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Abstract—Estimation distribution algorithms (EDAs) which
deal with tree structures as GP are called as probabilistic
model building GPs (PMBGPs), and they show better search
performance than GP in many problems. A problem of prototype
tree-based method, a type of PMBGPs, is that samplings do
not always generate the most probable solution, which is the
individual with the highest probability and reflects a learned
distribution most. This problem wastes a part of learning and
increases the number of evaluations to get an optimum solution.
In order to overcome this difficulty, this paper proposes a hybrid
approach using Belief propagation (BP) in sampling process.
BP is an inference algorithm on graphical models and can
generate the most probable solution. By applying our approach
to benchmark tests, we show that the proposed method is more
effective than PLS alone.

I. INTRODUCTION

In this paper, we introduce loopy belief propagation (LBP)
in probabilistic model building GPs (PMBGPs) in order to
generate the most probable solutions in sampling process.
We selected program optimization with linkage estimation
(POLE) [1] as a foundation of our approach, which employs
Bayesian networks for a probabilistic model and uses a special
chromosome called as the expanded parse tree (EPT) [2]. We
call our proposed method as POLE-BP.

Estimation of distribution algorithms (EDAs) are a new
paradigm in the field of evolutionary computation, and have
attracted more and more attention due to their reliability in
GA-hard deceptive problems. EDAs estimate dependencies
between loci using probabilistic models and search solution
candidates. From a viewpoint of estimation of probabilistic
distribution, GA samples solutions from unknown superior
distribution using genetic operators such as mutation and
crossover. On the other hand, EDAs repeat model learning and
sampling from the model by taking advantage of the assump-
tion that superior distribution can be well approximated by
parametric models, which is in contrast to sampling with the
genetic operators inspired by the natural evolution. EDAs with
Bayesian networks (Bayesian optimization algorithm (BOA)
[3], estimation of Bayesian networks algorithm (EBNA) [4]
and learning factorized distribution algorithm (LFDA) [5]) are
typical EDAs, because Bayesian networks are able to represent
dependencies between any loci, and they can solve many

real world problems [6] having complex dependencies among
variables.

The individual which reflects a learned probabilistic model
most is the one having the highest joint probability, which
is often referred to as the most probable solution. However,
many sampling methods in EDAs such as probabilistic logic
sampling (PLS) and Gibbs sampling do not always generate
the most probable solution at each generation. Therefore, some
hybrid approaches using belief propagation (BP) algorithms to
generate the most probable solution were proposed in GA-
type EDAs. BP is widely used for inference in graphical
models, and is a general algorithm to calculate marginal
probabilities or the configuration with the highest probability
in graphical models. Although the original BP can be only
applied to graphs without cycles, BP has been applied to
many applications accompanied by cycles, in which case
the BP is specifically called loopy belief propagation (LBP).
LBP achieves fairly good successes with low computational
cost, although the guarantee that BP always converges to
the exact solution within finite steps in acyclic graphs is
lost in LBP. Because Bayesian networks used in EDAs are
inevitably accompanied by cycles, approximate inference by
LBP is popular in the field of EDAs [7], [8] as well as other
applications.

The idea of estimation of probabilistic distribution has
been applied to tree structures conventionally dealt by GP
(Genetic Programming). EDAs for tree structures assume that
the promising solutions can be well described by probabilistic
models. They learn models and estimate parameters repeatedly
to generate new tree structures. These EDAs for tree structures
are called Genetic Programming - EDAs (GP-EDAs) [9] or
probabilistic model Building GP (PMBGPs) [10]. PMBGPs
are superior to GP in the sense that PMBGPs can search
solutions with smaller number of fitness evaluations and is
able to solve problems which conventional GP cannot solve.
PMBGPs are broadly classified into two types. One type
uses probabilistic context free grammar (PCFG) and learns
production rule probabilities. The other type is prototype tree-
based method, which converts trees to 1 dimensional arrays
and applies GA-type EDAs to them. From the viewpoint of
probabilistic models, the prototype tree-method is essentially



equivalent to GA-type EDAs and hence it can easily incorpo-
rate techniques devised in the field of EDAs.

