N = 50 in our evaluations.

I first conduct the experiment only using real names (i.e. only using the “real name” as

the query to obtain web hits). Next, I repeat the experiment by expanding the query with

the top ranking alias extracted by the proposed algorithm (i.e.“real name” OR “alias”). Ex-

perimental results are summarized in Table 5.8. From Table 5.8, we can see that F-scores

have increased as a result of including aliases with real names in relation identification.

Moreover, the improvement is largely attributable to the improvement in recall. The inclu-

sion of aliases has boosted recall by more than 20%. By considering not only real names

but also their aliases, it is possible to discover relations that are unidentifiable solely using

real names.

5.3.4 Web Search Task

In order to retrieve information about a particular person from a web search engine, it is

common practice to include the name of the person in the query. In fact it has been reported
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No First Name Last Name Alias F L A F+A L+A F+L F+L+A
1 Hideki Matsui godzilla 48 1 3 50 50 50 50
2 Minako Nakano nakami 8 0 4 50 38 50 50
3 Maki Goto gomaki 16 6 24 48 44 48 50
4 Hidetoshi Nakata hide 44 6 12 50 50 50 50
5 Takuya Kimura kimutaku 34 2 30 50 50 50 50
6 Yuichi Kimura brother kimu 29 0 45 49 45 50 50
7 Takafumi Horie horiemon 29 5 49 48 50 50 50
8 Hikaru Utada hikki 30 48 5 50 48 50 50
9 Ryuichi Sakamoto professor 22 3 1 36 17 49 50
10 Miki Ando mikiti 41 8 4 47 35 48 50

Table 5.9: Effect of aliases in personal name search

that approximately one third of all web queries contain a person name [54]. A name can be

ambiguous in the sense that there might exist more than one individual for a given name.

Under such circumstances, searching only by the name is insufficient to locate information

regarding the person we are interested in. However, by including an alias that uniquely

identify a person from his or her namesakes, it might be possible to filter out irrelevant

search results. I set up an experiment to evaluate the effect of aliases in a web search task.

The experiment is conducted as follows. For a given individual, I search Google with

the name as the query and collect top 50 search results. I then manually go through the

search results one by one and decide whether they are are relevant for the person we

searched for. I count the total number of relevant results. I then append the name query

with an alias of the person and repeat the above mentioned process. Table 5.9 summarizes

the experimental results for 10 Japanese names in our dataset. First, I will briefly describe

each person shown in Table 5.9.

Hideki Matsui is a major league baseball player playing for New York Yankees.

Minako Nakano is an announcer for the Fuji TV corporation.

Maki Goto is a J-pop singer and part of Hello! Project. She is a former member of the

music group Morning Musume.

Hidetoshi Nakata was a member of the Japanese national football team and retired from

professional football in 2006.
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Takuya Kimura a member of Japanese idol group SMAP, is a leading actor as well as a

singer.

Yuichi Kimura is a member of the comedian group oldies.

Takafumi Horie a Japanese entrepreneur, is the founder and former CEO of Japanese

internet portal Livedoor. He was accused of security frauds in 2006 and sentenced to

a 2 years and 6 months imprisonment.

Hikaru Utada is a New York born J-pop singer and song writer.

Ryuichi Sakamoto is a Japanese musician, composer, producer and actor. He has won

Academy Awards, Grammy and Golde Globe for his performances.

Miki Ando , the Japanese figure skater, became the 2007 world figure skating champion.

In Table 5.9, I use F, L, and A to denote the first name, last name and alias respectively.

The notation X+Y stands for the conjunctive query, “X” AND “Y” of two terms X and

Y . For example, for Hideki Matsui, F+A represents the query “Hideki” AND “Godzilla”.

The numbers in Table 5.9 are the relevant results out of 50 top ranking results returned by

Google for each query. Because I search for Japanese names, I search in google.co.jp for

pages written in Japanese language.

In Table 5.9, the number of relevant results have improved for both first name (F) and

last name (L) only queries when the aliases was added to the query (F vs F+A and L vs

L+A). In particular, last names alone produce very poor results. This is because most

Japanese last names are highly ambiguous. For example, the last name Nakano (person

no. 2) is a place name as well as a person name and does not provide any results for

Minako Nakano, the television announcer. Compared to last names, first names seem to

have better precision for the people tested. It is also evident from Table 5.9 that aliases

alone are insufficient to retrieve relevant results. Despite the popular alias godzilla for

Hideki Matsui, searching alone by the alias produces just 3 relevant results. The highly

ambiguous alias, professor, for Ryuichi Sakamoto (person no. 8) returns only the wikipedia

disambiguation entry for the musician. However, the combination of last name and alias

significantly improves relevant results for all individuals.
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We see that searching by the full name (F+L) returns perfect results for 7 out of the 10

people. However, it is noteworthy that including the aliases still improve relevancy even

in the remaining 3 cases. If we only consider the last names, Takuya Kimura (person no.

5) and Yuichi Kimura (person no 6) corresponds to namesakes for the last name kimura.

Searching only by the last name retrieves very few (almost zero) relevant results. However,

they have unique name aliases. Even searching only by their aliases improves relevancy by

a high margin (30 and 45 results respectively).

5.4 Implementation considerations

In order to create a contingency table like the one shown in Table 5.1, we require anchor

texts pointing to an url. In this section, I describe two independent approaches to efficiently

extract anchor texts that point to a url, which is also pointed by the given real name that

we are interested in extracting aliases for. First, I describe a technique to extract this in-

formation from a large web crawl. Second, I propose an algorithm to retrieve the required

information directly from an existing web search engine.

5.4.1 Extracting inbound anchor texts from a web crawl

In the case where we have a large web crawl at our disposal, then extracting all the

inbound anchor texts of a url can be accomplished using a hash table, where the hash key is

a url and the corresponding value contains a list of anchor texts that point to the url specified

by the key. Algorithm 7 illustrates the pseudo code to achieve this task. Given a web crawl,

I extract the set L of links from the crawled data, where L contains tuples (ai, ui) of anchor

texts ai and the urls ui pointed by the anchor texts. The function ANCHORS in algorithm 7

processes the links in L and returns a hash H where keys are urls ui and values, H[ui] are

lists of anchor texts pointing to ui. H is initialized to an empty hash and for each tuple

(ai, ui) in L, if H already contains the key ui then the function Append(H[ui], ai) appends

the anchor text ai to the list H[ui]. If ui does not exist in H then a new list containing ai is

created and assigned to key ui. If the number of links to be processed is large, then H can

be implemented as a distributed hash table.
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Algorithm 7 ANCHORS(p)
Input: name p
Output: H

1: H = { }
2: S ← InAnchor(p)
3: for url ui ∈ S do
4: H[ui] ← [ ]
5: T ← Link(ui)
6: for page t ∈ T do
7: L ← ExtractLinks(t)
8: for (ak, qk) ∈ L do
9: if qk = ui then

10: Append(H[ui], ak)
11: end if
12: end for
13: end for
14: end for
15: return H

5.4.2 Retrieving anchor texts and links from a web search engine

Crawling and indexing a large set of anchor texts from the web requires both computa-

tion power and time. However, there already exist large web indexes created by major web

search providers such as Google, Yahoo and MSN, Most web search engines provide query

APIs and search operators to search in anchor texts. For example, Google4 provides the

search operator inanchor to retrieve urls pointed by anchor texts that contain a particular

word. Moreover, the search operator link returns urls which are linked to a given url. In

Algorithm 8 I describe an algorithm to extract a set of anchor texts that points to urls which

are also pointed by a given name using the basic search operators provided by a web search

engine.

Given a name p, the function ANCHORS(p) described in algorithm 8 returns a hash H

where keys of H are urls and the corresponding values contain lists of anchor texts pointing

to the url specified by the key. Moreover, for each url in H , at least one of the retrieved

anchor texts contains the name p. Therefore, all the words that appear in anchor texts

4http://code.google.com/apis/
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Algorithm 8 ANCHORS(S)
Input: A list L of tuples (ai, ui)
Output: H

1: H = { }
2: for (ai, ui) ∈ L do
3: if ui ∈ H then
4: Append(H[ui], ai)
5: else
6: H[ui] ← [ ]
7: end if
8: end for
9: return H

extracted by the algorithm contains candidate aliases of the name p. The algorithm first

initializes the hash H to empty hash. Then the function InAnchor(p) retrieves urls that

are pointed by anchor texts that contain p. For example, in Google, the search operators

inanchor or allinanchor can be used for this purpose. For each url ui retrieved by the

function InAnchor I initialize the list of anchor texts to empty list and retrieve the set of

pages T that link to ui using the function Link(ui). For example, in Google, the search

operator link provides the desired functionality. Then for each page t in T the function

ExtractLinks extracts anchor texts and links from t. Finally I accumulate anchor texts

that point to ui and store them as a list in H .

5.5 Discussion

I utilize both lexical patterns extracted from snippets retrieved from a web search engine as

well as anchor texts and links in a web crawl. Lexical patterns can only be matched within

the same document. In contrast, anchor texts can be used to identify aliases of names across

documents. The use of lexical patterns and anchor texts respectively, can be considered as

an approximation of within document and cross-document alias references. Experimen-

tally, in Section 5.3.2 I showed that by combining both lexical patterns-based features and

anchor text-based features we can achieve better performance in alias extraction. The con-

tingency table introduced in Section 5.2.4 can only incorporate first order co-occurrences.
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An interesting future research direction would be to create a word co-occurrence graph us-

ing the definition of anchor texts-based co-occurrences given in the paper and run graph

mining algorithms to identify second or higher order associations between a name and

candidate aliases.

An alias might not always uniquely identify a person. For example, the alias Bill is

used to refer many individuals who has the first name William. The namesake disambigua-

tion problem focuses on identifying the different individuals who have the same name.

The existing namesake disambiguation algorithms assume the real name of a person to be

given, and does not attempt to disambiguate people who are referred only by aliases. In

Section 5.3.4, I showed experimentally that the knowledge of aliases is helpful to identify

a particular person from his or her namesakes on the web. Aliases are one of the many

attributes of a person that can be useful to identify that person on the web. Extracting

common attributes such as date of birth, affiliation, occupation, and nationality have been

shown to be useful for namesake disambiguation on the web [136].

Consider the problem of detecting whether a particular relation R holds between two

entities A and B. One approach to solve this problem is to find contexts in which A and

B co-occur and decide whether the relation R pertains between the entities. For example,

if A and B are two researchers, then we can expect a high co-occurrence on the web if

they publish their mutual works together or work on the same project. In fact, previous

studies of social network extraction [96, 102] have considered co-occurrences on the web

as a measure of the social association among people. However, if A and B have name

aliases, then it is not possible to collect all the contexts in which they co-occur merely

by searching using the real names. To illustrate this point, let us assume the aliases of A

and B to be a, b. Then there exists four possible co-occurrences: (A,B), (A,b), (a, B)

and (a,b). The query which contains only real names, A AND B, covers only one of the

four outcomes. Moreover, the number of possible combinations grows exponentially along

with the number of aliases for each entity. As seen from the relation detection experiment

in Section 5.3.3, knowledge related to aliases can improve a relation detection system by

providing more accurate information related to the co-occurrences of entities.
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Attribute Extraction

A person is associated with numerous attributes on the Web. Accurate extraction of at-

tributes for a particular person is important to uniquely identify that person on the web.

For example, in the case of namesakes (i.e. people with identical names), although they

share the same name, the other attributes such as affiliation, nationality, date of birth, place

of birth, etc. might be different. Consequently, extracting various attributes has shown to

be useful for personal name disambiguation. For example, consider the two namesakes of

the ambiguous name Jim Clark: one is a racing driver whereas the other Jim Clark is the

founder of Netscape corporation and also a university professor. The attribute occupation

can separate the two Jim Clarks because one is a sports car driver and the other is a univer-

sity professor. In this Chapter I describe a preliminary study that I conducted in attribute

extraction from the web. In particular, I concentrate on extracting attributes related to peo-

ple. The motivation of this work is that extracting attributes related to people is useful for

both namesake disambiguation (Chapter 4) and name alias extraction (Chpater 5) problems

that I already studied in this thesis. In this Chapter, I describe the alias extraction system

(MIVTU) that I developed which took part in the second Web People Search Task (WePS)

workshop.

Web People Search Task (WePS) is aimed at searching for people on the web. The first

WePS introduced a name disambiguation task where given a collection of web documents

retrieved for a particular name, the objective is to identify the documents that belong to

different people with the queried name. The problem can be conveniently modeled as a

157
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one of document clustering where each cluster represents a different person of the given

ambiguous name. It was found that attributes such as date of birth, nationality, affiliation,

occupation, etc. are particularly useful as features to identify namesakes [4]. Consequently,

in the second WePS [3], an attribute extraction subtask was introduced. Given a web docu-

ment, the objective of this attribute extraction task is to extract a pre-defined set of attribute

values for a given person name. The WePS attribute extraction task focuses on extracting

values for the following 18 attributes: date of birth, birth place, other name, occupation, af-

filiation, work, award, school, major, degree, mentor, location, nationality, relatives, phone,

fax, e-mail, and web site. The definition of each attribute can be found in the task descrip-

tion guide 1. However, not at attributes are equally represented in the WePS dateset. The

most frequent attributes are Work (3770), Occupation (3292), and Affiliation (3105). Here,

the total number of occurrences are shown within brackets. Attributes such as fax (65), web

site (154), and major (173) are the least frequent attributes in the dataset.

A system that attempts to extract attributes for a given person from web documents must

solve several sub-problems. First, it must identify the different occurrences of the given

person name. This is challenging because of two main problems: namesakes and name

aliases on the web. Although a web page might contain the given person name it could

be a page for a different person who has the identical name. In attribute extraction task

at the second WePS workshop only documents relevant to the person under consideration

are given. Therefore the problem of namesake disambiguation does not occur. In fact, the

objective of attribute extraction in WePS is to use the extracted attributes to disambiguate

people on the web. However, a particular individual can be represented by more than one

name on the web. For example, William Gates is more commonly called as Bill Gates in

web contexts. Moreover, abbreviated variants of names are common. For example, John

Fitzgereld Kennedy has the variants J.F.K., John F. Kennedy, and J. F. Kennedy. Although

it is relatively easy to cover the above mentioned variants using dictionaries of common

name aliases (i.e. Bill vs. William, Jim vs. James, etc.) and regular expressions, some

name aliases such as Fresh Price for Will Smith or Godzilla for Hideki Matsui are difficult

to identify automatically [20].

Once the occurrences of the given name is identified in a set of documents, an attribute

1http://nlp.uned.es/weps/weps2/WePS2 Attribute Extraction.pdf
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extraction system must extract attributes and their values. Attribute extraction step can be

further divided into two parts – the attribute extraction system must first identify the val-

ues for the given set of attributes and then decide which attribute values are relevant to the

person under consideration. Attributes such as e-mail addresses, urls, telephone numbers,

fax numbers, and birth dates follow a specific format and are easy to detect. However,

attributes such as relative, mentor, school, award, degree, and affiliation have many varia-

tions and are difficult to detect. For example, a mentor of a person can be introduced in a

text as the teacher, advisor, professor, supervisor, etc. The set of values such attributes can

take is open, and cannot be completely enumerate using pre-compiled lists. For example,

the attribute mentor can take any person name as its value. Named entity recognition tools

can solve this problem partially. However, most named entity recognition tools only cover

more common entities such as personal names, locations, and organizations. They do not

annotate awards, majors, nationalities or classify organizations into schools. Moreover,

named entity recognition tools are usually trained on noise-free text corpora such as news

articles and do not show optimal performance on relatively noisy web documents with nu-

merous markups such as HTML and Javascript. Therefore, identifying which strings can

be potential attributes for a person is an important task that an attribute extraction system

must perform.

Finally, an attribute extraction system must select the attribute values relevant to the

given person. A document might contain information regarding more than one person.

Consequently, not all attributes that appear in a document might be relevant to the person

under consideration. A simple yet effective heuristic is to associate attributes closest to an

occurrence of the given person name. It is likely that a person denote his or her contact

information such as e-mail, telephone and fax close to the name in a home page. However,

this simple heuristic cannot cover the cases where a name and a relevant attribute appear in

distant parts in a document. Moreover, it is not clear how to handle cases where more than

one person name appear in a document – should we go beyond an occurrence of a different

name and associate attributes or not.

This chapter describes the MIVTU system that participated in the attribute extraction

subtask at the second WePS workshop. According to the official results, MIVTU was

ranked 5th among the 15 systems that participated in the attribute extraction task at the
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second WePS. However, the highest overall F-scores reported by all participating systems

is 12.2. MIVTU system reported an F-score of 8.3. The low performance reprted by

the pariticipants in WePS-2 attribute extraction task, highlights the difficulty of accurately

extracting attributes for people. The challenges discussed above are not yet fully solved

by any participating system. However, the applications that can benifit from an accurate

attribute extraction system are numerous. I believe that we will see further research on this

field in near future. In Chapter 8, I discuss some aspects of attribute extraction that can be

improved.

6.1 Related Work

Extracting attribute values for an entity has wide applications in information extraction and

retrieval. Pasca [114] proposed a method to extract born year of people from web text. For

example, from the text Mozart was born in 1756, this method extracts the pair (Mozart,

1756). The extraction algorithm starts from as few as 10 seed facts, and is capable of

extracting facts from over 100 million web documents. Seed facts are searched on web

texts and lexical patterns are generated. Then the generated lexical patterns are searched in

web texts and new facts are extracted. The process is repeated with newly extracted facts

as seeds. Although this method was used to extract birth year of people, a similar boot

strapping approach can be followed to extract other types of attributes such as birth place,

nationality and occupation.

Bellare et al. [11] proposed a lightly-supervised approach to attribute extraction from

the web. They first tag a given text corpus with part-of-speech information and then from

each tagged sentence extract all proper noun and noun pairs. They consider each extracted

pair as a candidate entity-attribute instance. Each candidate instance is assigned with a set

of features. They select the left, right and middle contexts that appear around the entity

and candidate attribute as features. They use two learning methods: decision lists by co-

training using a mutual information-based measure, and a maximum-entropy classifier by

self-training. They evaluate their algorithm on two tasks: extracting the set of attributes for

companies, and extracting the set of attributes for countries. However, they do not extract

the values for those attributes.
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Figure 6.1: Outline of the proposed system

6.2 Attribute Extraction from the Web

6.2.1 Outline

The proposed method is illustrated in Figure 6.1 and it can be seen as consisting of two

fundamental steps. First, I mark potential attribute values in a given text. Second, I decide

which candidate values correspond to which attributes of the given person name.

To mark the potential values of attributes I use three approaches: lists of candidate at-

tribute values, a named entity recognizer, and a set of manually created rules in the form

of regular expressions. For example, attributes such as nationalities (e.g. Japanese, British)

, universities (e.g. The University of Tokyo), majors (e.g. Master of Science, Bachelor of

Arts) and professional titles (e.g. professor, general) can be marked using candidate lists.

These lists were created manually referring online information sources such as Wikipeida.

However, lists cannot completely enumerate all attribute values. In addition to using pre-

compiled lists of attribute values, we used a named entity recognition tool to mark three

types of named entities: personal names, organization names, and location names. At-

tributes such as dates, telephone numbers, fax numbers, e-mail addresses and urls usually

follow a fixed format and can be efficiently annotate in a text using rules in the form of

regular expressions.

Once the given text is annotated following the above mentioned procedure, I mark all

potential variants of the given name for which we must extract attribute values. I generate
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abbreviated forms, last name and first name inter-changed forms, middle name initialized

forms, middle name dropped forms, name followed by titles, and combinations of all the

above. We then mark those variants in the given text. For example, if the given name is

John Fitzgereld Kennedy then this process will generate variants such as J. F. Kennedy,

John F. Kennedy, Kennedy J. F., and John Kennedy. To find the attributes of the given per-

son, I find the distance for each marked attribute value from a name variant. I then select

the closest attribute value as the correct candidate. However, I do not go beyond a different

person name when computing distances. Moreover, I assign higher confidence score to

an extracted attribute value if certain cue phrases appear in close proximity. For example,

the cue phrases born and birth increase the confidence of an extracted date being the date

of birth of the person under consideration. Likewise, cue phrases mentor, supervisor, and

advisor increase the confidence of a value extracted as the mentor of the person under con-

sideration. The cue phrases are selected manually after reviewing the test data in the WePS

attribute extraction dataset. Each sub-component of the proposed attribute extraction sys-

tem including examples of candidate value lists, linguistics rules, cue phrases, and attribute

extraction method will be further explained in the sections to follow.

6.2.2 Pre-processing

WePS attribute extraction task dataset contains HTML documents for a set of person names.

However, named entity recognition tools have difficulties in operating on HTML marked

texts. Therefore, I first remove all HTML markups using an external tool2. I then use

Stanford named entity recognizer3 and annotate the text for person names, locations and

organizations. The remainder of the processing described in the paper use this annotated

text version of the dataset and does not use the original HTML version. I use a set of rules

to generate probable variants of the given person name. First, I split the given name into

first name and last name. I then generate the following variants: first name followed by

last name, last name followed by first name, a comma appearing between the two names,

a word appearing between the two names, first name initialized and immediately followed

by the last name, last name followed by a comma and the first name initialized, and first

2http://www.oluyede.org/files/htmlstripper.py
3http://nlp.stanford.edu/software/CRF-NER.shtml
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Benjamin [VARIANT,1] Snyder and Phedora [ORGANIZATION,3] Blazer Benjamin Sny-
der and Phoebe Ann Blazer Husband: Benjamin [VARIANT,1] Snyder born 12 DEC 1827
in Dayton, [LOCATION,0] Montgomery [ORGANIZATION,1] Co., OH died 6 JUL 1873
in Montreal, [LOCATION,0] Camden [ORGANIZATION,1] Co., MO.. [LOCATION,0]
buried: Freedom [ORGANIZATION,5] Church, Linn Creek, Camden Co., MO [LOCA-
TION,0] married: Phoebe Ann BLASER Bef 1855 in OH Wife: Phoebe Ann BLASER
born 25 JUL 1838 in OH died: 20-Feb-1896 in MO [LOCATION,0] buried: Freedom
Cemetery -LRB- West side -RRB- Children of Benjamin [VARIANT,1] Snyder and Phoebe
[ORGANIZATION,2] Ann Blazer 1. Andrew Jackson Snyder [VARIANT,0] born: JUL
1855 in OH died: 16 OCT 1935 in Tulsa, [LOCATION,0] Tulsa [ORGANIZATION,1]
Co., OK. married: Delilah Caroline MOSBY 1878 in IN born: 20 NOV 1866 in Evansville,
[LOCATION,0] Vanderburgh [ORGANIZATION,1] Co., IN daughter of Vincent MOSBY
and Manerva SAMUELS died: 8 JUN 1910 in Linn [ORGANIZATION,3] Creek, Camden
Co., MO [LOCATION,0] buried: Freedom [ORGANIZATION,1] Cemetery - Montreal,
[LOCATION,0] ...

Figure 6.2: Example of an annotated text for the person Benjamin Snyder.

name initialized and followed by a word and the last name. I also consider all combinations

of the above variants with the following titles: Mr., Mrs. Miss., Ms, Rev., Prof., President,

Minister, Prime Minister, General, Madame, Lady, Dr., King., Queen, Vice President, Sen-

ator, Lawyer, Major, Maj., General, Gen., Maj. Gen., Major General, and Jr. For example,

given the name George Bush the above mentioned process recognizes the string president

George W. Bush as a variant of the given name. The process is an over generating one and

in practice generates a large number of variants that never occur in the corpus. However,

once the candidate variants are generated they can be efficiently matched using regular ex-

pressions. Figure 6.2 shows an example annotation produced by the pre-processing step.

In Figure 6.2 we use the format [TAG NAME, LENGTH IN WORDS] to mark the span

of a tag. For example, Benjamin [VARIANT,1] Snyder indicates that Benjamin Snyder is a

variant of the given name.

6.2.3 Attribute Extraction

I use the HTML markup removed and annotated text produced by the pre-processing to

extract attributes. Next, I describe the extraction procedure for each of the attributes in
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detail.

Date of birth: I use a set of rules in the form of regular expressions to mark all date strings

in the text. I then normalize all date strings to YEAR/MONTH/DAY format. The

following Perl versions of the regular expressions are used to mark dates.

/((month_exp)\s*(\d+),?\s+(\d+))/gi

/((month_exp)\.?\s*(\d+))/gi

/((\d{1,2})\s*($month_exp)\s*(\d{2,4}))/gi

/((\d{1,2})\s+(\d{1,2})\s+(\d{2,4}))/gi

/((\d+)\/(\d\d?)\/(\d\d?))/g

/((\d+)\/(\d{1,2}))/g

/((\d+)\.(\d\d?)\.(\d\d?))/g

/(\d\d\d\d)/g

Here, month exp is a variable that holds the names of months. Once all dates are

marked in the text, I assign confidence scores to dates that appear closer to the given

name (or its variants) or have cue phrases such as born or birth.

Birth place: I use the location markups as given by the named entity recognition tool to

identify candidates for the birth place. I then assign confidence scores to locations

that appear closer to the given name (or its variants) or have cue phrases such as birth

place or born in.

Other name: The name variant generation procedure described in section 6.2.2 annotates

name variants. I select those variants as other names of the given name. Moreover, I

use cue phrases such as a.k.a., also known as, alias, and other name to identify other

names for the person under consideration.

Occupation: I created a list of occupations from Wikipedia4. The list contains 666 entries.

I then select the occupation closest to the given name or any of its variants in the text.

Moreover, we tokenized each entry in the occupation list into words and sorted the

4http://en.wikipedia.org/wiki/List of occupations
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words according to their total frequency within the list. The goal of this is to iden-

tify words that are commonly used to describe occupations. If a sequence of words

contain any of those high frequency words, I select those sequences as occupations.

The most frequent words that occur in occupations are: engineer (11), officer (8),

scientist (6), Technologist (5), agent (5), designer (5), Financial (5), and worker (5).

Affiliation: I consider companies and universities as affiliations. I create lists for universi-

ties and companies using Wikipedia. The created company names list contains 43040

entries and university list contains 1726 entries. I also find the frequency of words

that appear in each of these entity types as we did for occupations. The top 10 most

frequent words that appear in company names are: Inc. (16137), Corporation (3932),

Ltd. (2277), Limited (2126), Company (1993), LLC (1782), Group (1685), plc (976),

and International (835). If a capitalized sequence of continuous words contain those

words we mark it as an company. Although words such as of (1814), & (1814),

and The (1514) are also highly frequent in company names, I remove such words

using a stopwords list because those words are ambiguous and can appear in various

contexts not necessarily for companies. Moreover, the named entity recognition tool

we used in the pre-processing step also provides some company names. A similar

word frequency analysis for university names revealed that the most frequent words

that appear in university names to be the following: University (861), College (662),

State (234), New (74), Saint (56), and Institute (55).

Work: Works of people are very difficult to extract. Books written by authors and movies

created by film directors are such cases. However, what can be a work differs from

person to person. It is not feasible to cover all value types for this attribute using

lists. MIVTU system does not extract this attribute.

Award: I used Wikipedia to create a list of awards. The list contains 454 entries. Any entry

that is found in this list is marked as an occurrence of an award in the given text. I

perform a word frequency analysis on this list and found the following words to be

the most commonly used in names of awards: Award (85), Prize (62), Medal (58),

and Order (41). Any continuous sequence of capitalized words that include these

words are marked as awards. However, some awards such as Common Wealth Award
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of Distinguished Service and National Medal of Science contain the preposition of

which is not capitalized. I found of to appear 98 times in award names. Initially, I

had removed of because it is a common stopword. But we reinstate of in order to

facilitate the award names that contains it.

School: A list of high schools was created from Wikipedia’s “list of” pages. The compiled

list contains 25271 entries. Any entry that is found in this list is marked as an oc-

currence of a school in the given text. The word frequency analysis shows the most

frequent words that appear in names of schools to be: School (18618), High (16112),

Academy (1828), Christian (1651), HS (1469), Central (684), and Senior (640). First

letter capitalized sequences that contain those high frequent words are also marked

as schools. However, the confidence score assigned to such partial matches are lower

than that for complete entries in the list. Confidence scores are experimentally deter-

mined by manual supervision.

Major: I prepared a list of majors by referring to fields of studies offered by some top

universities. The compiled list contains 318 entries. Any entry that appear in this

list is marked as an occurrence of a major with a high confidence score. The most

frequent words that appear in this list are: Studies (33), Engineering (24), Science

(22), Management (17), and Education (13). I assign low confidence scores to first

letter capitalized continuous word sequences that contain those words.

Degree: A list of degrees was compiled manually using Wikipeida. Our list contains 175

entries. We have both acronym versions of degrees (e.g., M.Eng) and the correspond-

ing full forms (e.g., Masters of Engineering). The word frequency analysis reveals

the most frequent words that appear in degree names to be: of (57), Doctor (31),

Master (15), Bachelor (12), Administration (8), Science (8), Engineer (8), Medicine

(7), degree (7), in (6), Business (5), and Licentiate (5). We ignore common stop

words such as of and in because they are ambiguous and can occur in other contexts

other than degrees. If a first letter capitalized continuous sequence of words con-

tain any one or more of those high frequency words then I increase the confidence

score assigned to that sequence being a name of a degree. However, the confidence
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scores assigned in word frequency analysis are lower than the confidence scores as-

signed when an entire entry in the list get matches in the text. The exact values of the

confidence scores are adjusted manually.

Mentor: The value set for the attribute mentor contains only person names. Therefore, I

use all person names given by the named entity recognition tool as potential candi-

dates for the attribute mentor if they appear near some cue phrases such as studied

with, worked with, coach, trainer, adviser, mentor, supervisor, and spiritual adviser.

We checked the local contexts of the attribute mentor in WePS training data to deter-

mine the above mentioned cue phrases. Concretely, we extract a pre-defined window

of text from all occurrences of the attribute mentor in WePS training data and then

manually go through these contexts to identify the cue phrases. Once person names

are marked as candidates for mentors, we then select the candidate that is closest to

any of the variants of the given person name as the mentor for that person.

Location: I use the location annotation provided by the named entity recognition tool to

mark potential candidates for this attribute. I then select the mention of location that

is closest to any of the variants of the given name.

Nationality: I prepare a list of nationalities. The list contains 442 entries. It has multiple

entries for certain nationalities (i.e. both Englishmen and British are marked for

United Kingdom). Entries found in this list are marked as nationalities in the text. I

then select the nationality tag that is closest to any variant of the given person name

in the text as the correct nationality of the person under consideration.

Relatives: The set of values that the attribute relatives can take consists of person names.

I mark all person names annotated by the named entity recognition tool as candidates

of relatives of the person under consideration if a set of cue phrases that indicate

various relationships exist in the immediate context of the candidate. I select a win-

dow of 10 words around the candidate as its immediate context. Cue phrases are

selected from pages describing relationships in Wikipedia. It contains the follow-

ing entries: ”spouse”, ”brother”, ”sister”, ”wife”, ”husband”, ”father”, ”mother”,

”married”,”son”, ”daughter”, ”late husband”, ”late wife”, ”widow”, ”grand father”,
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”grand mother”, ”aunt”, ”uncle”, ”step father”, ”step mother”, ”brother-in-law”,

”sister-in-law”, ”son-in-law”, ”nees”, ”nephew”, ”father-in-law”, ”mother-in-law”,

”child”, ”children”, ”sibling”, ”parent”, ”meet”, ”met”, ”girl friend”, ”boy friend”,

”finance”, ”ex-girlfriend”, ”ex-boyfriend”, ”ex-husband”, ”ex-wife”.

Phone and Fax: I use the following regular expression to mark strings that are likely to be

telephone numbers or a fax numbers.

(((\+\d{1,3}(-| )?\(?\d\)?(-| )?\d{1,5})|

(\(?\d{2,6}\)?))(-| )?(\d{3,4})(-| )

?(\d{4})(( x| ext)\d{1,5}){0,1})

I then mark those candidate strings as a telephone numbers if the cue phrases tel,

telephone, phone, mobile occur in the immediate context of the candidates. I set a

window of 3 words as the immediate context of a candidate. Likewise, a candidate

string is marked as a fax number if the cue phrase fax occur in its immediate context.

I then select the closest candidate to any variant of the given name as the correct

attribute value for the person under consideration.

Email: E-mail addresses are marked using the following regular expression.

([\w\-\.]+@(\w[\w\-]+\.)+[\w\-]+)

I use a stop list for e-mail addresses that occur frequently on web documents such as

webmaster@domain or support@domain. This exclusion list of e-mail addresses

is compiled manually. Moreover, I found that people have a tendency to include a

substring of their first or last names (or both) in their e-mail addresses. Therefore, I

increase the confidence of an extracted candidate string if it satisfies those conditions.

Finally, the e-mail address candidate that is closest to any of the variants of the given

name is selected as the e-mail address of the person under consideration.

Web site: I use the following regular expression to extract urls.

(https?://([-\w\.]+)+(:\d+)?

(/([\w/_\.]*(\?\S+)?)?)?)



6.3. RESULTS AND DISCUSSION 169

Table 6.1: Overall results for participating systems.
Rank System Precision Recall F -score
1 PolyUHK 30.4 7.6 12.2
2 CASIANED 8.5 19.0 11.7
3 ECNU 2 8.0 17.6 11.0
4 ECNU 1 6.8 18.8 10.0
5 MIVTU 5.7 15.5 8.3
6 UvA 2 4.4 27.4 7.6
7 UvA 1 2.7 27.3 5.0
8 UC3M 5 8.0 3.6 5.0
9 UvA 5 3.3 2.8 3.1
10 UC3M 1 2.5 2.2 2.3
11 UC3M 2 2.4 2.2 2.3
12 UC3M 3 2.2 2.0 2.1
13 UC3M 4 2.2 2.0 2.1
14 UvA 3 0.7 0.2 0.2
15 UvA 5 0.2 0.0 0.0

Table 6.2: Performance of MIVTU system by each name.
Name Matches Over generations Misses Precision Recall F -score
Benjamin Snyder 42 771 268 5.166 13.548 7.480
Hao Zang 66 747 279 8.118 19.130 11.399
Amanda Lentz 33 1185 279 2.709 10.577 4.314
Otis Lee 26 495 304 4.990 7.879 6.110
Bertram Brooker 56 1247 380 4.298 12.844 6.440
Jason Hart 174 1015 592 14.634 22.715 17.801

I then select the url that is closest to any of the variants of the given name as the

correct web url for the person under consideration.

6.3 Results and Discussion

The proposed attribute extraction system is evaluated on the test dataset created for the

second WePS workshop. This dataset contains 3468 web documents retrieved for 30 people

names. The average number of documents per name is 115.6. Out of those documents

585 were ignored during the annotation process and only the remaining 2883 were used
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for testing. 2421 documents in the test dataset have at least one attribute value. There

were 462 documents without any attribute values. For further details of the annotation

process and datasets refer [136]. Each participating system is evaluated by comparing the

attributes produced by that system for a particular name against the gold standard attributes

created by the annotators. Comparisons are done using precision, recall and F -score. Those

evaluation metrics are computed for each individual name in the test dataset as well as for

the overall set of attributes extracted by each system. Evaluation metrics are computed

using following formulas,

precision =
no. of correctly identified attribute values by system

no. of attribute values produced by the system
,

recall =
no. of correctly identified attribute values by system

no. of attribute values in gold data
,

F − score =
2× recall× precision

recall + precision
.

Table 3.9 summarizes the results produced by each participating system in the attribute

extraction task at the second WePS. We have arranged the systems according to their over-

all F -scores. Results shown for UC3M 4 and UC3M 5 are for unofficial runs submitted

after the results submission deadline. The proposed system is ranked 5th among the 15

systems shown in Table 6.1. It reports an overall F -score of 8.3. The best performing sys-

tem is PolyUHK. It has an F -score of 12.2. Overall, all the systems report low F -scores.

The highest precision reported by any individual system is 30.4 (PolyUHK) and the high-

est recall reported by any individual system is 19.0 (CASIANED). This fact suggests that

the task of attribute extraction is indeed challenging and none of the systems successfully

overcome the difficulties described at the begining of this chapter. Among the 18 attributes

considered in the task, MIVTU system reported the highest recall for three attributes: date

of birth (32.0), birth place (48.5), and affiliation (23.0). All systems had difficulties in

extracting the attributes major, mentor and award.

Table 6.2 shows the performance of the proposed (MIVTU) system per each name used
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in the evaluations. Best results are reported for Jason Hart. From Table 6.2 we see that

MIVTU system generally has better recall values compared to precision values. This is a

side effect of it using various lists and over generating candidates. A more conservative ap-

proach to tagging candidates might help to overcome this problem. During our experiments

we noticed that the named entity tagger itself has a tendency to mark first letter capitalized

consecutive sequences of words as named entities even when they were not.

To improve the accuracy of attribute extraction we must improve both steps: marking

candidate attributes in text and finding which attribute values are relevant to the person un-

der consideration. The list-based approach that we used to find candidate attribute values

has several limitations. First, one cannot enumerate all attribute values using lists. At-

tributes such as nationalities can be listed up because the number of countries is a closed

set. However, attributes such as awards, occupations, birth place, location, affiliation,

school and mentor are typical examples of open sets. In addition to using pre-compiled

lists, we must have some form of rules to identify such attributes. Moreover, the use of lists

can also introduce a level of ambiguity because an entry in a list can appear in a different

context in the text. For example, some entries in a list of schools can also be valid entries

for affiliation of a person if that person is actually employed in that school. The second step

of determining which attribute values are relevant to the person under consideration could

be improved if we can merge results from different documents. For example, an attribute

such as birth date or birth place should be the same even if it is extracted from different

documents for the same person. By enforcing such constraints we might be able to reduce

the number of candidate attribute values and thereby make an accurate decision. However,

the task guidelines in WePS does not allow this form of cross-document information inte-

gration because the objective is to use the set of extracted attributes to cluster the pages.

Therefore, the attribute extraction systems must process each document separately.



Chapter 7

Relational Model of Semantic Similarity

In Section 1.8 I explained the relationship between attributional and relational similarity.

I argued that relational similarity is a more primal concept than attributional similarity.

However, we lack a theoretical model that can be used to measure attributional (semantic)

similarity between words that is motivated by semantic relations. In this Chapter, I present

some preliminary work that I conduct on those lines.

Geometric models, such as multi-dimensional scaling has been used in psychological

experiments analyzing the properties of similarity [76]. These models represent objects

as points in some coordinate space such that the observed dissimilarities between objects

correspond to the metric distances between the respective points. Geometric models as-

sume that objects can be adequately represented as points in some coordinate space and

that dissimilarity behaves like a metric distance function satisfying minimality, symmetry

and triangle inequality assumptions. However, both dimensional and metric assumptions

are open to question.

Tversky [153] proposed the contrast model of similarity to overcome the problems in

geometric models. The contrast model relies on featural representation of objects, and it

is used to compute the similarity between the representations of two objects. Similarity is

defined as an increasing function of common features (i.e. features in common to the two

objects), and as a decreasing function of distinctive features (i.e. features that apply to one

object but not the other). The attributes of objects are primal to contrast model and it does

not explicitly incorporate the relations between objects when measuring similarity.