In the present paper, we employ LBP in the prototype
tree-based method to sample the most probable solutions in
probabilistic models. At each generation, trees are converted to
1 dimensional arrays, and dependencies between variables are
estimated, using Bayesian networks. Because LBP has to run
on a factor graph, which is a kind of graphical models and an
undirected graph, a learned Bayesian network is transformed to
an equivalent factor graph. LBP on the factor graph generates
the individual with the highest joint probability, and it is
incorporated into the next generation in addition to individuals
sampled from Bayesian networks. The superiority of the
proposed method is shown with three benchmark tests.

The rest of the paper is organized as follows. Section 2 and 3
briefly introduce PMBGPs and LBP algorithms, respectively.
Section 4 explains details of the proposed method. Section
5 presents the experimental condition and results, which is
followed by the discussion in Section 6. Finally Section 7
concludes the paper.

II. PROBABILISTIC MODEL BUILDING GP

Because PMBGPs construct probabilistic models on tree
structures, they can express dependencies between nodes more
flexibly than GP. While GP propagates building blocks by
crossover and dependencies expressed by building blocks are
limited to sub trees, PMBGPs can express dependencies be-
tween brothers or ancestors and descendants besides sub trees.
Two types of methods, a prototype tree-based method and a
PCFG-based method, are known in the field of PMBGPs. The
prototype tree-based method translates trees to 1 dimensional
arrays and applies GA-type EDAs to them. On the other hand,
PCFG-based method expresses individuals with derivation
trees, and learns production rules as well as their parameters
[11]–[15]. Since recent PCFG-based methods weaken the con-
text freedom assumption (probabilities of production rules do
not depend on parent or sibling nodes) by using more advanced
PCFG models, they can estimate position independent building
blocks [16]. Despite of these facts, the prototype tree-based
methods are advantageous over PCFG-based methods in the
sense that they can easily utilize existing GA-type EDAs, and
consequently, state-of-the art in GA-type EDAs [17], [18] can
be directly introduced to PMBGPs.

A. Prototype tree-based method

Prototype trees are full α-ary trees, where α is the max-
imum number of arguments among function nodes. Nodes
of prototype trees are numbered in breadth-first order, and
trees are converted to 1 dimensional arrays according to the
order. Because all the individuals have the same dimension
(the same number of nodes) due to individuals being perfect
trees, GA-type EDAs can be applied to the arrays. Probabilistic
incremental program evolution (PIPE) [19] assumes that every
node is independent of each other, which can be considered as
an adaptation of population-based incremental learning (PBIL)
[20] to GP. Estimation of distribution programming (EDP)

[21] takes into account the parent-children relationships in
tree structures. Extended compact GP (ECGP) [22] combines
the extended compact GA (ECGA) [23], which estimates the
group of marginal distributions using the minimum description
length (MDL) principle, with GP to take into account the mul-
tivariate dependencies among nodes. Bayesian optimization
algorithm (BOA) programming (BOAP) [24] is based on BOA
and uses a zig-zag tree to represent functions and programs.
Program optimization with linkage estimation (POLE) also es-
timates the dependencies among nodes by Bayesian networks.

The PMBGPs listed above use PLS to generate new individ-
uals. However, with PLS, there is no guarantee that the most
probable solutions, which have the highest joint probability
and reflect learned probabilistic models the most, are generated
at each generation. This is the key issue especially for the case
of small population size. In order to overcome the deficiency,
we introduce LBP to PMBGPs in the sampling process, and
the most probable solutions are generated at each generation
with LBP. We employ POLE as a baseline PMBGP in our
study, which will be briefly explained in the next section for
readers convenience.

B. Program Optimization with Linkage Estimation

POLE is a PMBGP using Bayesian networks and EPT
for expressing tree structures. Although prototype tree-based
PMBGPs can incorporate techniques devised in GA-type
EDAs, there are problems in the naive application of GA-type
EDA techniques to GP. Because GP uses more symbols (e.g.,
functions and terminals) than GA (e.g. 0 and 1), the number
of possible symbols at each position is very large. Since the
number of possible symbols is the base of exponential increase
in conditional probability table (CPT) size, a use of more sym-
bols results in more population size in PMBGPs. Furthermore,
all the programs sampled from Bayesian networks must satisfy
syntactic correctness, which can not be ensured in general.

POLE translates programs to perfect trees, using EPT which
makes all function nodes take α arguments (α is the maximum
number of arguments among function nodes). The selection
node L is the function node defined as L(x, y, ...) = x, which
only evaluates its first argument and return the result.

EPT solves two problems of prototype tree-based methods
listed above. A use of EPT guarantees the syntactic correctness
and ameliorates the difficulty in estimating dependencies due
to increase of symbols.

EPT moves nodes on trunk to leafs and generates equivalent
programs with perfect trees, using L. Figure 1 shows an
example of EPT along with its equivalent standard GP tree
expression. The EPT inserts selector operators L into the
standard GP tree in order to ensure that terminal nodes are
positioned at the leaves of the full α-ary tree.

Let F and T be sets of function and terminal nodes,
respectively. Symbols which each node can take are given by
F ∪T for the case of normal trees. EPT reduces trunk symbols
to F ∪{L} and terminate symbols to T . Consequently, model
complexity reduced by few symbols enables fast parameter
learning and the reduction of the number of evaluations. At the



same time, all the programs generated by Bayesian networks
under EPT are syntactically correct, which is not the case for
the standard GP tree case. The details of POLE are described

Fig. 1. (a) standard GP tree and (b) EPT. The grey nodes are introns.
Circles are function nodes and squares are terminate nodes. (a) and (b) are
syntactically identical.

below.
Step 1 Initialization of individuals

Trees are initialized by Grow.
Step 2 Evaluation of individuals
Step 3 Selection of individuals

According to a truncate selection, individuals are
selected which are used for construction of Bayesian
networks and estimation of parameters. The number
of individuals to select is represented with MPs,
where Ps is a selection rate and M is a population
size.

Step 4 Construction of Bayesian network
On the basis of K2 algorithm [25], Bayesian net-
works are constructed with the samples and pa-
rameters are also estimated. Bayesian information
criteria (BIC) [26] is used to evaluate networks. In
our implementation, networks are constructed from
scratch at each generation.

Step 5 Generation of new individuals
New M individuals are generated with constructed
Bayesian networks by PLS. If we want to use the
elitist strategy, better MPe individuals are copied
from previous generation, where Pe denotes elite
rate.

PMBGPs except POLE simply translate trees to 1 dimensional
arrays with fixed size and cannot avoid problems accompanied

with increasing symbols. POLE solves these problems and
performs better on deceptive MAX problem and Royal tree
problem. Moreover, a extension of POLE was proposed in
[27].

III. LOOPY BELIEF PROPAGATION

Original belief propagation (BP) infers marginal probabil-
ities and instances of each node on Bayesian networks [28].
In BP, nodes repeatedly send messages, which are parts of
locally calculated marginal probabilities, each other and update
them in order to get marginal probabilities. This process is
called as Message Passing in BP. Nowadays, BP is applied to
calculation of joint probabilities as well as marginal probabil-
ities and is expanded for Markov random field (MRF) and a
factor graph. The algorithm for joint probabilities is called as
max-sum or max-product, and that for marginal probabilities
as max-product. BP on graphs with cycles has no guarantee
to stop and converge to a correct solution while BP works
correctly within finite steps on acyclic graphs. However, in
practice, BP on graphs with cycles, which is called as LBP,
works well in many applications [29], [30].

A. Loopy max sum

The proposed method applies max-sum to cyclic factor
graph and generates the most probable solutions. We call
this procedure as loopy max-sum. Let µf→x and µx→f be
messages from factor nodes to variable nodes and those from
variable nodes to factor nodes, respectively, and ne(X) and
ne(X)\Y be the set of adjacent nodes to X and the set of
adjacent nodes to X except Y , respectively, and f(x0, · · · , xn)
be the value of factor f when its adjacent variable nodes
are x0, · · · , xn. The details of loopy max-sum are described
below.

Step 1 Initialization
All messages are initialized to 0.

Step 2 Message passing
Message passing is repeatedly executed, using Eqs.
(1), (2), (3) and (4). Eqs. (1) and (2) represent
messages from leaf nodes, and Eqs. (3) and (4)
represent messages from nodes except leafs.