172
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I propose a model to compute the semantic similarity between two words a and b using

the set of semantic relations R(a, b) that hold between a and b. The proposed model is

called the relational model of semantic similarity, and it is defined by the following equa-

tion,

sim(a, b) = Ξ(R(a, b)). (7.1)

Here, sim(a, b) is the semantic similarity between the two words a and b, and Ξ is a weight-

ing function defined over the set of semantic relations R(a, b). Given that a particular set

of semantic relations are known to hold between two words, the function Ξ expresses our

confidence on those words being semantically similar.

A semantic relation can be expressed in a number of ways. For example, given a taxon-

omy of words such as WordNet, semantic relations (i.e. hypernymy, meronymy, synonymy

etc.) between words can be directly looked up in the taxonomy. Alternatively, the labels

of the edges in the path connecting two words can be used as semantic relations. How-

ever, in this paper we do not assume the availability of manually created resources such as

dictionaries or taxonomies. We represent semantic relations using automatically extracted

lexical patterns. Lexical patterns have been successfully used to represent various seman-

tic relations between words such as hypernymy [60] and meronymy [12]. Following these

previous approaches, we represent R(a, b) as a set of lexical patterns.Moreover, we denote

the frequency of a lexical pattern r for a word pair (a, b) by f(r, a, b).

So far we have not defined the functional form of Ξ. A straightforward approach is to

use a linearly weighted combination of relations as shown below,

Ξ(R(a, b)) =
∑

ri∈R(a,b)

wi × f(ri, a, b). (7.2)

Here, wi is the weight associated with the lexical pattern ri and can be determined using

training data. However, this formulation has two fundamental drawbacks. First, the number

of weight parameters wi is equal to the number of lexical patterns. Typically two words can

co-occur in numerous patterns. Consequently, we end up with a large number of parameters

in the model. Complex models with a large number of parameters are difficult to train
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because they tend to overfit the training data. Second, the linear combination given in

Equation 7.2 assumes the lexical patterns to be mutually independent. However, in practice

this is not true. For example, both patterns X is a Y and Y such as X indicate a hypernymic

relation between X and Y.

To overcome the above mentioned limitations, we first cluster the lexical patterns to

identify the semantically related patterns. Our clustering algorithm is detailed in sec-

tion 2.3.8. Next, we define Ξ using the formed clusters as follows,

Ξ(R(a, b)) = xT
abΛσ. (7.3)

Here, xab is a feature vector representing the words a and b. Each formed cluster contributes

a feature in vector xab as described later in Section 7.2. The vector σ is a prototypical vector

representing synonymous word pairs. We compute σ as the centroid of feature vectors

representing synonymous word pairs. Λ is the inter-cluster correlation matrix. The (i, j)-th

element of matrix Λ denotes the correlation between the two clusters ci and cj . Matrix

Λ is expected to capture the dependence between semantic relations. Intuitively, if two

clusters i and j are highly correlated, then the (i, j)-th element of Λ will be closer to 1.

Equation 7.3 computes the similarity between a word pair (a, b) and synonymous word

pairs. Intuitively, if the relations that exist between a and b are typical relations that hold

between synonymous word pairs, then Equation 7.3 returns a high similarity score for a

and b.

The proposed relational model of semantic similarity differs from feature models of

similarity, such as the contrast model [153], in that it is defined over the set of semantic

relations that exist between two words instead of the set of features for each word. Specif-

ically, in contrast model the similarity S(a, b) between two objects a and b is defined in

terms of the features common to a and b, A ∩ B, the features that are distinctive to a,

A− B, and the features that are distinctive to b, B − A. The contrast model is formalized

in the following equation,

S(a, b) = θf(A ∩B)− αf(A−B)− βf(B − A). (7.4)

Here, the function f measures the salience of a particular set of features, and non-negative
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parameters α, β, and θ determine the relative weights assigned to the different components.

However, in the relational model of similarity we do not focus on features of individual

words but on relations between two words.

Modeling similarity as a phenomenon of relations between objects rather than features

of individual objects is central to computational models of analogy-making such as the

structure mapping theory (SMT) [45]. SMT claims that an analogy is a mapping of knowl-

edge from one domain (base) into another (target) which conveys that a system of relations

known to hold in the base also holds in the target. The target objects do not have to resem-

ble their corresponding base objects. During the mapping process, features of individual

objects are dropped and only relations are mapped. The proposed relational model of simi-

larity uses this relational view of similarity to compute semantic similarity between words.

7.1 Empirical Evaluation of the Model

To compute semantic similarity between two words using the relational model (Equa-

tion 7.3), we must first extract the numerous lexical patterns from contexts in which those

two words appear. We use the pattern extraction procedure detailed in section 3.3.2 for

this purpose. Evaluating a semantic similarity measure is difficult because the notion of

semantic similarity is subjective. Miller-Charles dataset [103] has been frequently used to

benchmark semantic similarity measures. Miller-Charles dataset contains 30 word-pairs

rated by a group of 38 human subjects. The word-pairs are rated on a scale from 0 (no

similarity) to 4 (perfect synonymy). Because of the omission of two word-pairs in ear-

lier versions of WordNet, most researchers had used only 28 pairs for evaluations. The

degree of correlation between the human ratings in the benchmark dataset and the similar-

ity scores produced by an automatic semantic similarity measure, can be considered as a

measurement of how well the semantic similarity measure captures the notion of semantic

similarity held by humans. In addition to Miller-Charles dataset we also evaluate on the

WordSimilarity-353 [46] dataset. In contrast to Miller-Charles dataset which has only 30

word pairs, WordSimilarity dataset contains 353 word pairs. Each pair has 13-16 human

judgments, which were averaged for each pair to produce a single relatedness score. Fol-

lowing the previous work, we use both Miller-Charles dataset and WordSimilarity dataset
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Figure 7.1: Average similarity vs. clustering threshold θ

to evaluate the proposed semantic similarity measure (Prop).

7.2 Computing Semantic Similarity

The degree of correlation between the human ratings in the benchmark dataset and the sim-

ilarity scores produced by an automatic semantic similarity measure, can be considered as

a measurement of how well the semantic similarity measure captures the notion of seman-

tic similarity held by humans. In addition to Miller-Charles dataset I also evaluate on the

WordSimilarity-353 [46] dataset. In contrast to Miller-Charles dataset which has only 30

word pairs, WordSimilarity-353 dataset contains 353 word pairs. Each pair has 13-16 hu-

man judgments, which were averaged for each pair to produce a single relatedness score.

Following the previous work, I use both Miller-Charles dataset and WordSimilarity-353

dataset to evaluate the proposed semantic similarity measure. To perform a fair evaluation,
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Figure 7.2: Sparsity vs. clustering threshold θ

we do not select any words that appear in the Miller-Charles dataset or the WordSimilarity-

353 dataset, which are used later for evaluation purposes. As I will describe later, the

clustering threshold θ is tuned using this set of 2000 word pairs selected from the WordNet.

I use YahooBOSS API1 and download 1000 snippets for each of those word pairs.

Experimentally, I set the values for the parameters in the pattern extraction algorithm (sec-

tion 3.2.1): L = 5, g = 2, G = 4, and extract 5, 238, 637 unique patterns. However, only

1, 680, 914 of those patterns occur more than twice. Low frequency patterns often contain

misspellings and are not suitable for training. Therefore, I select patterns that occur at

least 10 times in the snippet collection. Moreover, I remove very long patterns (ca. over

20 chars). The final set contains 140, 691 unique lexical patterns. The remainder of the

experiments described in this chapter use those patterns.

I use the clustering Algorithm 3 to cluster the extracted patterns. The only parameter in

Algorithm 3, the clustering threshold θ, is set as follows. We vary the value of theta θ from

1http://developer.yahoo.com/search/boss/
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0 to 1, and use Algorithm 3 to cluster the extracted set of patterns. We use the resultant set

of clusters to represent a word pair by a feature vector. We compute a feature from each

cluster as follows. We assign a weight wij to a pattern pi that is in a cluster cj as follows,

wij =
µ(pi)∑
q∈cj

µ(q)
. (7.5)

Here, µ(q) is the total frequency of a pattern, and it is given by,

µ(p) =
∑

(a,b)∈W

f(a, b, p). (7.6)

Here, W is the set of word pairs. Because I perform a hard clustering on patterns, a pattern

can belong to only one cluster (i.e. wij = 0 for pi /∈ cj). Finally, we compute the value of

the j-th feature in the feature vector for word pair (a, b) as follows,

∑
pi∈cj

wijf(a, b, pi). (7.7)

For each set of clusters, I compute the element Λij of the corresponding inter-cluster

correlation matrix Λ as the cosine similarity between the centroid vectors for clusters ci and

cj . The prototype vector σ in Equation 7.3 is computed as the vector sum of individual fea-

ture vectors for the synonymous word pairs selected from the WordNet as described above.

We then use Equation 7.3 to compute the average of similarity scores for synonymous word

pairs we selected from WordNet.

I select the θ that maximizes the average similarity score between those synonymous

word pairs. Formally, the optimal value of θ, θ̂ is given by the following Equation,

θ̂ = argmaxθ∈[0,1]

(
1

|W |
∑

(a,b)∈W
sim(a, b)

)
. (7.8)

Here, W is the set of synonymous word pairs (a, b), |W | is the total number of synony-

mous word pairs (i.e. 2000 in our experiments), and sim(a, b) is given by Equation 7.3.

Because the averages are taken over 2000 word pairs this procedure gives a reliable esti-

mate for θ. Moreover, this method does not require negative training instances such as,
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non-synonymous word pairs, which are difficult to create manually. Average similarity

scores for various θ values are shown in Figure 7.1. From Figure 7.1, we see that initially

average similarity increases when θ is increased. This is because clustering of semanti-

cally related patterns reduces the sparseness in feature vectors. Average similarity is stable

within a wide range of θ values between 0.5 and 0.7. However, increasing θ beyond 0.7

results in a rapid drop of average similarity. To explain this behavior consider Figure 7.2

where we plot the sparsity of the set of clusters (i.e. the ratio between singletons to to-

tal clusters) against threshold θ. As seen from Figure 7.2, high θ values result in a high

percentage of singletons because only highly similar patterns will form clusters. Conse-

quently, feature vectors for different word pairs do not have many features in common.

The maximum average similarity score of 1.303 is obtained with θ = 0.7, corresponding to

17, 015 total clusters out of which 12, 476 are singletons with exactly one pattern (sparsity

= 0.733). For the remainder of the experiments in the paper we set θ to this optimal value

and use the corresponding set of clusters to compute semantic similarity by Equation 7.3.

Similarity scores computed using Equation 7.3 can be greater than 1 (see Figure 7.1) be-

cause of the terms corresponding to the non-diagonal elements in Λ. We do not normalize

the similarity scores to [0, 1] range in our experiments because the evaluation metrics we

use are insensitive to linear transformations of similarity scores.

7.3 Experiments

7.3.1 Evaluation Measures

The evaluation of automatic semantic similarity measures is often performed by compar-

ing the similarity scores produced by the semantic similarity measure under evaluation

against a set of ratings assigned by human annotators for the same set of word pairs.

Two datasets that have been used repeatedly in previous work on semantic similarity are

the Miller-Charles dataset and the WordSimilarity-353 dataset.We have already seen the

Miller-Charles dataset in Chapter 2. Two sets of scores assigned to the same set of word

pairs can be efficiently summarized using correleation coefficients. Two correlations coef-

ficients have been used in previous work: Pearson’s correlation coefficient (aka Pearson’s
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product moment coefficieint), and the Spearman rank correlation coefficient. I will next

describe those correlation coefficients in detail.

The Pearson correlation coefficient is given by,

r =
1

(n− 1)

n∑
i=1

(
Xi − X̄

sx

)(
Yi − Ȳ

sy

)
. (7.9)

Here, X and Y are the two variables between which we must compute the correlation,

Xi and Yi respectively, denote the values of the variables X and Y , n is the total number of

data points, X̄ and Ȳ respectively, denote the sample means of the variables X and Y , sx

and sy are respectively, the sample means of the variables X and Y .

Spearman rank correlation can be considered as a special case of Pearson correlation

where we first convert the values of varibales X and Y into two set of rankings respectively

denoted by x and y. If two or more data points have identical values, then the average of

ranks of those data points is assigned. For example, consider the five data points, 2.3, 2.4,

2.8, 2.8, and 3.0. The ranks assigned for those five points are 1, 2, 3.5, 3.5, 5. Then the

following equation can be used to compute the Spearman rank correlation coefficient (ρ)

between the two variables,

ρ =
n(

∑n
i=1 xiyi)− (

∑n
i=1 xi)(

∑n
i=1 yi)√

n(
∑n

i=1 x2
i )− (

∑n
i=1 xi)

2
√

n(
∑n

i=1 x2
i )− (

∑n
i=1 xi)

2
. (7.10)

Here, xi, yi denote the actual values of the ranks. It should be noted that if there are no

equal ranks, then the following simple formula can be used to compute the Spearman rank

correlation coefficient,

ρ = 1− 6
∑n

i=1 d2
i

n(n2 − 1)
, (7.11)

where, di = xi − yi is the difference between corresponding ranks. Both Pearson and

Spearman correlation coefficients are in the range [−1, +1].
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Computation of confidence intervals for correlation coefficients is often performed us-

ing Fisher’s transformation, F (r), which is given by,

F (r) =
1

2
log

(
1 + r

1− r

)
. (7.12)

The corresponding z score is given by,

z =
√

n− 3F (r), (7.13)

(It is typically assumed that there are at least more than three data points. If the number of

data points is small then statistical significance tests are not reliable.) If we want to compute

the 95% confidence intervals, then the corresponding lower bound is zL = z + 1.96, and

the upper bound is zU = z − 1.96, where z is given by Formula 7.13. The upper and

lower bounds on z score can the be converted back to confidence intervals on r by using

the inverse of the Fisher transformation, given by

r =
exp(2F (r))− 1

exp(2F (r)) + 1
. (7.14)

We plug in the lower and upper bounds zL, zU in Formula 7.13 to compute the correspond-

ing Fisher function values, and then substitiute those values in Formula 7.14 to compute the

lower and upper bounds of correlation r. If the correlation between a similarity measure

A and human ratings H falls outside the confidence interval computed for the correlation

between a different similarity measure B and human ratings, then we can conclude that A

and B are statistically significant (i.e. the probability of two methods being the same is less

than 0.05).

7.3.2 Comaprisons with benchmark datasets

Table 2.4 compares the proposed relational model (RM) against Miller-Charles ratings

(MC), and previously proposed web-based semantic similarity measures: Jaccard (Jacc),

Dice, Overlap (Over), PMI [18], Normalized Google Distance (NGD) [29], Sahami and
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Heilman (SH) [131], co-occurrence double checking model (CO) [26], and support vec-

tor machine-based (SVM) approach described in Chapter 2. The bottom row of Table 7.1

shows the Pearson correlation coefficient of similarity scores produced by each algorithm

with MC. All similarity scores, except for the human-ratings in Miller-Charles dataset, are

normalized to [0, 1] range for the ease of comparison. It is noteworthy that the Pearson

correlation coefficient is invariant under a linear transformation. All baselines as well as

previous methods compared in Table 7.1 are reimplemented following the descriptions in

the original papers. SH and NGD methods were not evaluated on Miller-Charles or Word-

Similarity datasets by the authors of the original papers. Moreover, those methods are not

publicly available to download. Therefore, a reimplementation was necessary to compare

them on the same benchmark datasets as often used by the previous work on semantic

similarity.

Table 7.1: Experimental results on Miller-Charles dataset.

word pair MC Jacc Dice Over PMI CO SH NGD SVM RM

automobile-car 1.00 0.65 0.66 0.83 0.43 0.69 1.00 0.15 0.98 0.92

journey-voyage 0.98 0.41 0.42 0.16 0.47 0.42 0.52 0.39 1.00 1.00

gem-jewel 0.98 0.29 0.30 0.07 0.69 1.00 0.21 0.42 0.69 0.82

boy-lad 0.96 0.18 0.19 0.59 0.63 0.00 0.47 0.12 0.97 0.96

coast-shore 0.94 0.78 0.79 0.51 0.56 0.52 0.38 0.52 0.95 0.97

asylum-madhouse 0.92 0.01 0.01 0.08 0.81 0.00 0.21 1.00 0.77 0.79

magician-wizard 0.89 0.29 0.30 0.37 0.86 0.67 0.23 0.44 1.00 1.00

midday-noon 0.87 0.10 0.10 0.12 0.59 0.86 0.29 0.74 0.82 0.99

furnace-stove 0.79 0.39 0.41 0.10 1.00 0.93 0.31 0.61 0.89 0.88

food-fruit 0.78 0.75 0.76 1.00 0.45 0.34 0.18 0.55 1.00 0.94

bird-cock 0.77 0.14 0.15 0.14 0.43 0.50 0.06 0.41 0.59 0.87

bird-crane 0.75 0.23 0.24 0.21 0.52 0.00 0.22 0.41 0.88 0.85

implement-tool 0.75 1.00 1.00 0.51 0.30 0.42 0.42 0.91 0.68 0.50

brother-monk 0.71 0.25 0.27 0.33 0.62 0.55 0.27 0.23 0.38 0.27
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word pair MC Jacc Dice Over PMI CO SH NGD SVM RM

crane-implement 0.42 0.06 0.06 0.10 0.19 0.00 0.15 0.40 0.13 0.06

brother-lad 0.41 0.18 0.19 0.36 0.64 0.38 0.24 0.26 0.34 0.13

car-journey 0.28 0.44 0.45 0.36 0.20 0.29 0.19 0.00 0.29 0.17

monk-oracle 0.27 0.00 0.00 0.00 0.00 0.00 0.05 0.45 0.33 0.80

food-rooster 0.21 0.00 0.00 0.41 0.21 0.00 0.08 0.42 0.06 0.02

coast-hill 0.21 0.96 0.97 0.26 0.35 0.00 0.29 0.70 0.87 0.36

forest-graveyard 0.20 0.06 0.06 0.23 0.49 0.00 0.00 0.54 0.55 0.44

monk-slave 0.12 0.17 0.18 0.05 0.61 0.00 0.10 0.77 0.38 0.24

coast-forest 0.09 0.86 0.87 0.29 0.42 0.00 0.25 0.36 0.41 0.15

lad-wizard 0.09 0.06 0.07 0.05 0.43 0.00 0.15 0.66 0.22 0.23

cord-smile 0.01 0.09 0.10 0.02 0.21 0.00 0.09 0.13 0.00 0.01

glass-magician 0.01 0.11 0.11 0.40 0.60 0.00 0.14 0.21 0.18 0.05

rooster-voyage 0.00 0.00 0.00 0.00 0.23 0.00 0.20 0.21 0.02 0.05

noon-string 0.00 0.12 0.12 0.04 0.10 0.00 0.08 0.21 0.02 0.00

Spearman 1.00 0.39 0.39 0.40 0.52 −0.36 0.62 0.13 0.83 0.85

Lower 1.00 0.02 0.02 0.04 0.18 −0.65 0.33 −0.25 0.66 0.69

Upper 1.00 0.67 0.67 0.68 0.75 0.02 0.81 0.48 0.92 0.93

Pearson 1.00 0.26 0.27 0.38 0.55 0.69 0.58 0.21 0.83 0.87

Lower 1.00 −0.13 −0.12 0.01 0.22 0.43 0.26 −0.18 0.67 0.73

Upper 1.00 0.58 0.58 0.66 0.77 0.85 0.78 0.54 0.92 0.94

The highest correlation is reported by the proposed semantic similarity measure. The

improvement of the proposed method is statistically significant (confidence interval [0.73, 0.94])

against all the similarity measures compared in Table 7.1, except against the SVM ap-

proach. From Table 7.1 we see that measures that use contextual information from snippets

(e.g. SH, CO, SVM, and proposed) outperform the ones that use only co-occurrence statis-

tics (e.g. Jaccard, overlap, Dice, PMI, and NGD) such as page-counts. This is because

similarity measures that use contextual information are better equipped to compute the

similarity between polysemous words. Although both SVM and proposed methods (RM)

use lexical patterns, unlike the proposed method, the SVM method does not consider the
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relatedness between patterns. The superior performance of the proposed method can be

attributable to its consideration of relatedness of patterns. It is interesting to see the signif-

icantly different performances reported by the Pearson and Spearman coefficients for the

CO method. When the CO method is evaluated using Pearson correlation coefficient we

see a high (0.69) correlation between human ratings and the similarity scores produced by

the CO method. However, the evaluation results reported by the Spearman rank correla-

tion coefficient shows a highly negative (−0.36) correlation between human ratings and the

similarity scores produced by the CO method. This is because the CO method returns 0

for most word pairs in the Miller-Charles dataset. In fact, for 15 out of the 28 word pairs

in the Miller-Charles dataset, the CO method returns a similarity score of 0. Consequently,

the relationship between human scores and similarity scores produced by the CO method

is not linear. As described earlier, Pearson correlation coefficient can be misleading in such

situations. The main reason that the CO method returns zero similarity scores for most

word pairs is that, although two words are semantically similar, search engines do not rank

documents that are always semantically similar to a query. A search engine ranking algo-

rithm is often more complex and uses various other factors such as static rank (i.e. Page

rank, HITS, etc.), novelty of the content (on-line news sources), authority of the site (i.e.

Wikipedia articles are often ranked at the top by Google), and past click-through data.

I evaluate the proposed method using the WordSimilarity-353 dataset. Experimental

results are presented in Table 7.2. Although Pearson correlation coefficient is used by pre-

vious work on semantic similarity measure to compare human ratings in the Miller-Charles

dataset against similarity scores produced by a system under evaluation, Spearman rank

correlation coefficient is used for evaluations using WordSimilarity-353 dataset. Pearson

correlation can be misleading when there does not exist a linear relationship between the

two variables between which we compute correlation. The same data points can be ar-

ranged in both linear and non-linear fashion to produce the same Pearson correlation. In

contrast, Spearman rank correlation coefficient first ranks the two sets of values to be com-

pared, and then measure the correlation between the two sets of ranks ignoring the actual

values. The WordSimilarity-353 dataset contains a large number of data points compared

to the Miller-Charles dataset and we are only interested in the relative orderings of the
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word pairs. For those reasons, previous work evaluating semantic similarity measures us-

ing the WordSimilarity-353 dataset have used Spearman rank correlation coefficient instead

of Pearson correlation coefficient. In Table 7.2, I have used both Pearson correlation coeffi-

cient and Spearman rank correlation coefficient to measure the correlation between human

ratings and each set of similarity scores produced by the different algorithms.

Table 7.2: Experimental results on WordSimilarity-353 dataset.

word pair WS Jacc Dice Over PMI CO SH NGD SVM RM

tiger-tiger 1.00 1.00 1.00 0.48 0.96 1.00 1.00 1.00 1.00 0.57

fuck-sex 0.94 0.09 0.17 0.30 0.69 0.00 0.02 0.59 0.88 0.42

midday-noon 0.93 0.01 0.03 0.03 0.67 0.32 0.05 0.42 0.87 0.82

journey-voyage 0.93 0.02 0.05 0.03 0.55 0.00 0.02 0.41 0.86 0.83

dollar-buck 0.92 0.06 0.12 0.14 0.71 0.10 0.01 0.57 0.78 0.46

money-cash 0.91 0.10 0.19 0.21 0.53 0.20 0.03 0.52 0.88 0.89

coast-shore 0.91 0.06 0.12 0.12 0.66 0.23 0.05 0.55 0.87 0.79

money-cash 0.91 0.10 0.19 0.21 0.53 0.20 0.03 0.52 0.88 0.89

money-currency 0.90 0.04 0.07 0.15 0.48 0.24 0.03 0.37 0.98 0.84

football-soccer 0.90 0.24 0.38 0.28 0.68 0.27 0.04 0.73 1.00 0.84

magician-wizard 0.90 0.02 0.05 0.07 0.78 0.25 0.02 0.51 1.00 0.97

type-kind 0.89 0.09 0.17 0.14 0.45 0.10 0.01 0.46 0.92 0.89

gem-jewel 0.89 0.05 0.10 0.06 0.78 0.55 0.02 0.62 0.63 0.92

car-automobile 0.89 0.06 0.11 0.32 0.61 0.31 0.05 0.50 0.98 1.00

street-avenue 0.89 0.10 0.18 0.23 0.58 0.17 0.01 0.55 0.99 0.78

asylum-madhouse 0.88 0.00 0.00 0.02 0.67 0.00 0.03 0.31 0.95 0.64

boy-lad 0.88 0.01 0.03 0.14 0.63 0.26 0.04 0.39 0.72 0.78

environment-ecology 0.88 0.04 0.07 0.27 0.66 0.33 0.03 0.48 0.98 0.76

furnace-stove 0.88 0.04 0.07 0.05 0.87 0.40 0.05 0.61 0.98 1.00

seafood-lobster 0.87 0.05 0.10 0.10 0.83 0.65 0.04 0.61 0.98 0.85

mile-kilometer 0.86 0.01 0.01 0.03 0.52 0.00 0.04 0.28 0.99 0.73

Maradona-football 0.86 0.00 0.00 0.08 0.51 0.00 0.04 0.23 0.11 0.58
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word pair WS Jacc Dice Over PMI CO SH NGD SVM RM

OPEC-oil 0.86 0.02 0.04 0.30 0.74 0.50 0.04 0.47 0.85 0.51

king-queen 0.85 0.10 0.19 0.15 0.62 0.23 0.02 0.59 0.96 0.69

murder-manslaughter 0.85 0.02 0.04 0.19 0.82 0.53 0.13 0.50 0.98 0.88

money-bank 0.85 0.12 0.22 0.18 0.51 0.19 0.04 0.54 0.74 0.48

computer-software 0.85 0.19 0.31 0.18 0.49 0.20 0.03 0.63 0.95 0.87

vodka-gin 0.84 0.07 0.13 0.06 0.93 0.60 0.03 0.71 1.00 0.92

Jerusalem-Israel 0.84 0.09 0.16 0.27 0.76 0.43 0.02 0.62 0.60 0.77

planet-star 0.84 0.07 0.13 0.15 0.52 0.19 0.02 0.47 0.93 0.95

calculation-computation 0.84 0.07 0.14 0.11 0.92 0.00 0.02 0.68 0.96 0.78

money-dollar 0.84 0.11 0.19 0.32 0.58 0.18 0.02 0.55 1.00 0.70

law-lawyer 0.83 0.12 0.21 0.36 0.69 0.52 0.08 0.61 0.94 0.00

championship-tournament 0.83 0.12 0.21 0.10 0.73 0.34 0.05 0.70 0.49 0.48

weather-forecast 0.83 0.17 0.28 0.35 0.66 0.54 0.06 0.65 1.00 0.84

seafood-food 0.83 0.04 0.08 0.37 0.62 0.33 0.03 0.47 1.00 0.90

network-hardware 0.83 0.10 0.18 0.16 0.49 0.18 0.03 0.50 0.65 0.63

nature-environment 0.83 0.11 0.19 0.10 0.53 0.19 0.03 0.58 1.00 0.78

FBI-investigation 0.83 0.07 0.13 0.10 0.74 0.41 0.05 0.60 0.30 0.58

man-woman 0.83 0.14 0.24 0.23 0.54 0.26 0.02 0.57 1.00 0.00

money-wealth 0.82 0.04 0.08 0.25 0.55 0.23 0.04 0.43 0.96 0.80

psychology-Freud 0.82 0.01 0.03 0.05 0.71 0.29 0.01 0.44 0.10 0.61

news-report 0.81 0.23 0.37 0.33 0.42 0.13 0.02 0.56 0.97 0.33

war-troops 0.81 0.06 0.11 0.27 0.65 0.23 0.03 0.52 0.82 0.60

vodka-brandy 0.81 0.05 0.09 0.04 0.88 0.36 0.03 0.65 0.93 0.91

Harvard-Yale 0.81 0.07 0.13 0.12 0.84 0.34 0.05 0.64 0.42 0.78

physics-proton 0.81 0.02 0.03 0.04 0.66 0.25 0.01 0.43 0.61 0.55

bank-money 0.81 0.15 0.25 0.21 0.53 0.19 0.04 0.58 0.91 0.70

planet-galaxy 0.81 0.04 0.08 0.10 0.65 0.19 0.01 0.50 0.96 0.56

stock-market 0.80 0.14 0.24 0.14 0.52 0.38 0.03 0.60 0.66 0.52

psychology-psychiatry 0.80 0.07 0.13 0.15 0.85 0.28 0.07 0.63 0.99 0.72

planet-moon 0.80 0.06 0.10 0.05 0.56 0.22 0.01 0.52 0.54 0.87
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planet-constellation 0.80 0.01 0.02 0.11 0.65 0.23 0.01 0.38 0.95 0.60

credit-card 0.80 0.24 0.38 0.19 0.59 0.48 0.02 0.75 0.96 0.51

hotel-reservation 0.80 0.15 0.26 0.53 0.72 0.50 0.07 0.65 0.99 0.57

planet-sun 0.80 0.05 0.09 0.08 0.48 0.19 0.02 0.40 0.30 0.42

tiger-jaguar 0.80 0.04 0.07 0.04 0.63 0.00 0.01 0.51 0.97 0.73

tiger-feline 0.80 0.01 0.01 0.03 0.60 0.24 0.01 0.32 0.05 0.47

closet-clothes 0.80 0.06 0.11 0.11 0.74 0.00 0.04 0.57 0.38 0.49

soap-opera 0.79 0.04 0.08 0.08 0.63 0.27 0.00 0.50 0.25 0.67

planet-astronomer 0.79 0.01 0.03 0.27 0.78 0.46 0.03 0.46 0.32 0.40

planet-space 0.79 0.06 0.12 0.11 0.51 0.22 0.01 0.46 1.00 0.62

movie-theater 0.79 0.18 0.30 0.30 0.64 0.24 0.02 0.66 0.90 0.56

treatment-recovery 0.79 0.06 0.11 0.07 0.58 0.27 0.02 0.53 0.88 0.59

liquid-water 0.78 0.04 0.08 0.17 0.57 0.20 0.00 0.45 0.51 0.71

life-death 0.78 0.15 0.26 0.30 0.53 0.17 0.01 0.57 1.00 0.68

baby-mother 0.78 0.12 0.21 0.17 0.56 0.15 0.02 0.58 0.99 0.77

aluminum-metal 0.78 0.05 0.09 0.14 0.64 0.31 0.01 0.50 0.48 0.90

lobster-food 0.78 0.01 0.02 0.24 0.56 0.00 0.02 0.32 0.92 0.68

cell-phone 0.78 0.15 0.25 0.27 0.54 0.42 0.02 0.58 0.93 0.54

dollar-yen 0.77 0.10 0.18 0.19 0.74 0.43 0.04 0.64 0.99 0.71

wood-forest 0.77 0.00 0.00 0.00 0.00 0.24 0.01 1.00 0.07 0.81

money-deposit 0.77 0.03 0.06 0.24 0.54 0.20 0.03 0.39 0.36 0.24

television-film 0.77 0.53 0.69 0.42 0.67 0.16 0.02 0.86 1.00 0.74

psychology-mind 0.76 0.04 0.07 0.12 0.58 0.23 0.01 0.44 0.78 0.76

game-team 0.76 0.24 0.38 0.19 0.53 0.13 0.02 0.71 0.97 0.44

admission-ticket 0.76 0.06 0.11 0.09 0.66 0.00 0.03 0.55 0.41 0.50

Jerusalem-Palestinian 0.76 0.10 0.19 0.09 0.85 0.38 0.02 0.73 0.37 0.70

Arafat-terror 0.76 0.01 0.02 0.10 0.77 0.38 0.03 0.45 0.14 0.50

profit-loss 0.76 0.06 0.11 0.07 0.54 0.20 0.01 0.50 0.99 0.63

dividend-payment 0.76 0.02 0.04 0.10 0.62 0.00 0.02 0.41 0.18 0.74

computer-keyboard 0.76 0.05 0.09 0.26 0.58 0.21 0.02 0.46 0.55 0.75
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boxing-round 0.76 0.04 0.09 0.10 0.58 0.23 0.01 0.47 0.33 0.21

rock-jazz 0.75 0.13 0.23 0.22 0.61 0.18 0.04 0.61 0.99 0.85

century-year 0.75 0.08 0.14 0.27 0.50 0.10 0.01 0.46 0.74 0.66

computer-internet 0.75 0.15 0.25 0.19 0.45 0.17 0.03 0.53 0.99 0.59

money-property 0.75 0.11 0.19 0.13 0.46 0.11 0.02 0.50 1.00 0.80

tennis-racket 0.75 0.01 0.02 0.18 0.69 0.56 0.02 0.41 0.30 0.75

announcement-news 0.75 0.06 0.12 0.99 0.57 0.13 0.02 0.47 1.00 0.55

day-dawn 0.75 0.02 0.04 0.34 0.50 0.15 0.01 0.33 0.36 0.30

canyon-landscape 0.75 0.02 0.04 0.03 0.59 0.00 0.01 0.43 0.22 0.72

food-fruit 0.75 0.07 0.12 0.29 0.59 0.24 0.02 0.50 0.99 0.84

telephone-communication 0.74 0.31 0.48 0.24 0.72 0.00 0.01 0.83 0.99 0.78

currency-market 0.74 0.07 0.13 0.20 0.57 0.21 0.04 0.50 0.50 0.45

psychology-cognition 0.74 0.03 0.06 0.18 0.87 0.48 0.04 0.57 0.97 0.63

seafood-sea 0.74 0.02 0.03 0.07 0.52 0.41 0.01 0.34 0.99 0.59

marathon-sprint 0.74 0.02 0.04 0.02 0.59 0.00 0.01 0.43 0.71 0.42

book-paper 0.74 0.16 0.27 0.21 0.53 0.18 0.01 0.59 0.87 0.77

book-library 0.74 0.14 0.24 0.19 0.51 0.19 0.01 0.56 0.66 0.67

Mexico-Brazil 0.74 0.24 0.38 0.28 0.66 0.00 0.05 0.73 0.89 0.77

psychology-depression 0.74 0.05 0.09 0.05 0.68 0.17 0.01 0.57 0.94 0.41

media-radio 0.74 0.13 0.22 0.16 0.43 0.15 0.02 0.49 1.00 0.69

jaguar-cat 0.74 0.01 0.01 0.02 0.37 0.17 0.00 0.17 0.39 0.70

fighting-defeating 0.73 0.14 0.24 1.00 1.00 0.00 0.02 0.72 1.00 0.53

movie-star 0.73 0.32 0.48 0.25 0.59 0.21 0.02 0.78 0.98 0.59

hundred-percent 0.73 0.04 0.08 0.07 0.59 0.16 0.01 0.47 0.18 0.22

dollar-profit 0.73 0.12 0.22 0.11 0.66 0.20 0.03 0.67 0.55 0.46

bird-crane 0.73 0.02 0.04 0.07 0.65 0.20 0.01 0.45 0.60 0.93

tiger-cat 0.73 0.03 0.05 0.07 0.50 0.23 0.00 0.36 0.43 0.69

physics-chemistry 0.73 0.20 0.33 0.16 0.85 0.26 0.08 0.80 1.00 0.84

country-citizen 0.72 0.08 0.14 0.34 0.61 0.08 0.01 0.52 0.72 0.56

money-possession 0.72 0.01 0.03 0.19 0.52 0.00 0.02 0.32 0.59 0.78
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jaguar-car 0.72 0.05 0.09 0.29 0.60 0.00 0.03 0.47 0.55 0.51

cup-drink 0.72 0.06 0.11 0.06 0.53 0.17 0.01 0.50 0.40 0.57

psychology-health 0.72 0.02 0.05 0.25 0.51 0.12 0.02 0.35 0.55 0.85

museum-theater 0.71 0.12 0.21 0.11 0.63 0.16 0.02 0.65 0.90 0.85

summer-drought 0.71 0.01 0.02 0.15 0.55 0.00 0.01 0.31 0.24 0.58

phone-equipment 0.71 0.08 0.15 0.14 0.45 0.09 0.03 0.45 0.48 0.50

investor-earning 0.71 0.18 0.31 0.42 0.86 0.29 0.03 0.73 0.81 0.25

bird-cock 0.70 0.02 0.03 0.04 0.57 0.28 0.01 0.37 0.20 0.72

tiger-carnivore 0.70 0.00 0.00 0.05 0.64 0.30 0.02 0.30 1.00 0.34

company-stock 0.70 0.13 0.23 0.21 0.48 0.17 0.03 0.53 0.77 0.53

stroke-hospital 0.70 0.04 0.07 0.10 0.63 0.22 0.04 0.48 0.33 0.48

liability-insurance 0.70 0.05 0.09 0.15 0.60 0.35 0.03 0.48 0.41 0.66

game-victory 0.70 0.07 0.13 0.25 0.57 0.00 0.01 0.49 0.65 0.19

tiger-animal 0.69 0.05 0.09 0.07 0.58 0.22 0.01 0.48 0.59 0.69

psychology-anxiety 0.69 0.05 0.09 0.06 0.72 0.23 0.01 0.58 0.83 0.59

doctor-nurse 0.69 0.09 0.17 0.17 0.72 0.21 0.03 0.62 0.99 0.76

game-defeat 0.69 0.04 0.08 0.36 0.62 0.00 0.02 0.47 0.37 0.23

FBI-fingerprint 0.69 0.02 0.03 0.05 0.74 0.33 0.02 0.46 0.10 0.35

street-block 0.68 0.08 0.15 0.13 0.50 0.11 0.01 0.49 0.59 0.35

opera-performance 0.68 0.03 0.07 0.06 0.46 0.17 0.01 0.36 0.28 0.69

money-withdrawal 0.68 0.01 0.02 0.19 0.52 0.00 0.01 0.30 0.40 0.59

drink-eat 0.68 0.15 0.26 0.14 0.68 0.32 0.06 0.70 1.00 0.92

tiger-mammal 0.68 0.01 0.02 0.07 0.70 0.27 0.01 0.40 0.84 0.49

psychology-fear 0.68 0.03 0.06 0.05 0.59 0.00 0.00 0.46 0.04 0.22

drug-abuse 0.68 0.06 0.11 0.08 0.53 0.36 0.02 0.48 0.35 0.49

cup-tableware 0.68 0.00 0.01 0.09 0.59 0.00 0.03 0.31 0.96 0.83

student-professor 0.67 0.12 0.21 0.18 0.64 0.00 0.03 0.62 1.00 0.77

football-basketball 0.67 0.28 0.43 0.32 0.70 0.23 0.07 0.76 1.00 0.77

concert-virtuoso 0.67 0.01 0.01 0.10 0.67 0.00 0.05 0.36 0.14 0.25

computer-laboratory 0.67 0.03 0.06 0.16 0.52 0.10 0.02 0.39 0.27 0.54
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television-radio 0.67 0.54 0.70 0.48 0.67 0.17 0.03 0.85 1.00 0.71