µf→x(x) = ln f(x), (1)
µx→f (x) = 0, (2)

µf→x(x) = max
x1,··· ,xM

[
ln f(x, x1, · · · , xM ) +∑

m∈ne(fs)\x

µxm→f (xm)

]
, (3)

µx→f (x) = αxf +
∑

l∈ne(x)\f

µfl→x(x), (4)

where αxf is a scalar chosen such that∑
xn

µx→f (x) = 0.



Step 3 Check termination criteria
If termination criteria is satisfied, message passing
ends. Otherwise, message passing continues.

Step 4 Get the most probable solution
Get the most probable solution, using Eq. (5).

xmax = argmax
x

[ ∑
s∈ne(x)

µfs→x(x)

]
. (5)

IV. THE PROPOSED METHOD

The proposed algorithm, POLE-BP, is different from the
original POLE in the sampling process. POLE-BP generates
one individual, the most probable solution, with loopy max-
sum and the rest with PLS, in contrast to the original POLE
where all the individuals are generated with PLS. Because
loopy max-sum must run on factor graphs, Bayesian networks
are translated to factor graphs. The details of POLE-BP is
described below.

Step 1 Initialization (Identical to POLE)
Step 2 Evaluation of individuals (Identical to POLE)
Step 3 Selection of individuals (Identical to POLE)
Step 4 Construction of Bayesian network

(Identical to POLE)
Step 5 Generation of new individuals by sampling

M − 1 individuals are sampled from the Bayesian
network constructed by Step4.

Step 6 Graph translation
The Bayesian network is translated to the equivalent
factor graph.

Step 7 Loopy max-sum
Loopy max-sum runs on the factor graph. The most
probable solution gotten by Eq. (5) is carried to the
next generation.

POLE-BP guarantees that population includes the most prob-
able solution, which is an individual having the highest joint
probability, in each generation. We expect that POLE-BP
performs better than conventional POLE especially in small
population cases where it is hard to generate the most probable
solution with PLS.

V. EXPERIMENTS

In order to investigate the search performance of our ap-
proach, we applied POLE-BP to three problems: the MAX
problem, the deceptive MAX (DMAX) problem and the royal
tree problem. The main parameters in common with POLE
are listed in Table I.

In the experiments, we compared the performance of the
three models listed below

• POLE-BP
LBP is incorporated into POLE. The main parameters
are identical to POLE. Message passing schedule of
loopy max-sum is that messages are sent from all factor
nodes and variable nodes by turns. When all nodes send
messages 100 times, termination criteria is met. This
termination criteria is enough for convergence, because

messages usually converge within about 10 passing in
our observation.

• POLE
To estimate interactions between nodes, a Bayesian net-
work is constructed. The maximum number of incoming
edges per node is unlimited.

• Simple GP (SGP)
This algorithm is a simple implementation of GP. Let
Pc, Pm and Pr be crossover rate, mutation rate and
reproduction rate. In the experiments, we use Pe = 0.005,
Pc = 0.995, Pm = 0 and Pr = 0. Crossover points
are selected with bias. In applying the crossover operator
to two individuals, we selected the first crossover point
from function nodes with a probability of 0.9, and from
terminals with a probability of 0.1. The second crossover
point is selected under the condition that the depth of
both individuals does not exceed the depth limitation. The
tournament size is set to Ts = 2. Grow is used to initialize
individuals.

The population size of each method is determined in the
following way. We start from M = 100, and increase the
population size by 5

√
10 times. For each population size, we

execute 20 runs. If the algorithm obtains the optimum solution
20 times from the 20 runs, we stop increasing the population
size and calculate the average number of fitness evaluations.
This method of determining the population size has previously
been employed in [3], [4].

All algorithms are terminated when they obtain the optimum
solution. Furthermore, we also adopted another termination
criterion. Because POLE-BP and POLE tend to converge
faster than SGP, these algorithms stop when the best fitness
value at each generation is not improved for ten continuous
generations. In contrast, SGP stops when the fitness values are
not improved from generation g to generation 2g(g > 10).

We performed t-test (Welch, two-tailed) for each experi-
ment. We calculate the P-value for the obtained data (e.g., the
average of POLE-BP and the average of POLE) to exhibit any
statistically significant differences between the results of the
different approaches.