love-sex 0.67 0.10 0.18 0.15 0.47 0.18 0.01 0.49 0.98 0.79

problem-challenge 0.67 0.14 0.24 0.18 0.59 0.13 0.00 0.61 0.81 0.74

movie-critic 0.67 0.04 0.08 0.42 0.68 0.35 0.05 0.51 0.63 0.67

Arafat-peace 0.67 0.01 0.01 0.18 0.71 0.29 0.02 0.39 0.18 0.51

bed-closet 0.66 0.04 0.07 0.14 0.67 0.00 0.02 0.49 0.85 0.86

psychology-science 0.66 0.05 0.09 0.27 0.61 0.19 0.02 0.48 0.92 0.60

lawyer-evidence 0.66 0.08 0.14 0.10 0.67 0.00 0.04 0.59 0.50 0.23

fertility-egg 0.66 0.03 0.05 0.05 0.72 0.38 0.01 0.50 0.08 0.73

bishop-rabbi 0.66 0.01 0.03 0.03 0.70 0.00 0.01 0.44 0.58 0.70

precedent-law 0.66 0.01 0.02 0.06 0.44 0.00 0.05 0.25 0.29 0.76

minister-party 0.66 0.07 0.13 0.15 0.55 0.12 0.01 0.50 0.96 0.65

football-tennis 0.66 0.22 0.35 0.24 0.66 0.14 0.04 0.72 1.00 0.82

professor-doctor 0.65 0.05 0.10 0.06 0.58 0.10 0.02 0.52 0.55 0.91

psychology-clinic 0.65 0.08 0.15 0.08 0.75 0.23 0.01 0.66 0.62 0.20

cup-coffee 0.65 0.05 0.10 0.06 0.53 0.31 0.01 0.48 0.19 0.28

water-seepage 0.65 0.00 0.00 0.36 0.67 0.00 0.01 0.28 0.53 0.79

government-crisis 0.65 0.09 0.17 0.15 0.55 0.12 0.02 0.53 0.60 0.39

space-world 0.64 0.11 0.20 0.21 0.43 0.11 0.02 0.46 0.98 0.72

Japanese-American 0.64 0.07 0.12 0.12 0.47 0.14 0.01 0.43 0.28 0.64

dividend-calculation 0.64 0.04 0.08 0.04 0.80 0.25 0.01 0.62 0.17 0.48

victim-emergency 0.64 0.07 0.13 0.11 0.68 0.15 0.03 0.58 0.11 0.32

luxury-car 0.64 0.07 0.12 0.19 0.54 0.26 0.02 0.47 0.42 0.50

tool-implement 0.64 0.16 0.27 0.35 0.75 0.16 0.04 0.68 0.90 0.25

street-place 0.64 0.13 0.23 0.15 0.45 0.11 0.01 0.52 0.79 0.72

competition-price 0.64 0.06 0.10 0.16 0.47 0.13 0.01 0.40 0.49 0.79

psychology-doctor 0.63 0.03 0.05 0.05 0.56 0.00 0.01 0.42 0.01 0.27

gender-equality 0.63 0.04 0.07 0.11 0.69 0.50 0.02 0.51 0.38 0.53

listing-category 0.63 0.54 0.70 0.70 0.69 0.10 0.02 0.82 1.00 0.11

video-archive 0.63 0.21 0.34 0.32 0.46 0.11 0.05 0.58 0.93 0.58
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oil-stock 0.63 0.09 0.17 0.11 0.54 0.12 0.01 0.55 0.48 0.55

governor-office 0.63 0.03 0.06 0.21 0.52 0.17 0.01 0.37 0.04 0.17

discovery-space 0.63 0.03 0.06 0.09 0.49 0.23 0.02 0.37 0.65 0.17

train-car 0.62 0.08 0.16 0.20 0.55 0.18 0.01 0.51 0.66 0.89

shower-thunderstorm 0.62 0.06 0.11 0.19 0.85 0.00 0.00 0.61 1.00 0.60

record-number 0.62 0.13 0.23 0.19 0.49 0.08 0.01 0.54 0.51 0.37

brother-monk 0.62 0.03 0.06 0.13 0.70 0.20 0.04 0.49 0.45 0.75

production-crew 0.62 0.04 0.07 0.06 0.50 0.19 0.01 0.40 0.20 0.82

nature-man 0.62 0.09 0.16 0.13 0.47 0.14 0.02 0.46 0.21 0.34

family-planning 0.62 0.07 0.13 0.14 0.45 0.15 0.01 0.42 0.39 0.50

disaster-area 0.62 0.03 0.06 0.20 0.51 0.12 0.01 0.37 0.35 0.56

skin-eye 0.61 0.10 0.19 0.10 0.57 0.15 0.06 0.61 0.76 0.64

food-preparation 0.61 0.04 0.07 0.14 0.49 0.17 0.01 0.38 0.31 0.59

preservation-world 0.61 0.01 0.01 0.19 0.42 0.10 0.01 0.20 0.07 0.21

movie-popcorn 0.61 0.01 0.03 0.20 0.58 0.17 0.01 0.36 0.59 0.63

lover-quarrel 0.61 0.01 0.01 0.07 0.76 0.00 0.03 0.41 0.00 0.19

game-series 0.61 0.18 0.30 0.17 0.52 0.13 0.02 0.64 0.84 0.50

bread-butter 0.61 0.12 0.22 0.12 0.83 0.29 0.02 0.72 1.00 0.51

dollar-loss 0.60 0.08 0.14 0.09 0.58 0.00 0.00 0.55 0.58 0.60

weapon-secret 0.60 0.07 0.13 0.20 0.71 0.29 0.01 0.57 0.52 0.41

precedent-antecedent 0.59 0.00 0.01 0.09 0.80 0.00 0.03 0.40 1.00 0.71

shower-flood 0.59 0.01 0.03 0.02 0.54 0.00 0.00 0.36 0.10 0.57

registration-arrangement 0.59 0.06 0.11 0.23 0.66 0.00 0.01 0.52 0.39 0.45

arrival-hotel 0.59 0.05 0.09 0.18 0.58 0.00 0.02 0.46 0.43 0.33

announcement-warning 0.59 0.06 0.11 0.08 0.61 0.11 0.01 0.52 0.96 0.80

game-round 0.59 0.11 0.19 0.18 0.52 0.15 0.01 0.53 0.60 0.65

baseball-season 0.59 0.12 0.21 0.14 0.60 0.20 0.01 0.62 0.65 0.32

drink-mouth 0.59 0.07 0.14 0.10 0.64 0.12 0.01 0.57 0.66 0.17

life-lesson 0.58 0.05 0.10 0.46 0.58 0.13 0.01 0.47 0.78 0.48

grocery-money 0.58 0.03 0.05 0.18 0.51 0.00 0.02 0.36 0.46 0.23
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energy-crisis 0.58 0.07 0.13 0.09 0.52 0.16 0.01 0.49 0.46 0.40

king-rook 0.58 0.00 0.00 0.13 0.59 0.30 0.02 0.27 0.90 0.68

cucumber-potato 0.58 0.08 0.14 0.18 0.97 0.24 0.04 0.68 0.89 0.77

reason-criterion 0.58 0.08 0.14 0.86 0.86 0.00 0.01 0.63 1.00 0.40

equipment-maker 0.58 0.04 0.08 0.10 0.54 0.12 0.02 0.43 0.23 0.50

cup-liquid 0.58 0.02 0.04 0.05 0.51 0.00 0.01 0.36 0.09 0.31

deployment-withdrawal 0.58 0.02 0.03 0.02 0.65 0.00 0.01 0.46 0.98 0.72

tiger-zoo 0.58 0.03 0.06 0.03 0.58 0.30 0.01 0.47 0.15 0.59

precedent-example 0.58 0.01 0.02 0.05 0.45 0.00 0.01 0.26 0.78 0.61

journey-car 0.58 0.04 0.07 0.13 0.49 0.00 0.01 0.37 0.29 0.16

smart-stupid 0.57 0.03 0.06 0.06 0.53 0.00 0.01 0.41 0.99 0.73

plane-car 0.57 0.05 0.10 0.23 0.57 0.00 0.01 0.47 0.99 0.83

planet-people 0.56 0.04 0.08 0.21 0.44 0.11 0.01 0.35 0.65 0.71

lobster-wine 0.56 0.02 0.03 0.11 0.66 0.00 0.01 0.42 0.18 0.65

money-laundering 0.55 0.01 0.01 0.45 0.63 0.50 0.02 0.34 0.47 0.54

summer-nature 0.55 0.06 0.11 0.06 0.44 0.08 0.02 0.42 0.20 0.63

OPEC-country 0.55 0.00 0.01 0.18 0.52 0.14 0.01 0.24 0.33 0.14

Mars-scientist 0.55 0.03 0.06 0.06 0.62 0.22 0.02 0.46 0.16 0.43

decoration-valor 0.55 0.00 0.00 0.00 0.24 0.11 0.02 0.00 0.01 0.15

tiger-fauna 0.55 0.00 0.01 0.01 0.45 0.17 0.02 0.22 0.83 0.29

psychology-discipline 0.55 0.06 0.11 0.06 0.72 0.23 0.01 0.61 0.08 0.50

glass-metal 0.55 0.09 0.17 0.10 0.59 0.16 0.01 0.58 0.97 0.74

alcohol-chemistry 0.54 0.02 0.04 0.02 0.54 0.16 0.01 0.38 0.72 0.53

disability-death 0.54 0.03 0.07 0.11 0.57 0.00 0.01 0.43 0.96 0.86

change-attitude 0.53 0.04 0.08 0.26 0.56 0.18 0.00 0.43 0.45 0.39

arrangement-accommodation 0.53 0.06 0.11 0.08 0.70 0.00 0.03 0.57 0.30 0.41

territory-surface 0.52 0.02 0.05 0.03 0.52 0.00 0.00 0.40 0.02 0.39

size-prominence 0.52 0.00 0.00 0.11 0.44 0.00 0.01 0.15 0.99 0.63

exhibit-memorabilia 0.52 0.01 0.02 0.01 0.52 0.00 0.02 0.34 0.10 0.32

credit-information 0.52 0.07 0.13 0.21 0.38 0.10 0.01 0.33 0.59 0.41
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territory-kilometer 0.52 0.00 0.01 0.01 0.44 0.00 0.02 0.19 0.02 0.25

man-governor 0.51 0.03 0.06 0.21 0.53 0.00 0.01 0.39 0.54 0.42

death-row 0.51 0.04 0.08 0.09 0.53 0.32 0.01 0.42 0.27 0.48

doctor-liability 0.51 0.02 0.05 0.04 0.53 0.09 0.02 0.39 0.02 0.34

impartiality-interest 0.50 0.01 0.02 0.98 0.84 0.00 0.02 0.46 1.00 0.43

energy-laboratory 0.50 0.05 0.09 0.13 0.58 0.16 0.01 0.46 0.35 0.36

secretary-senate 0.49 0.08 0.15 0.09 0.68 0.25 0.06 0.62 0.27 0.16

death-inmate 0.49 0.02 0.04 0.40 0.74 0.33 0.02 0.48 0.08 0.19

travel-activity 0.49 0.12 0.22 0.22 0.51 0.00 0.01 0.54 0.80 0.73

monk-oracle 0.49 0.00 0.01 0.01 0.44 0.00 0.02 0.19 0.60 0.63

doctor-personnel 0.49 0.03 0.05 0.03 0.49 0.00 0.01 0.38 1.00 0.33

cup-food 0.49 0.06 0.11 0.11 0.46 0.09 0.01 0.41 0.18 0.36

journal-association 0.49 0.10 0.17 0.09 0.52 0.18 0.04 0.57 0.42 0.19

street-children 0.48 0.12 0.22 0.11 0.49 0.11 0.01 0.57 0.63 0.47

car-flight 0.48 0.21 0.34 0.44 0.65 0.13 0.01 0.67 1.00 0.49

space-chemistry 0.48 0.02 0.03 0.09 0.48 0.00 0.01 0.31 0.12 0.58

situation-conclusion 0.47 0.09 0.16 0.15 0.67 0.00 0.01 0.59 0.65 0.48

tiger-organism 0.46 0.00 0.01 0.02 0.53 0.00 0.01 0.26 0.20 0.17

word-similarity 0.46 0.01 0.02 0.26 0.65 0.00 0.01 0.38 0.35 0.50

peace-plan 0.46 0.04 0.08 0.11 0.45 0.11 0.01 0.36 0.32 0.59

consumer-energy 0.46 0.13 0.23 0.14 0.58 0.14 0.01 0.63 0.14 0.35

ministry-culture 0.46 0.04 0.08 0.11 0.53 0.10 0.02 0.42 0.02 0.25

hospital-infrastructure 0.45 0.03 0.05 0.04 0.50 0.00 0.02 0.39 0.21 0.63

smart-student 0.45 0.05 0.09 0.05 0.47 0.12 0.01 0.42 0.22 0.50

investigation-effort 0.45 0.08 0.14 0.10 0.64 0.00 0.03 0.58 0.34 0.66

image-surface 0.44 0.05 0.09 0.16 0.50 0.00 0.01 0.41 0.11 0.58

life-term 0.44 0.51 0.67 0.78 0.65 0.31 0.16 0.79 1.00 0.60

start-match 0.43 0.07 0.14 0.16 0.46 0.10 0.01 0.43 0.24 0.22

computer-news 0.43 0.10 0.19 0.25 0.38 0.07 0.02 0.39 0.67 0.57

board-recommendation 0.43 0.05 0.10 0.44 0.61 0.00 0.01 0.49 0.69 0.42
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word pair WS Jacc Dice Over PMI CO SH NGD SVM RM

lad-brother 0.43 0.01 0.02 0.07 0.62 0.00 0.02 0.37 0.45 0.23

food-rooster 0.43 0.00 0.00 0.12 0.48 0.00 0.02 0.20 0.06 0.47

observation-architecture 0.42 0.02 0.03 0.04 0.54 0.00 0.01 0.36 0.41 0.42

coast-hill 0.42 0.07 0.14 0.08 0.56 0.00 0.02 0.55 0.32 0.51

deployment-departure 0.41 0.01 0.01 0.01 0.50 0.00 0.02 0.30 0.13 0.58

benchmark-index 0.41 0.01 0.02 0.11 0.45 0.13 0.01 0.24 0.20 0.54

attempt-peace 0.41 0.06 0.11 0.07 0.58 0.11 0.01 0.52 0.32 0.19

consumer-confidence 0.40 0.04 0.07 0.06 0.53 0.28 0.01 0.42 0.22 0.50

start-year 0.39 0.24 0.38 0.21 0.47 0.13 0.01 0.66 0.90 0.24

focus-life 0.39 0.08 0.14 0.17 0.45 0.10 0.01 0.43 0.77 0.22

development-issue 0.38 0.25 0.40 0.25 0.59 0.10 0.01 0.72 0.95 0.47

day-summer 0.38 0.15 0.26 0.27 0.47 0.16 0.01 0.53 0.53 0.34

theater-history 0.38 0.07 0.13 0.19 0.51 0.00 0.02 0.46 0.65 0.75

situation-isolation 0.37 0.02 0.05 0.11 0.63 0.00 0.01 0.43 0.47 0.36

profit-warning 0.37 0.03 0.06 0.03 0.47 0.14 0.01 0.39 0.18 0.59

media-trading 0.37 0.10 0.19 0.39 0.54 0.00 0.01 0.52 0.86 0.48

chance-credibility 0.37 0.02 0.04 0.16 0.64 0.00 0.02 0.43 0.28 0.34

precedent-information 0.37 0.00 0.01 0.15 0.34 0.00 0.03 0.11 0.07 0.45

architecture-century 0.36 0.06 0.10 0.06 0.56 0.14 0.01 0.51 0.30 0.38

population-development 0.36 0.08 0.14 0.19 0.55 0.13 0.01 0.50 0.96 0.56

stock-live 0.36 0.05 0.10 0.09 0.37 0.09 0.01 0.32 0.26 0.54

peace-atmosphere 0.35 0.02 0.04 0.03 0.48 0.11 0.01 0.35 0.00 0.38

morality-marriage 0.35 0.02 0.04 0.11 0.71 0.00 0.01 0.47 0.72 0.69

minority-peace 0.35 0.03 0.07 0.09 0.62 0.00 0.01 0.46 0.12 0.41

cup-object 0.35 0.02 0.03 0.02 0.41 0.00 0.00 0.28 0.11 0.45

atmosphere-landscape 0.35 0.03 0.05 0.03 0.56 0.00 0.01 0.45 0.78 0.69

report-gain 0.35 0.06 0.12 0.25 0.51 0.16 0.01 0.44 0.23 0.35

music-project 0.35 0.09 0.17 0.14 0.41 0.08 0.01 0.43 0.49 0.63

seven-series 0.34 0.06 0.12 0.10 0.48 0.13 0.01 0.44 0.44 0.38

experience-music 0.33 0.08 0.14 0.11 0.38 0.12 0.01 0.37 0.58 0.50
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word pair WS Jacc Dice Over PMI CO SH NGD SVM RM

school-center 0.33 0.19 0.31 0.19 0.47 0.14 0.02 0.60 0.89 0.63

five-month 0.32 0.16 0.28 0.17 0.53 0.10 0.01 0.62 0.85 0.44

announcement-production 0.32 0.19 0.32 0.33 0.73 0.00 0.02 0.70 0.84 0.29

morality-importance 0.32 0.01 0.03 0.08 0.67 0.21 0.01 0.42 0.00 0.40

money-operation 0.32 0.10 0.18 0.24 0.54 0.08 0.01 0.52 0.60 0.24

delay-news 0.32 0.04 0.08 0.71 0.52 0.15 0.02 0.40 1.00 0.51

governor-interview 0.31 0.04 0.07 0.08 0.57 0.12 0.02 0.45 0.08 0.21

practice-institution 0.30 0.09 0.16 0.17 0.67 0.10 0.02 0.59 0.69 0.70

century-nation 0.30 0.09 0.16 0.09 0.57 0.00 0.02 0.57 0.39 0.31

coast-forest 0.30 0.05 0.10 0.06 0.57 0.15 0.01 0.51 0.27 0.47

shore-woodland 0.29 0.03 0.05 0.06 0.71 0.00 0.03 0.50 0.14 0.60

drink-car 0.29 0.08 0.14 0.16 0.52 0.00 0.02 0.49 0.51 0.42

president-medal 0.28 0.02 0.03 0.11 0.54 0.00 0.02 0.35 0.02 0.20

prejudice-recognition 0.28 0.03 0.06 0.09 0.73 0.00 0.02 0.51 0.72 0.24

viewer-serial 0.28 0.03 0.05 0.03 0.58 0.11 0.02 0.46 0.07 0.14

peace-insurance 0.28 0.02 0.04 0.03 0.39 0.00 0.01 0.28 0.97 0.41

Mars-water 0.28 0.01 0.03 0.03 0.35 0.00 0.00 0.18 0.08 0.28

cup-artifact 0.28 0.00 0.01 0.07 0.55 0.00 0.02 0.26 0.82 0.28

media-gain 0.27 0.04 0.08 0.21 0.46 0.09 0.01 0.37 0.30 0.19

precedent-cognition 0.26 0.00 0.00 0.01 0.51 0.00 0.03 0.22 0.00 0.04

announcement-effort 0.26 0.11 0.19 0.14 0.68 0.00 0.02 0.63 0.04 0.33

line-insurance 0.25 0.06 0.11 0.09 0.42 0.12 0.02 0.38 0.03 0.29

crane-implement 0.25 0.01 0.02 0.02 0.53 0.00 0.04 0.31 0.01 0.10

drink-mother 0.25 0.07 0.13 0.07 0.56 0.08 0.02 0.54 0.60 0.27

opera-industry 0.25 0.02 0.03 0.04 0.37 0.00 0.01 0.22 0.10 0.36

volunteer-motto 0.24 0.01 0.01 0.02 0.49 0.00 0.01 0.27 0.01 0.25

listing-proximity 0.24 0.03 0.05 0.19 0.67 0.00 0.02 0.47 0.18 0.34

precedent-collection 0.23 0.01 0.02 0.04 0.40 0.00 0.02 0.20 0.05 0.22

Arafat-Jackson 0.23 0.00 0.00 0.02 0.46 0.00 0.02 0.16 0.06 0.31

cup-article 0.22 0.06 0.12 0.15 0.46 0.08 0.02 0.42 0.23 0.47
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word pair WS Jacc Dice Over PMI CO SH NGD SVM RM