TABLE I
PARAMETERS OF POLE-BP AND POLE.THE MISSING CONCRETE VALUES

(DENOTED BY THE“ -”SYMBOLS) ARE PROBLEM DEPENDENT

Parameters Meaning value
M Population size -
Dp Maximum tree depth -

Ps Selection Rate
0.1(MAX, DMAX)

0.2(Royal Tree)

Rp Range of Parents
2(MAX, DMAX)

4(Royal Tree)
k Maximum Incoming Edge ∞
Pe Elitist reproduction Rate 0.05

PF Functional Selection Rate
0.8(MAX,DMAX)

0.9(Royal Tree)

A. Experiment 1: MAX Problem
1) Problem Description: The MAX problem [31], [32] is

a benchmark test to examine the mechanism of GP crossover,



and is widely used as a benchmark test for PMBGPs [15], [21].
A purpose of the MAX problem is to search a function that
returns the largest real value within the limits of a maximum
tree depth. In this problem, three symbols described below are
used.

F = {+, ∗}, T = {0.5} (6)

An optimum solution can be obtained by the following pro-
cedure. First, create the value “2” using four “0.5” symbols
and three “+” symbols. Then, multiply the created “2”s using
“*” symbols. 22

Dp−3 represents the optimum value for a given
maximum depth Dp.

2) Results and Analysis: Let tree size be the number of
nodes contained in the optimum structure, which can be
represented by 2Dp − 1 in the MAX problem. Table II
presents the average number of fitness evaluations and standard
deviations in 20 trials. Fig. 2 visualizes Table II and describes
the relationship of tree size versus the average number of
fitness evaluations for the three models. Table III describes the
results of the t-test, which indicates that POLE-BP is superior
to POLE and SGP. According to Table III, the P-value for
POLE-BP and POLE is smaller than 1% in Dp = 6, 7, 8.
This means that difference between POLE-BP and POLE for
Dp = 6, 7, 8 is statistically significant at 1% significant level.
From the result above, LBP works better in deeper problems
which requires larger population.

TABLE II
THE NUMBER OF FITNESS EVALUATIONS FOR THE MAX PROBLEM.

VALUES OF THE STANDARD DEVIATION (STDEV) FOR EACH CASE ARE
GIVEN IN PARENTHESES

Dp = 5 Dp = 6 Dp = 7 Dp = 8

POLE-BP
average
stdev

380
(87)

1272
(310)

3475
(918)

10238
(1567)

POLE
average
stdev

435
(85)

1648
(263)

4900
(307)

14679
(1353)

SGP
average
stdev

1416
(249)

3208
(442)

8513
(1136)

59950
(4801)

Fig. 2. The number of evaluations required for the MAX problem

TABLE III
t-TEST.THE VALUES REPRESENT P-VALUES FOR THE MAX PROBLEM

Dp = 5 Dp = 6 Dp = 7 Dp = 8

POLE-BP
vs POLE 5.02E-2 2.0E-4 1.02E-06 underflow
POLE-BP
vs SGP 3.33E-15 underflow underflow underflow

B. Experiment 2: Deceptive MAX (DMAX) Problem

1) Problem Description: In order to investigate how LBP
works in a deceptive problem, we also applied POLE-BP
to a deceptive MAX problem (DMAX problem) [1], which
is a deceptive extension of the MAX problem. The DMAX
problem has the same objective as the MAX problem: to
find functions which return the largest real value under the
limitation of a maximum tree depth Dp.

F = {add5,multiply5} (7)
T = {λ3, 0.95} (8)

add5(a0, · · · , a4) =
4∑

i=0

ai (9)

multiply5(a0, · · · , a4) =
4∏

i=0

ai (10)

λ3 =

(
−1

2
+

i
√
3

2

)
(11)

Let us consider the optimum value for the DMAX problem
with Dp = 3. In order to get maximum absolute value, first,
create 5λ3, using five λ3 and add5. Then, create (5λ3)

5 =
55λ3

2, using 5λ3 and multiply5. However, Re(55λ3
2) is

negative, and 55λ3
2 is not a optimum solution. Therefore,

substituting two 5 ∗ 0.95 for two 5λ3 makes the optimum
value, (5λ3)

3(0.95 ∗ 5)2 = 2820.3125. Fig. 3 visualizes this
structure. We can find that the optimum value with Dp = 4 is
(5λ3)

24(0.95 ∗ 5) = 2.83 ∗ 1017 in a similar way.