sign-recess 0.22 0.00 0.00 0.30 0.49 0.00 0.01 0.20 0.01 0.31

problem-airport 0.22 0.04 0.08 0.07 0.47 0.00 0.00 0.38 0.31 0.27

reason-hypertension 0.21 0.01 0.01 0.08 0.53 0.00 0.01 0.29 0.03 0.30

direction-combination 0.21 0.11 0.19 0.11 0.67 0.00 0.02 0.65 0.05 0.73

Wednesday-news 0.20 0.07 0.13 0.33 0.42 0.11 0.02 0.37 0.51 0.50

cup-entity 0.20 0.01 0.01 0.02 0.41 0.00 0.01 0.20 0.09 0.26

glass-magician 0.19 0.01 0.01 0.06 0.58 0.00 0.01 0.31 0.08 0.34

cemetery-woodland 0.19 0.01 0.02 0.01 0.63 0.23 0.01 0.41 0.10 0.64

possibility-girl 0.18 0.03 0.06 0.09 0.52 0.00 0.02 0.39 0.05 0.23

cup-substance 0.17 0.01 0.02 0.04 0.47 0.00 0.00 0.28 0.02 0.26

forest-graveyard 0.17 0.01 0.01 0.06 0.62 0.00 0.01 0.34 0.16 0.86

stock-egg 0.16 0.02 0.04 0.10 0.52 0.00 0.00 0.35 0.06 0.63

month-hotel 0.16 0.08 0.14 0.08 0.43 0.00 0.02 0.45 0.09 0.35

energy-secretary 0.16 0.05 0.09 0.09 0.53 0.18 0.01 0.44 0.17 0.21

precedent-group 0.16 0.01 0.02 0.12 0.40 0.11 0.02 0.20 0.07 0.22

production-hike 0.16 0.07 0.12 0.39 0.75 0.00 0.02 0.58 0.69 0.41

stock-phone 0.14 0.07 0.12 0.10 0.41 0.00 0.01 0.38 0.62 0.40

holy-sex 0.14 0.03 0.05 0.06 0.47 0.09 0.00 0.34 0.40 0.37

stock-CD 0.11 0.04 0.08 0.05 0.38 0.10 0.01 0.33 0.13 0.41

drink-ear 0.11 0.04 0.07 0.07 0.58 0.00 0.01 0.45 0.01 0.54

delay-racism 0.10 0.01 0.03 0.03 0.59 0.00 0.02 0.38 0.02 0.09

stock-life 0.07 0.07 0.13 0.12 0.41 0.08 0.01 0.38 0.50 0.44

stock-jaguar 0.07 0.03 0.05 0.10 0.53 0.00 0.01 0.37 0.08 0.31

monk-slave 0.07 0.02 0.04 0.02 0.69 0.00 0.03 0.48 0.05 0.37

lad-wizard 0.07 0.00 0.01 0.01 0.52 0.00 0.02 0.27 0.07 0.37

sugar-approach 0.07 0.02 0.05 0.04 0.50 0.00 0.00 0.37 0.10 0.22

rooster-voyage 0.04 0.00 0.00 0.01 0.43 0.00 0.01 0.15 0.04 0.30

noon-string 0.03 0.01 0.01 0.01 0.43 0.13 0.01 0.23 0.01 0.40

chord-smile 0.03 0.01 0.02 0.05 0.64 0.00 0.01 0.39 0.29 0.26

professor-cucumber 0.01 0.00 0.00 0.02 0.45 0.00 0.01 0.16 0.09 0.65
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word pair WS Jacc Dice Over PMI CO SH NGD SVM RM

king-cabbage 0.00 0.00 0.01 0.06 0.50 0.00 0.01 0.23 0.51 0.45

Spearman 1.00 0.26 0.26 0.27 0.36 −0.33 0.36 0.40 0.53 0.52

Lower 1.00 0.16 0.16 0.17 0.26 −0.42 0.26 0.31 0.45 0.44

Upper 1.00 0.35 0.35 0.36 0.45 −0.23 0.45 0.48 0.60 0.59

Pearson 1.00 0.22 0.24 0.19 0.34 0.51 0.19 0.40 0.52 0.49

Lower 1.00 0.12 0.14 0.09 0.25 0.43 0.08 0.31 0.44 0.41

Upper 1.00 0.32 0.34 0.29 0.43 0.58 0.29 0.48 0.60 0.57

From Table 7.2 we see that similarity measures that only use page-counts such as, the

Normalized Google Distance (NGD) and pointwise mutual information (PMI), have a sim-

ilar level of performance compared to similarity measures that only use snippets, such as

the Sahami and Heilman’s (SH) approach. This is in contrast to the results reported for the

Miller-Charles dataset (Table 2.4) where snippets-based approaches clearly outperformed

page-counts-based approaches. Compared to the word pairs in the Miller-Charles dataset,

there are numerous related word pairs and even some named-entities in the WordSimilarity-

353 dataset. Compared to common nouns which have multiple senses on the web, popular

named-entities have a limited and well-defined set of senses. Page-counts-based measures

do not consider the local context in which two words co-occur and therefore produce in-

correct similarity scores when one or both words being compared are polysemous. For

example, the word pair (brother, monk) is assigned a high similarity score of 0.71 by

human annotators in the Miller-Charles dataset. Here, the word brother is used in the

WordNet sense, a title given to a monk and used as form of address. The high similarity

score assigned by humans is thus justifiable. However, similarity measures that only use

page-counts such as the Jaccard measure (0.25), and the Dice measure (0.27) report low

similarity scores, whereas the co-occurrence double checking model which use snippets

reports a high similarity score of 0.55.

Tables 7.3.2 and 7.3.2 summarize the previously proposed WordNet-based semantic

similarity measures respectively on the Miller-Charles dataset and WordSimilarity-353
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Table 7.3: Comparison with WordNet-based similarity measures on Miller-Charles dataset
(Pearson correlation coefficient).

Method Correlation
Edge-counting 0.664
Jiang & Conrath [69] 0.848
Lin [84] 0.822
Resnik [126] 0.745
Li et al. [160] 0.891
SVM 0.834
RM 0.867

Table 7.4: Comparison with WordNet-based methods on WordSimilarity-353 dataset
(Spearman rank correlation coefficient).

Method Correlation
WordNet Edges [68] 0.27
Hirst & St-Onge [61] 0.34
Jiang & Conrath [69] 0.34
WikiRelate! [142] 0.19-0.48
Leacock & Chodrow [80] 0.36
Lin [87] 0.36
Resnik [126] 0.37
SVM 0.53
RM 0.52
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dataset. Despite the fact that the proposed method does not use manually compiled re-

sources such as WordNet for computing similarity, its performance is comparable to sim-

ilarity measures that use WordNet. The WordNet-based similarity measures utilizes nu-

merous information that can be extracted from WordNet such as the length of the shortest

path that connects the two words for which we are concerned of measuring similarity, the

semantic relations that appear along the that path, the depth of the least common ances-

tor (LCA) that subsumes the two words, the number of nodes that falls under that LCA.

Because WordNet is a fixed ontology (i.e. does not change over time as rapidly as the

web), semantic similarity measures that use WordNet as the only source of information

cannot compute the similarity between novel words such as named-entities (i.e. names of

companies, names of people, etc.). Because WordNet does not encode any statistical infor-

mation about the words it contains, algorithms that also require statistical information to

compute semantic similarity [1, 160] have used fixed text corpora to obtain word statistical

information such as word frequency counts. The combination of WordNet with external

corpora has improved the accuracy of semantic similarity measurement. Moreover, the

fixed hierarchy of WordNet does not encode information that is unique to a particular do-

main. For example, all trees are categorized directly under a generic node for trees. But

this crude classification might not be suitable for measuring the similarity between names

of trees in a botanical context. A higher correlation coefficient indicates a better agreement

with human notion of semantic similarity. From Table 7.3.2 we can see that the proposed

method outperforms a wide variety of semantic similarity measures developed using nu-

merous resources including lexical resources such as WordNet and knowledge bases such

as Wikipedia (i.e. WikiRelate!).

Despite the fact that the relational model of semantic similarity (RM) introduced in this

Chapter, performs competitively with the support vector machine-based approach (SVM),

which integrates both page-counts-based association measures as well as snippets-based

lexical patterns through a machine learning algorithm, it is natural to extend the SVM

approach to use clusters of patterns instead of individual lexical patterns. Moreover, the

features used by WordNet-based approaches such as the depth of a node in the WordNet

hierarchy and the length of the shortest path connecting two nodes, etc. can also be incor-

porated in the SVM approach. Specifically, we can define additional features for training



200 CHAPTER 7. RELATIONAL MODEL OF SEMANTIC SIMILARITY

using the information from the WordNet. Whether such a hybrid approach that combines

WordNet-based features and Web-based features in a single model can further improve

the performance of a semantic similarity measure remains unknown. However, it must be

noted that extending web-based features using WordNet can be problematic in situations

where the words that we must compute semantic similarity between, do not appear in the

WordNet. As a workaround for this problem, one can first use web-based features to find a

word u′ that is similar to the given word u, which does not appear in the WordNet, and then

use u′ to generate WordNet-based features. However, whether such an approach can indeed

improve the performance of a semantic similarity measure, remains to be experimented. In

future research on semantic similarity, I intend to explore these possibilities.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In the thesis I studied two types of similarities: attributional similarity and relational simi-

larity. In Chapter 2, I proposed a supervised approach to measure the attributional similarity

between two given words using web search engines. I used page counts and lexical pat-

terns extracted from snippets retrieved from a search engine. The proposed method uses

synonymous word pairs selected from WordNet synsets as positive training instances and

automatically generates negative training instances using a random shuffling technique.

The proposed method outperformed numerous web-based attributional similarity measures

on the Miller-Charles benchmark dataset, achieving a statistically significant Pearson cor-

relation coefficient of 0.837.

In Chapter 3, I studied the problem of measuring the relational similarity between two

given word pairs. I compared three different approaches in Chapter 3: a supervised ap-

proach using Support Vector Machines (Section 3.2), an unsupervised approach that mea-

sures Mahalanobis distance between two word pairs using a set of lexical pattern clusters

(Section 3.3), and a supervised approach that learns the elements of the Mahalanobis matrix

using training data. Experimental results show that clustering lexical patterns prior to com-

puting relational similarity improves performance. This is a predicted behavior because

by clustering lexical patterns we can group patterns that are semantically similar, thereby

reducing the sparseness in feature vectors.

201
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I studied the problem of entity resolution on the web as a specific application of web-

based similarity measures. Resolving personal named-entities can be further subdivided

into namesake disambiguation (Chapter 4), and name alias detection (Chapter 5). I pro-

posed and evaluated a method to extract keywords that uniquely identify different people

with a given ambiguous name. The keywords returned by the proposed method can ac-

curately disambiguate namesakes in an information retrieval task. In particular, named

entities and terms that are related to the ambiguous name are useful when disambiguating

namesakes. I proposed term-entity model (TEM) to represent a person on the web, and

proposed a fully automatic technique to create TEMs for a given name. As an extension

to this work, I presented preliminary work that I have conducted in extracting attributes for

people from web text. The name alias problem was studied in Chapter 5, where I proposed

two different approaches to extract aliases of a name. In the first approach, I used lexical

patterns to find candidate aliases of a given name. The second approach is based on an-

chor text co-occurrences. A hybrid approach that integrates both anchor texts and lexical

patterns reported the best results.

In Chapter 7, I proposed a relational model of semantic similarity. This model is ex-

pected to find a link between attributional and relational similarity measures. Specifically, I

computed the attributional similarity between two words using the set of semantic relations

that hold between those two words. I proposed a pattern clustering method that requires

only positive training data (i.e. synonymous word pairs extracted from WordNet). The rela-

tional model of attributional similarity was able to further improve the semantic similarity

measurements discussed in Chapter 2. Next I provide potential future research directions

in this field.

8.2 Open Issues

The notion of similarity as perceived by humans is not yet fully understood. Researchers

in cognitive science and psycholinguistics have studied various aspects of human notion of

similarity. In those studied several fundamental questions have been debated. Is similarity

a notion that all humans possess by birth or is it learned over time with experience?, do

humans use the same mechanism to perceive both attributional and relational similarity or
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different mechanism?, which part or parts in the brain is at work when humans compute

similarity between objects?, are among the fundamental questions that have been raised

repeatedly and debated over in previous work studying the human notion of similarity.

Chomsky [27] argues that similarity is an inherent ability. Not limiting to similarity, he

argues that language is already encoded into human brain by birth and depending on the en-

vironment and experiences a particular individual might have, different parts get activated.

He argues that an average school student might not be able to learn all constructions and

meanings of words only by encountering them in a classroom or in his environment. This

argument is compelling when one considers the large number of words a school student

acquire. However, the exact genes (assuming that language skills are encoded in genes)

that contribute to language abilities in a human is not yet discovered. The quest for lan-

guage acquisition dates back to Plato. The famous Plato’s problem (the term is attributed

to Chomsky) asks “how do we gain the language abilities from a limited number of ex-

periences’?’. According to Chomsky’s universal grammar, any child, depending on where

he or she is born on earth, can acquire the grammar of the native language only by a limit

amount of passive inputs. On the other hand, empiricists argue that all meanings of words

and grammar of a language can and is learned only by experiences. Landauer and Du-

mais [78] proposed the famous Latent Semantic Analysis (LSA) as a solution to Plato’s

problem. In LSA, first a matrix is representing a set of documents is created as follows.

Each row in the matrix represents a document and each column represents a word. The

(i, j) element of this matrix is the weight assigned to a word wj inside a document di.

The exact word weighting algorithm can be selected arbitrarily. A popular choice is the

tfidf weighting scheme. Next, singular value decomposition is performed on this matrix

to obtain the left and right orthonormal matrices and a diagonal matrix where the diago-

nal elements are eigenvalues. The left and right orthonormal matrices can then be used to

either reduce the number of rows or columns in the original matrix. This operation, for

example when performed to reduce the number of columns in the original matrix, results

in clusters of words. Experimentally, it can be seen that words that are semantically similar

groups to form new dimensions. Consequently, the sparseness of the original matrix re-

duces. LSA has been successfully applied for various task such as text summarization and

word clustering. Laundauer and Dumais argue that co-occurrences of words in a language
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is sufficient to learn the meanings of words and no external knowledge or inherent language

abilities is required. The observation that LSA clusters semantically similar words to pro-

duce new dimensions, supports this claim because when we encounter a new word we can

guess its meaning using the other words that belong to the same cluster as the new word.

Moreover, LSA does not assume any external knowledge sources such as dictionaries, and

works only on the given set of documents. This can be seen as a school student guessing

the meanings of new words using the contexts they appear in, without using any external

aid, such as looking up in a dictionary or asking from a teacher. Although the empiricists

view of language acquisition is very attractive from a data driven NLP point-of-view, com-

puter algorithms that only use unsupervised data often require a large amount of data to

achieve the performance levels that are achieved by supervised approaches with much less

data. In certain applications, it is not possible to surpass the performance of supervised

approaches only by using large unsupervised datasets. A student learning the meaning of

new words without the aid of a dictionary or a teacher can be approximated as a process of

unsupervised learning. Moreover, it is unlikely that we process terabytes of text data in our

brains to learn the meaning of new words. It would require much large computation power

and/or computation time for a human to even read such a large collection of textual data,

let alone process it. Therefore, I believe that a certain amount of language skills are already

encoded in the brain at birth. However, which components get triggered is determined by

the experiences of a particular individual. However, the debate on language acquisition far

from being settled.

Although certain animals such as gorillas and dolphins have been reported to possess

a certain level of limited language abilities, the language skills of humans is far more ad-

vanced than any known animal. However, it is not yet clear whether it is the same for

similarity measuring abilities. Animals can compare current experiences with previous en-

counters and act accordingly. For example, dogs are often trained to accomplish a certain

task (e.g. searching for drugs in an air port) by giving a favorable feedback (i.e. giving

some food) when the task is successfully accomplished. The relation between completing

task and obtaining food is learned by the dog over time. Once this relationship is learned,

the dog can be motivated to accomplish different tasks and with different feedbacks (e.g.

touching the head instead of giving food). If we represent two tasks as (detect drugs, obtain
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food) and (wait for the master, get the head touched) then the two acts can be considered

as a case of measuring relational similarity. The ability to measure similarity can help to

generalize ones experiences and infer from prior experiences when a novel situation arises.

Analogical reasoning is considered as an important process of human knowledge process-

ing.

The distinction between attributional and relational similarity measuring mechanisms

is an interesting one. We have already seen in Section 1.2 that the two types of similarities

are indeed closely related. The relationship between attributional and relational similarity

depends upon how we define attributes or relations. Gentre proposes relational shift, a

hypothesis that states at first humans acquire the ability to measure attributional similarity

and when he or she gain more experience about the environment that he or she lives in,

relational similarity measurement abilities develop. Gentre carried out an interesting ex-

periment where a group of children were asked to compare a sponge and clouds in the sky.

When the question was posed to small children apparently they described that both sponges

and clouds are soft, light in mass and white colored. Interestingly, when the same question

was posed to older children (aging from 10 to 12 years), they explained that both sponges

and clouds can store water and can later reproduce it. The analysis by small children is

based on attributions of sponges and clouds, whereas the older children focused on rela-

tional properties. From a computational point of view measuring relational similarity does

indeed appears to a more difficult task compared to measuring attributional similarity. One

must first identify the relations between objects and subsequently measure the relations that

exist between different pairs of objects to measure the relational similarity. Moreover, the

task of recognizing relations must be carried out for each pair of objects. Contrastingly,

when we define an object we often define its attributes (or properties). Therefore, when

measuring attributional similarity we are already given the set of attributes that must be

compared between the two objects. Moreover, the attributes of an object is determined

irrespective of what other objects exists. Therefore, we do not need to compute attributes

for each new combination (pairing) of two objects that we must compute attribute similar-

ity for. This property of attributional similarity is desirable in kernalization of an learning

algorithm that is designed for measuring attributional similarity. However, the “attributes

first” view of objects itself is being challenged and attributes themselves are seen as a mere
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consequence of relations between objects in the relational models of similarity such as the

structure mapping theory.

The question as to whether being able to measure similarity is an indication of intel-

ligence is an interesting one. For example, SAT exam, which is used to select candidates

for U.S. universities, contained word-analogy question until few year back. Word-analogy

questions selected from SAT exams have been used to benchmark relational similarity al-

gorithms. To solve a word-analogy question a candidate must not only understand the

meanings of individual words, but must also be able to compare the relations that exist be-

tween the two words in each word pair. This requires higher processing skills not limiting

to merely memorizing the meanings of words. Similar questions have been used in IQ tests.

For example, guessing the next number or object in a sequence requires one to recognize

some patterns (or relations) among preceding items in the sequence. Another popular type

of questions used in IQ tests are detecting the object that does not relate to a set of objects.

Measuring both attributional and relational similarity is a fundamental process when an-

swering all these questions. An interesting association between “testing for intelligence”

and “measuring similarity” is the Turing’s test for intelligence. Turing argued that if a hu-

man cannot distinguish between the output (i.e. written text) produced by another human

and a computer program, then the program can be considered as “intelligent”. If this is

true, then Turing’s test is in fact a test for measuring the similarity between human output

and the output produced by a computer program.

8.3 Future Work

In Section 1.5, I presented results from psychological experiments that indicate similarity to

be symmetric. However, we ignored this aspect of similarity when I designed the proposed

semantic similarity measure. In particular, I interchanged the variables X and Y in all

extracted lexical patterns. This step ensures that the trained SVM model contains features

corresponding to both a pattern px,y and the X , Y interchanged pattern (reverse pattern),

py,x. However, it must be noted that the weights assigned to those two patterns might not

necessarily be equal. This is because not all synonyms are represented equally well in

the web by a lexical pattern and its reverse pattern. For example, consider the synonyms
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automobile and car. This pair has the highest similarity score in Miller-Charles’ benchmark

dataset, indicating that humans agree that these two words are perfect synonyms. However,

the page-count returned by Google for the pattern “automobile is a car” is 11, 200, whereas

the same for the pattern car is an automobile” is 5, 330. We can see that the page-counts for

the former pattern is more than double for the latter pattern. Therefore, even if we compare

two perfect synonyms (according to human intuition of similarity), the proposed similarity

measure is not symmetric. In addition to the asymmetry in lexical patterns, the pattern

selection process also renders the propose similarity measure asymmetric. Although we

(artificially) form symmetric patterns by interchanging X and Y variables in all extracted

lexical patterns, the χ2-based pattern selection process might not select the both versions

of a lexical pattern. Consequently, the feature set itself contains asymmetry even before

we conduct any training. One could convert an asymmetric similarity measure sim(a, b)

by considering the average similarity for the two orderings, 0.5(sim(a, b) + sim(b, a)).

However, whether such an artificial conversion into symmetry will reflect the human notion

of similarity is an open question. Moreover, the consequences of asymmetry in subsequent

applications such as, community clustering or word sense disambiguation as conducted

in this thesis remains unknown. Further analysis is required to investigate the effect of

asymmetry in web-based semantic similarity measures.

The distinction between attributional similarity, semantic similarity, relatedness, and

synonymy is a subtle one. Synonymy is a strong form of attributional similarity. According

to Plato, synonyms are words that can be replaced in any context without considering other

words that appear with it. However, most linguists do not agree with this definition of

synonymy because no word can be perfectly replaced in all contexts by its synonyms.

Acronyms might be an exception to this rule because an acronym and its full form is read

in the same way and can be replaced in all contexts. However, substitutability as a property

of synonymy does not hold for other types of words. If two words are synonymous then it

is safe to assume that they have a high degree of attributional similarity. Extracting related

words have received much attention lately because of their use in information retrieval

systems such as web search engines. Many commercial search engines provide related

words as suggestions for user queries. Related words are often identified using previous

queries to the system by other users. Alternatively, a search engine can expand a user query
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(in the form of a disjunctive combination of the original query and its related words), to

improve recall in a search engine. However, considering the vast amount of information

indexed by web search engines, the focus is more on precision than recall. Moreover, the

quality of the automatically extracted related words makes it insufficient to automatically

expand user queries in a simple manner such as a disjunctive query. Therefore, search

engines employ the former approach, where related words are first suggested to the user.

Related words show a certain level of attributional similarity. In fact, benchmark datasets of

attributional similarity such as the WordSimilarity-353 dataset, contains related word pairs

such as Maradona and Football. However, we would expect two related words to have a

lesser value of attributional similarity than two synonyms. Semantic similarity is used as

a term to refer synonymy as well as semantic relatedness in previous work. However, it

does not include relational similarity. Research on relational similarity have explicitly used

the term attributional similarity to distinguish the two types of similarities. However, the

term semantic similarity is too vague and covers various types of similarities. The issue of

relatedness as a factor of attributional similarity requires further studied. Recently, Agirre

et al. [1] investigated the problem of measuring relatedness and similarity between words

using a partition of WordSimilarity-353 dataset. They asked two annotators to classify the

word pairs in the WordSimilarity-353 dataset into several categories: synonyms, antonyms,

identical, hyperonym-hyponym, holonym-meronym, meronym-holonym, and none of the

above. They observed a high inter-annotator agreement of 0.80, and a Kappa score of

0.77. They grouped the word pairs in the WordSimilarity-353 dataset into three categories

based on the manual classifications by the annotators. The three groups are similar pairs

(those classified as synonyms, antonyms, identical, or hyponym-hyperonym), related pairs

(those classified as meronym-holonym, and pairs classified as none-of-the-above, with a

human average similarity greater than 5), and unrelated pairs (those classified as none-of-

the-above that had average similarity less than or equal to 5). They proposed two gold

standards by taking the union of similar and unrelated pairs (similarity dataset), and the

union of related and unrelated pairs (relatedness dataset). Interestingly, their experimental

results show that considering a window of words (i.e. lexical patterns, order between words

is preserved) from the context of a word is highly effective to measure similarity between

words, whereas considering the context of a word as a bag-of-words (i.e. a vector of words
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representing the context of a word, order between words is lost) is more suitable to measure

relatedness.

Classification of related words according to the role of a word is an interesting research

direction of web-based related word extraction. Given a set S(t) of related words extracted

by some algorithm A for a target word t, the problem of related word classification can be

defined as partitioning S(t) into a group of overlapping clusters such that each cluster rep-

resents a set of words that are related to t because of a different role. For example, consider

the set of words, {hound, cat, frankfurter, hot dog, k9}. Here, one can classify the words

in this set into three groups as follows: (hound, k9) [synonyms of dog], (cat) [dogs and cats

are pets], and (frankfurter, hot dog) [food items that are related to a different sense of the

word dog]. This classification is by no means unique. For example, one might classify both

cat and k9 as pets. Therefore, the definition of the problem permits overlaps between clus-

ters (i.e. a soft clustering of related words, where some words can appear in more than one

cluster). Classifying words according to WordNet relations such as synonymy, hypernymy,

meronymy, etc. is not sufficient to explain the different clusters of words in our example.

For example, the relation both dogs and X can be kept as pets is a relation that cannot be

categorized into any of those fundamental relation types in the WordNet. Moreover, the

number of such relations that are useful as partitioning schemes can be large and might not

be able to enumerate. Supervised multi-class classification is not suitable for the current

problem. In particular, if we are only interested in classifying synonyms or hyponyms then

we can train a binary classifier using a set of synonymous (or hyponymous) word pairs,

and then use the trained classifier to identify the words in S(t) that belongs to the same

category (i.e. synonyms or hyponyms). But this is not possible in the current situation

because we do not know in advance what relations there can be in a given set of related

words, and even if we knew all the possible relations that can exist in advance, it would not

be possible to prepare training instances for all relation types. Specially, creating negative

training instances for relational learning can be problematic. Alternatively, one can take

an unsupervised approach where we first identify the different relations that are associated

with the target word t and each word in the related words set S(t), and subsequently cluster

the related words that can be identified with a particular relation. If the related word clas-

sification problem can be solved with high accuracy, then it can be used to filter the noise
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(incorrectly extracted related words) in related words extraction algorithms. Considering

the fact that the ability to classify objects is a fundamental skill that humans have, devising

a computer algorithm to do the same (at least in the limited case discussed above) would

surely illustrate the difficulty/ease of the computations required to achieve such a task.

Transitivity of similar relations does not hold in general. For example, if two words A

and B are similar and B is also similar to another word C, we cannot expect A and C to

be similar in general. For example, consider the two words horse and car. Considering the

fact that cars and historically horses are used for transportation, we would expect cars and

horses to be attributionally similar. Here, the value of the attribute usage is common (i.e.

transportation) for both objects. Similarly, considering the fact that both horses and pigs

are farm animals, one would expect a high similarity between horses and pigs. However,

it does not follow from this analysis that cars and pigs are similar. In fact, they have very

different attributes and are not considered as similar. On the other hand if we consider

cows, which are also farm animals, we can observe a certain degree of similarity between

cars and cows because cows are still used for transportation (e.g. bullock carts). To my

knowledge, there is no computer algorithm that can determine which cases are transitive

and which are not. Further studies into transitivity of attributional similarity will extend our

understanding of similarity. Existing algorithms for measuring attributional or relational

similarity only return a value indicating the degree of similarity between a pair of words

or two pairs of words. They do not indicate why two words are similar or not similar.

Extracting informative lexical patterns that explain why two words are assigned a particular

similarity score will not only help to easily detect errors in automatic similarity measures,

but will also strengthen our understanding on what factors contribute to similarity between

words or semantic relations.

Identification of relations is an important first step in measuring both attributional and

relational similarity. In this thesis, I used lexical patterns as an approximate representation

of semantic relations. However, not all relations can be explicitly stated in the form of

lexical patterns. For example, consider co-references that span across multiple sentences.

Because lexical patterns are generated from entities that co-occur in the same sentence,

we cannot express a relation that span across multiple sentences and have co-references

in other sentences in a document by lexical patterns. An alternative approach would be
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to first perform within and cross-document co-reference resolution and then use the co-

reference information to express relations that span multiple sentences or several docu-

ments. However, this approach can be problematic in the web because of the noise in

web documents, which render accurate co-reference analysis difficult, and also the sheer

scale of the web that makes such in depth analysis of all documents computationally pro-

hibitively costly. As a practical (partial) solution to the cross-document co-references in

the case of name-aliases, I introduced the use of anchor texts and link graph on the web

in Chapter 5. Moreover, some relations occur as a consequence of an event. For example,

consider the sentence, “X published his research paper in Y”. Here, X can be the author of a

research paper and Y can be a conference or a journal. Publishing is an activity performed

by researchers and this prior knowledge enables a human to detect a authorship relation

between X and Y. However, this authorship relation is only implicitly stated in the exam-

ple sentence. The verb publish is a clue that indicate this relation. However, besides the

simplicity, there is no other reason to limit any of the algorithms discussed in the thesis for

lexical patterns. For example, we can replace (or complement) the lexical patterns-based

representation of semantic relations with dependency or syntactic paths, network represen-

tations such as markov logic networks or predicate logic. However, most commercially

available web search engines do not provide the functionality to search using richer repre-

sentations beyond lexical patterns. Not even regular expressions are supported in most web

search engines. Although there has been some pioneering work on building search engines

for NLP applications [24], they are yet to achieve the scalability provided by commercial

web search engines.

In Chapter 6, I introduced a two-step approach to extract various attributes for people

from the web. However, the low performance reported by all participating systems in the

WePS workshop suggests the difficulty of the task. The fundamental question what can be

an attribute of an object?, itself requires some discussion. In the case of people, we assume

attributes such as date of birth, affiliation, nationality, e-mail address, etc. as attributes. In

general, we can think of an attribute as a feature of a class of objects, that distinguish a

particular class from another. For example, in the case of people, the attribute date of birth

is common for all people and distinguishes the class people from another class (e.g. books).

If we take a bottom-up approach to attribute extraction, we can start with a collection of
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objects that we are told to be in the same class, and then identify features that are common

to most (if not all) objects in the collection. For example, consider the situation where we

are given a list of name cards. We know in advance all name-cards belong to the class

people. Our goal is to extract attributes for this class. Next, we start by explicitly writing

down what features exist in each name-card. For example, we might have features such

as the first name, last name, telephone number, fax number, job title, academic degree or

other professional qualifications, and e-mail address. If those features also appear in the

other name-cards, then we can select them as attributes for the class. This bottom-up view

of attribute extraction is particularly useful when we are not sure as to which features are

salient in a given collection of objects. In contrast to attribute extraction, which I studied

in Chapter 5, the above mentioned process can be considered as an attribute mining task.

In our example of name-cards, we were only given a set of name-cards for people (i.e. all

objects belongs to a single class). We can further extend this idea to cover a collection

of objects that belongs to more than one class and perform the attribute mining task in

a discriminative fashion. However, it must be noted that the above mentioned analysis

only provides us with a set of attributes for a class. It does not extract the values of those

attributes. Once we have identified which attributes to be extracted for a particular class,

we need other techniques (a list-wise approach and a rule-based approach were introduced

in Chapter 6) to extract the values of those attributes.

Measuring similarity between words using the information available on the web will

remain a challenging and interesting area of research for the years to come. The information

explosion in the world wide web and the advancement in web search engines have provided

us with both vast amount of textual data as well as efficient processing tools. It is no longer

possible to run the entire web corpus through our algorithms. However, the vast size and

redundancy of information in the web obviate the need for us to process the entire web

corpus to obtain statistically reliable counts or samples. The algorithms presented in this

thesis use light-weight processing steps such as downloading only the top ranking snippets

or using the page counts for a small number of queries. Therefore, the algorithms presented

for measuring attributional and relational similarity easily scale to the web. Moreover, the

ever increasing size of the web does not impede the performance of the algorithms. On the

contrary, when the web grows it helps us to obtain even more reliable page counts.



Bibliography

[1] Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Pasca, and

Aitor Soroa. A study on similarity and relatedness using distributional and wordnet-

based approaches. In Proc. of NAACL-HLT’09, 2009.

[2] J. Artiles, J. Gonzalo, and F. Verdejo. A testbed for people searching strategies in

the www. In Proc. of SIGIR’05, pages 569–570, 2005.

[3] Javier Artiles, Julio Gonzalno, and Satoshi Seline. Weps 2 evaluation campaign:

overview of the web people search clustering task. In proc. of the 2nd Web People

Search Evaluation Workshop (WePS 2009) at 18th International World Wide Web

Conference, 2009.

[4] Javier Artiles, Julio Gonzalo, and Satoshi Sekine. The semeval-2007 weps eval-

uation: Establishing a benchmark for the web people search task. In proc. of the

SemEval at Annual Meeting of the Association for Computational Linguistics, 2007.

[5] R.A. Baeza-Yates and B.A. Ribeiro-Neto. Modern Information Retrieval. ACM

Press / Addison-Wesley, 1999.

[6] A. Bagga and B. Baldwin. Entity-based cross document coreferencing using the

vector space model. In Proc. of 36th COLING-ACL, pages 79–85, 1998.

[7] S. Banerjee and T. Pedersen. Extended gloss overlaps as a measure of semantic

relatedeness. In Proc. of IJCAI’03, pages 805–810, 2003.

[8] Z. Bar-Yossef and M. Gurevich. Random sampling from a search engine’s index. In

Proceedings of 15th International World Wide Web Conference, 2006.

213



214 BIBLIOGRAPHY

[9] K. Barker and S. Szpakowicz. Semi-automatic recognition of noun modifier rela-

tionships. In Proc. of COLING’98, pages 96–102, 1998.

[10] Ron Bekkerman and Andrew McCallum. Disambiguating web appearances of peo-

ple in a social network. In Proceedings of the World Wide Web Conference (WWW),

pages 463–470, 2005.

[11] Kedar Bellare, Partha Pratim Talukdar, Giridhar Kumaran, Fernando Pereira, Mark

Liberman, Andrew McCallum, and Mark Dredze. Lightly-supervised attribute ex-

traction for web search. In proc. of NIPS 2007 Workshop on Machine Learning for

Web Search, 2007.

[12] M. Berland and E. Charniak. Finding parts in very large corpora. In Proc. of ACL’99,

pages 57–64, 1999.

[13] R. Bhagat and D. Ravichandran. Large scale acquisition of paraphrases for learning

surface patterns. In Proc. of ACL’08: HLT, pages 674–682, 2008.

[14] E. Bicici and D. Yuret. Clustering word pairs to answer analogy questions. In Proc.

of TAINN’06, 2006.

[15] M. Bilenko and R. Mooney. Adaptive duplicate detection using learnable string

similarity measures. In Proc. of SIGKDD’03, 2003.

[16] D. Bollegala, Y. Matsuo, and M. Ishizuka. Disambiguating personal names on the

web using automatically extracted key phrases. In Proc. of the 17th European Con-

ference on Artificial Intelligence, pages 553–557, 2006.

[17] D. Bollegala, Y. Matsuo, and M. Ishizuka. An integrated approach to measuring

semantic similarity between words using information available on the web. In Proc.

of HTL-NAACL’07, pages 340–347, 2007.

[18] D. Bollegala, Y. Matsuo, and M. Ishizuka. Measuring semantic similarity between

words using web search engines. In Proc. of WWW’07, pages 757–766, 2007.



BIBLIOGRAPHY 215

[19] D. Bollegala, Y. Matsuo, and M. Ishizuka. Www sits the sat: Measuring relational

similarity on the web. In Proc. of ECAI’08, pages 333–337, 2008.

[20] Danushka Bollegala, Taiki Honma, Yutaka Matsuo, and Mitsuru Ishizuka. Auto-

matically extracting personal name aliases from the web. In proc. of the 6th In-

ternational Conference on Natural Language Processing (GoTAL 08), Advances in

Natural Language Processing Springer LNCS 5221, pages 77–88, 2008.

[21] C. Buckley, G. Salton, J. Allan, and A. Singhal. Automatic query expansion using

smart: Trec 3. In Proc. of 3rd Text REtreival Conference, pages 69–80, 1994.

[22] A. Budanitsky and G. Hirst. Evaluating wordnet-based measures of semantic dis-

tance. Computational Linguistics, 32(1):13–47, 2006.

[23] R. C. Bunescu and R.J. Mooney. Learning to extract relations from the web using

minimal supervision. In Proc. of ACL’07, pages 576–583, 2007.

[24] Michael J. Cafarella and Oren Etzioni. A search engine for natural language appli-

cations. In WWW ’05: Proceedings of the 14th international conference on World

Wide Web, pages 442–452, New York, NY, USA, 2005. ACM Press.

[25] S. Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext Data.

Morgan Kaufmann, 2003.

[26] H. Chen, M. Lin, and Y. Wei. Novel association measures using web search with

double checking. In Proc. of the COLING/ACL 2006, pages 1009–1016, 2006.

[27] Noam Chmosky. Modular Approaches to the Study of the Mind. San Diego State

University Press, 1984.

[28] K. Church and P. Hanks. Word association norms, mutual information and lexicog-

raphy. Computational Linguistics, 16:22–29, 1991.

[29] R.L. Cilibrasi and P.M.B. Vitanyi. The google similarity distance. IEEE Transac-

tions on Knowledge and Data Engineering, 19(3):370–383, 2007.



216 BIBLIOGRAPHY

[30] P. Cimano, S. Handschuh, and S. Staab. Towards the self-annotating web. In Proc.

of 13th WWW, 2004.

[31] P. Cimano, S. Handschuh, and S. Staab. Towards the self-annotating web. In Proc.

of WWW’04, 2004.

[32] P. Cimiano and J. Wenderoth. Automatic acquisition of ranked qualia structures

from the web. In Proc. of ACL’07, pages 888–895, 2007.

[33] A. Culotta and J. Sorensen. Dependency tree kernels for relation extraction. In Proc.

of ACL’04, pages 423–429, 2004.

[34] J. Curran. Ensemble methods for automatic thesaurus extraction. In Proc. of

EMNLP, 2002.

[35] Douglass R. Cutting, Jan O. Pedersen, David Karger, and John W. Tukey. Scat-

ter/gather: A cluster-based approach to browsing large document collections. In

Proceedings SIGIR ’92, pages 318–329, 1992.

[36] D. Davidov and A. Rappoport. Classification of semantic relationships between

nominals using pattern clusters. In Proc. of the ACL’08, 2008.

[37] D. Davidov and A. Rappoport. Unsupervised discovery of generic relationships us-

ing pattern clusters and its evaluation by automatically generated sat analogy ques-

tions. In Proc. of ACL’08-HLT, pages 692–700, 2008.

[38] J. V. Davis and I. S. Dhillon. Differential entropic clustering of multivariate gaus-

sians. In Proc. of NIPS’06, pages 337–344, 2006.

[39] J. V. Davis and I. S. Dhillon. Structured metric learning for high dimensional prob-

lems. In Proc. of KDD ’08, pages 195–203, 2008.

[40] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon. Information-theoretic metric

learning. In Proc. of ICML’07, pages 209–216, 2007.



BIBLIOGRAPHY 217

[41] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clus-

ters. In Proc. of Sixth Symposium on Operating System Design and Implementation

(OSDI’04), 2004.

[42] T. Dunning. Accurate methods for the statistics of surprise and coincidence. Com-

putational Linguistics, 19:61–74, 1993.

[43] O. Etzioni, M. Cafarella, D. Downey, A. Popescu, T. Shaked, S. Soderl, D. S. Weld,

and E. Yates. Unsupervised named-entity extraction from the web: An experimental

study. Artificial Intelligence, 165:91–134, 2005.

[44] J. Euzenat. Semantic precision and recall for ontology alignment evaluation. In

Proc. of International Joint Conferences on Artificial Intelligence (IJCAI’07), pages

348–353, 2007.

[45] B. Falkenhainer, K.D. Forbus, and D. Gentner. Structure mapping engine: Algorithm

and examples. Artificial Intelligence, 41:1–63, 1989.

[46] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and

E. Ruppin. Placing search in context: The concept revisited. ACM TOIS, 20:116–

131, 2002.

[47] M.B. Fleischman and E. Hovy. Multi-document person name resolution. In Pro-

ceedings of 42nd Annual Meeting of the Association for Computational Linguistics

(ACL), Reference Resolution Workshop, 2004.

[48] K.T. Frantzi and S. Ananiadou. The c-value/nc-value domain independent method

for multi-word term extraction. Journal of Natural Language Processing, 6(3):145–

179, 1999.

[49] C. Galvez and F. Moya-Anegon. Approximate personal name-matching through

finite-state graphs. Journal of the American Society for Information Science and

Technology, 58:1–17, 2007.

[50] S. Gauch and J. B. Smith. Search improvement via automatic query reformulation.

ACM Trans. on Information Systems, 9(3):249–280, 1991.



218 BIBLIOGRAPHY

[51] Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer, and Benjamin Taskar. Prob-

abilistic relational models. In L. Getoor and B. Taskar, editors, An Introduction to

Statistical Relational Learning. MIT Press, 2007.

[52] S. Ghemawat, H. Gobioff, and S. Leung. The google file system. In Proc. of ACM

Symposium on Operating Systems Principles, 2003.

[53] P.E. Gill, W. Murray, and M.H. Wright. Practical optimization. Academic Press,

1981.

[54] R. Guha and A. Garg. Disambiguating people in search. In Stanford University,

2004.

[55] R. V. Guha, R. McCool, and E. Miller. Semantic search. In Proc. of WWW’03, pages

700–709, 2003.

[56] W.V. Hage, H. Kolib, and G. Schreiber. A method for learning part-whole relations.

In Proc. of 5th International Semantic Web Conferences, 2006.

[57] U. Hahn, N. Chater, and L. B. Richardson. Similarity as transformation. Cognition,

87:1–32, 2003.

[58] Hui Han, Hongyuan Zha, and C. Lee Giles. Name disambiguation in author cita-

tions using a k-way spectral clustering method. In Proceedings of the International

Conference on Digital Libraries, 2005.

[59] Z. Harris. Distributional structure. Word, 10:146–162, 1954.

[60] M.A. Hearst. Automatic acquisition of hyponyms from large text corpora. In Proc.

of 14th COLING, pages 539–545, 1992.

[61] G. Hirst and D. St-Onge. Lexical chains as representations of context for the detec-

tion and correction of malapropisms, 1997.

[62] T. Hisamitsu and Y. Niwa. Topic-word selection based on combinatorial probability.

In Proc. of NLPRS’01, pages 289–296, 2001.



BIBLIOGRAPHY 219

[63] T. Hokama and H. Kitagawa. Extracting mnemonic names of people from the web.

In Proc. of 9th Intl. Conf. on Asian Digital Libraries (ICADL’06), pages 121–130,

2006.

[64] H. L. Hollingworth. Judgements of similarity and difference. Psychological Review,

20:271, 1913.

[65] J. Hosman and T. Kuennapas. On the relation between similarity and dissimilarity

estimates. Technical report, University of Stockholm, 1973.

[66] J. Huang, S. Ertekin, and C.L. Giles. Efficient name disambiguation for large scale

databases. In Proc. of 10th European Conference on Principles and Practice of

Knowledge Discovery in Databases (PKDD), pages 536–544, 2006.

[67] J. Huang, S. Ertekin, and C.L. Giles. Fast author name disambiguation in citeseer.

ISI Technical Report, 2006.

[68] M. Jarmasz. Roget’s thesaurus as a lexical resource for natural language processing.

Master’s thesis, University of Ottawa, 1993.

[69] J.J. Jiang and D.W. Conrath. Semantic similarity based on corpus statistics and

lexical taxonomy. In Proc. of ROCLING’98, 1998.

[70] T. Joachims. Optimizing search engines using clickthrough data. In Proc. of

KDD’02, 2002.

[71] Y. Kalfoglou and M. Schorlemmer. Ontology mapping: the state of the art. The

Knowledge Engineering Review, 18:1–31, 2003.

[72] P. Kanani, A. McCallum, and C. Pal. Improving author coreference by resource-

bound information gathering from the web. In Proc. of International Joint Confer-

ences on Artificial Intelligence (IJCAI’07), pages 429–434, 2007.

[73] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad, and

spectral. In Proceedings of the 41st Annual Symposium on the Foundation of Com-

puter Science, pages 367–380, 2000.



220 BIBLIOGRAPHY

[74] F. Keller and M. Lapata. Using the web to obtain frequencies for unseen bigrams.

Computational Linguistics, 29(3):459–484, 2003.

[75] Adam Kilgarriff. Googleology is bad science. Computational Linguistics, 33:147–

151, 2007.

[76] C. L. Krumhansl. Concerning the applicability of geometric models to similarity

data: The interrelationship between similarity and spatial density. Psychological

Review, 85:445–463, 1978.

[77] T. Kudo, K. Yamamoto, and Y. Matsumoto. Applying conditional random fields to

japanese morphological analysis. In Proc. of EMNLP’04, 2004.

[78] Thomas K. Landauer and Susan T. Dumais. A solution to plato’s problem: The latent

semantic analysis theory of acquisition, induction, and representation of knowledge.

Psychological Review, 104(2):211–240, April 1997.

[79] M. Lapata and F. Keller. Web-based models ofr natural language processing. ACM

Transactions on Speech and Language Processing, 2(1):1–31, 2005.

[80] C. Leacock and M. Chodorow. Combining Local Context and WordNet Similarity

for Word Sense Identification. MIT, 1998.

[81] M. Li, X. Chen, X. Li, B. Ma, and P.M.B. Vitanyi. The similarity metric. IEEE

Transactions on Information Theory, 50(12):3250–3264, 2004.

[82] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and its Applica-

tions. Springer-Verlag, 1997.

[83] Xin Li, Paul Morie, and Dan Roth. Semantic integration in text, from ambiguous

names to identifiable entities. AI Magazine, American Association for Artificial In-

telligence, Spring:45–58, 2005.

[84] D. Lin. Automatic retrieval and clustering of similar words. In Proc. of the 17th

COLING, pages 768–774, 1998.



BIBLIOGRAPHY 221

[85] D. Lin. Automatic retrieval and clustering of similar words. In Proc. of COLING-

ACL’98, pages 768–774, 1998.

[86] D. Lin. Automatic retrieval and clustering of similar words. In Proc. of COLING’98,

pages 768–774, Morristown, NJ, USA, 1998. Association for Computational Lin-

guistics.

[87] D. Lin. An information-theoretic definition of similarity. In Proc. of the 15th ICML,

pages 296–304, 1998.

[88] D. Lin and P. Pantel. Dirt: Discovery of inference rules from text. In Proc. of ACM

SIGKDD’01, pages 323–328, 2001.

[89] F. Lorrain and H. C. White. Structural equivalence of individuals in social networks.

Journal of Mathematical Sociology, 1:49–80, 1971.

[90] P. Mangalath, J. Quesada, and W. Kintsch. Analogy-making as prediction using

relational information and lsa vectors. In Proc. of Int’l Conf. on Research in Com-

putational Linguistics, 2004.

[91] Gideon S. Mann and David Yarowsky. Unsupervised personal name disambiguation.

In Proceedings of CoNLL-2003, pages 33–40, 2003.

[92] C. Manning and H. Schutze. Foundations of Statistical Natural Language Process-

ing. MIT Press, 1999.

[93] C. D. Manning and H. Schütze. Foundations of Statistical Natural Language Pro-

cessing. The MIT Press, Cambridge, Massachusetts, 2002.

[94] Z. Marx, D. Ido, B. Joachim, and S. Eli. Coupled clustering: A method for detect-

ing structural correspondence. Journal of Machine Learning Research, 3:747–780,

2002.

[95] Y. Matsuo, M. Hamasaki, Y. Nakamura, T. Nishimura, K. Hashidaand H. Takeda,

J. Mori, D. Bollegala, and M. Ishizuka. Spinning multiple social networks for se-

mantic web. In Proc. of the American Association for Artificial Intelligence, 2006.



222 BIBLIOGRAPHY

[96] Y. Matsuo, J. Mori, M. Hamasaki, K. Ishida, T. Nishimura, H. Takeda, K. Hasida,

and M. Ishizuka. Polyphonet: An advanced social network extraction system. In

Proc. of 15th International World Wide Web Conference, 2006.

[97] Y. Matsuo, T. Sakaki, K. Uchiyama, and M. Ishizuka. Graph-based word clustering

using web search engine. In Proc. of EMNLP 2006, 2006.

[98] D. McCarthy, R. Koeling, J. Weeds, and J. Carroll. Finding predominant word senses

in untagged text. In Proceedings of the 42nd Meeting of the Association for Compu-

tational Linguistics (ACL’04), pages 279–286, 2004.

[99] D.L. Medin, R.L. Goldstone, and D. Genter. Similarity involving attributes and

relations: Judgments of similarity and difference are not inverse. Psychological

Sciences, 1(1):64–69, 1990.

[100] D.L. Medin, R.L. Goldstone, and D. Gentner. Respects for similarity. Psychological

Review, 6(1):1–28, 1991.

[101] P. Mika. Flink: Semantic web technology for the extraction and analysis of social

networks. Web Semantics: Science, Services and Agents on the World Wide Web,

3:211–223, 2005.

[102] P. Mika. Ontologies are us: A unified model of social networks and semantics. In

Proc. of ISWC2005, 2005.

[103] G. Miller and W. Charles. Contextual correlates of semantic similarity. Language

and Cognitive Processes, 6(1):1–28, 1998.

[104] G.A. Miller. Wordnet: a lexical database for english. Commun. ACM, 38(11):39–41,

1995.

[105] M. Mitra, A. Singhal, and C. Buckley. Improving automatic query expansion. In

Proc. of 21st Annual International ACM-SIGIR Conference on Research and Devel-

opment in Information Retrieval, pages 206–214, 1998.



BIBLIOGRAPHY 223

[106] J. Mori, Y. Matsuo, and M. Ishizuka. Extracting keyphrases to represent relations in

social networks from web. In Proc. of 20th IJCAI, 2007.

[107] P. Nakov and M. Hearst. Solving relational similarity problems using the web as a

corpus. In Proc. of ACL’08-HLT, pages 452–460, 2008.

[108] V. Natase and S. Szpakowicz. Exploring noun-modifier semantic relations. In Proc.

of fifth int’l workshop on computational semantics (IWCS-5), pages 285–301, 2003.

[109] J. Nocedal and S. Wright. Numerical optimization. Springer, 2000.

[110] N.F. Noy and M.A. Musen. An algorithm for merging and aligning ontologies: Au-

tomation and tool support. In Proc. of the AAAI workshop on ontology management,

1999.

[111] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank

citation ranking: Bringing order to the web, 1999.

[112] M. Pasca, D. Lin, J. Bigham, A. Lifchits, and A. Jain. Organizing and searching

the world wide web of facts - step one: the one-million fact extraction challenge. In

Proc. of AAAI-2006, 2006.

[113] M. Pasca, D. Lin, J. Bigham, A. Lifchits, and A. Jain. Organizing and searching

the world wide web of facts - step one: the one-million fact extraction challenge. In

Proc. of AAAI’06, pages 1400–1405, 2006.

[114] M. Pasca, D. Lin, J. Bigham, A. Lifchits, and A. Jain. Organizing and searching

the world wide web of facts - step one: the one-million fact extraction challenge.

In proc. of the 21st National Conference on Artificial Intelligence (AAAI-06), pages

1400 – 1405, 2006.

[115] T. Pedersen and A. Kulkarni. Discovering identities in web contexts with unsuper-

vised clustering. In Proc. of the IJCAI’07 Workshop for Noisy Unstructured Text

Data, 2007.



224 BIBLIOGRAPHY

[116] T. Pedersen and A. Kulkarni. Unsupervised discrimination of person names in web

contexts. In Proc. of Eighth International Conference on Intelligent Text Processing

and Computational Linguistics, pages 18–24, 2007.

[117] T. Pedersen, A. Kulkarni, R. Angheluta, Z. Kozareva, and T. Solorio. An unsu-

pervised language independent method of name discrimination using second order

co-occurance features. In Proc. of the Seventh International Conference on Intelli-

gent Text Processing andComputational Linguistics (CICLing), 2006.

[118] Ted Pedersen, Amruta Purandare, and Anagha Kulkarni. Name discrimination by

clustering similar contexts. In Proceedings of the Sixth International Conference on

Intelligent Text Processing and Computational Linguistics, 2005.

[119] J. Pei, J. Han, B. Mortazavi-Asi, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M. Hsu.

Mining sequential patterns by pattern-growth: the prefixspan approach. IEEE Trans-

actions on Knowledge and Data Engineering, 16(11):1424–1440, 2004.

[120] Xuan-Hieu Phan, Le-Minh Nguyen, and Susumu Horiguchi. Personal name resolu-

tion crossover documents by a semantics-based approach. IEICE Transactions on

Information and Systems, E89-D:825–836, 2005.

[121] J. Platt. Probabilistic outputs for support vector machines and comparison to reg-

ularized likelihood methods. Advances in Large Margin Classifiers, pages 61–74,

2000.

[122] R. Rada, H. Mili, E. Bichnell, and M. Blettner. Development and application of

a metric on semantic nets. IEEE Transactions on Systems, Man and Cybernetics,

9(1):17–30, 1989.

[123] L. Ratinov and D. Roth. Design challenges and misconceptions in named entity

recognition. In Proc. of the Annual Conference on Computational Natural Language

Learning (CoNLL’09), Jun 2009.

[124] D. Ravichandran and E. Hovy. Learning surface text patterns for a question answer-

ing system. In Proc. of ACL ’02, pages 41–47, 2001.



BIBLIOGRAPHY 225

[125] Y. Ravin and Z. Kaiz. Is hilary rodham clinton the president? disambiguating names

across documents. In Proc. of the ACL ’99 Workshop on Coreference and its Appli-

cations, 1999.

[126] P. Resnik. Using information content to evaluate semantic similarity in a taxonomy.

In Proc. of IJCAI’95, 1995.

[127] P. Resnik. Semantic similarity in a taxonomy: An information based measure and

its application to problems of ambiguity in natural language. Journal of Artificial

Intelligence Research, 11:95–130, 1999.

[128] P. Resnik and N. A. Smith. The web as a parallel corpus. Computational Linguistics,

29(3):349–380, 2003.

[129] R. Rosenfield. A maximum entropy approach to adaptive statistical modeling. Com-

puter Speech and Language, 10:187–228, 1996.

[130] H. Rubenstein and J.B. Goodenough. Contextual correlates of synonymy. Commu-

nications of the ACM, 8:627–633, 1965.

[131] M. Sahami and T. Heilman. A web-based kernel function for measuring the similar-

ity of short text snippets. In Proc. of WWW’06, 2006.

[132] G. Salton and C. Buckley. Introduction to Modern Information Retreival. McGraw-

Hill Book Company, 1983.

[133] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.

Information Processing and Management, 24:513–523, 1988.

[134] V. Schickel-Zuber and B. Faltings. Oss: A semantic similarity function based on

hierarchical ontologies. In Proc. of IJCAI’07, pages 551–556, 2007.

[135] Hinrich Schutze. Automatic word sense discrimination. Computational Linguistics,

24(1):97–123, 1998.



226 BIBLIOGRAPHY

[136] Satoshi Sekine and Javier Artiles. Weps 2 evaluation campaign: overview of the web

people search attribute extraction task. In proc. of the 2nd Web People Search Eval-

uation Workshop (WePS 2009) at 18th International World Wide Web Conference,

2009.

[137] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[138] F. Smadja. Retrieving collocations from text: Xtract. Computational Linguistics,

19(1):143–177, 1993.

[139] R. Snow, D. Jurafsky, and A.Y. Ng. Learning syntactic patterns for automatic hy-

pernym discovery. In Proc. of Advances in Neural Information Processing Systems

(NIPS) 17, pages 1297–1304, 2005.

[140] R. Snow, D. Jurafsky, and Y. Ng. Learning syntactic patterns for automatic hypernym

discovery. In Proc. of NIPS’05, 2005.

[141] Y. Song, J. Huang, I.G. Councill, J. Li, and C.L. Giles. Generative models for name

disambiguation. In Proc. of International World Wide Web Conference (WWW),

pages 1163–1164, 2007.

[142] M. Strube and S. P. Ponzetto. Wikirelate! computing semantic relatedness using

wikipedia. In Proc. of AAAI’ 06, 2006.

[143] J. B. Tenenbaum. Bayesian modeling of human concept learning. In NIPS’99, 1999.

[144] P. Turney. Thumbs up or thumbs down? semantic orientation applied to unsuper-

vised classification of reviews. In Proc. of ACL’02, pages 417–424, 2002.

[145] P. Turney. A uniform approach to analogies, synonyms, antonyms, and associations.

In Proc. of the 22nd International Conference on Computational Linguistics (Coling

2008), pages 905–912, 2008.

[146] P. D. Turney. Mining the web for synonyms: Pmi-ir versus lsa on toefl. In Proc. of

ECML-2001, pages 491–502, 2001.



BIBLIOGRAPHY 227

[147] P. D. Turney. Minning the web for synonyms: Pmi-ir versus lsa on toefl. In Proc. of

ECML-2001, pages 491–502, 2001.

[148] P.D. Turney. Measuring semantic similarity by latent relational analysis. In Proc. of

IJCAI’05, pages 1136–1141, 2005.

[149] P.D. Turney. Expressing implicit semantic relations without supervision. In Proc. of

Coling/ACL’06, pages 313–320, 2006.

[150] P.D. Turney. Similarity of semantic relations. Computational Linguistics, 32(3):379–

416, 2006.

[151] P.D. Turney and M.L. Littman. Corpus-based learning of analogies and semantic

relations. Machine Learning, 60:251–278, 2005.

[152] P.D. Turney, M.L. Littman, J. Bigham, and V. Shnayder. Combining independent

modules to solve multiple-choice synonym and analogy problems. In Proc. of

RANLP’03, pages 482–486, 2003.

[153] A. Tversky. Features of similarity. Psychological Review, 84:327–652, 1977.

[154] A. Tversky. Features of similarity. Psychological Review, 84(4):327–352, 1997.

[155] V. Vapnik. Statistical Learning Theory. Wiley, Chichester, GB, 1998.

[156] T. Veale. The analogical thesaurus. In Proc. of 15th Innovative Applications of

Artificial Intelligence Conference (IAAI’03), pages 137–142, 2003.

[157] T. Veale. Wordnet sits the sat: A knowledge-based approach to lexical analogy. In

Proc. of ECAI’04, pages 606–612, 2004.

[158] T. Veale and M. T. Keane. The competence of structure mapping on hard analogies.

In Proc. of IJCAI’03, 2003.

[159] B. Vlez, R. Wiess, M.A. Sheldon, and D.K. Gifford. Fast and effective query refine-

ment. In Proc. of 20th Annual International ACM-SIGIR Conference on Research

and Development in Information Retrieval, pages 6–15, 1997.



228 BIBLIOGRAPHY

[160] D. McLean Y. Li, Zuhair A. Bandar. An approach for measuring semantic similarity

between words using multiple information sources. IEEE Transactions on Knowl-

edge and Data Engineering, 15(4):871–882, 2003.

[161] D. Zelenko, C. Aone, and A. Richardella. Kernel methods for relation extraction.

Journal of Machine Learning Research, 3:1083–1106, 2003.