Fig. 3. An optimum solution of the DMAX problem (Dp = 3)

2) Results and Analysis: Table IV present the average
number of fitness evaluations and standard deviations in 100
trials. SGP could not get an optimum solution at Dp = 4. Fig.
4 visualizes Table IV and describes the relationship of tree
size versus the average number of fitness evaluations for the
three models. Table V shows the result of t-test. Because each



P-value between POLE-BP and POLE is bigger than 1 %, the
performance of POLE-BP may not surpass POLE.

We ran 100 different experiments where population is
M = 40, 50, 60, 70, 80, 90, 100, 160 from others in order to
investigate how LBP works in small population. Table VI
presents the number of success trials of depth 3 in 100
trials. Fig. 5 visualizes effects of BP in small population.
In M = 40, ..., 100, POLE-BP succeeded more frequently
than POLE. In the DMAX problem, LBP works well in small
population cases, but performs worse in large population cases
in contrast to other two benchmark tests (the MAX and the
royal tree problems).

TABLE IV
THE NUMBER OF FITNESS EVALUATIONS FOR THE DMAX PROBLEM.
VALUES OF THE STANDARD DEVIATION (STDEV) FOR EACH CASE ARE

GIVEN IN PARENTHESES

Dp = 3 Dp = 4

POLE-BP
average
stdev

1539
(276)

120708
(10569)

POLE
average
stdev

1517
(283)

122031
(5819)

SGP
average
stdev

34875
(4533)

-
(-)

Fig. 4. The number of evaluations required for the DMAX problem

TABLE V
t-TEST.THE VALUES REPRESENT P-VALUES FOR THE DMAX PROBLEM

Dp = 3 Dp = 4

POLE-BP
vs POLE 5.78E-1 2.75E-1
POLE-BP
vs SGP underflow -

C. Experiment 3: Royal Tree Problem

1) Problem Description: To show the effectiveness of
POLE-BP, we applied our approach to the royal tree problem
[33]. The royal tree problem is an extension of the royal road
function [34], which is designed to examine the functionality
of schema in GA, to GP. In the royal tree problem, GP gets

TABLE VI
THE NUMBER OF SUCCESS TRIALS IN 100 TRAILS (THE ROYAL TREE

PROBLEM, Dp = 3)

Population
40 50 60 70 80 90 100 160

POLE-BP 2 10 42 72 84 94 99 100
POLE 1 3 21 54 79 91 97 100
SGP 77 77 81 84 88 85 89 89

Fig. 5. The number of success trials in 100 trails (Dp = 3)

the optimum structure by combining the building blocks using
crossover operators.

In this problem, symbols described below are used.

F = {A,B,C,D,E, F} (12)
T = {x}, x = 1 (13)

An optimum solution is call as Perfect Tree, where each
trunk node has the previous alphabet of children(e.g. children
nodes of a function D are C). Each function node multiplies
fitness of children by weight and adds them. If a tree which
has children as root is perfect tree, the weight is Full Bonus.
If a child is a correct node, but it is not a perfect tree, the
weight is Partial Bonus. If a child is not correct node, the
weight is Penalty. Moreover, if sub tree whose root is itself,
fitness is multiplied by Complete Bonus. We use Full Bonus =
2, Partial Bonus = 1, Penalty = 1/3, Complete Bonus = 2. For
example, Fig. 6 visualizes an optimum solution of Dp = 4,
and its fitness is 512.

Fig. 6. An optimum solution of the Royal tree problem (Dp = 4)



2) Results and Analysis: Table VII presents the average
number of fitness evaluations and standard deviations in 20
trials. Fig. 7 shows some of the data in Table VII and describes
the relationship of tree size versus the average number of
fitness evaluations for the three models. Table VIII represents
the results of the t-test, which indicates that POLE-BP is
superior to POLE and SGP. According to Table VIII, the
P-value for POLE-BP and POLE is smaller than 1 % in
Dp = 6, 7. This clearly shows that difference between the
proposed method and POLE for Dp = 6, 7 is statistically
significant at 1% significant level. As in the MAX problem,
LBP works better in deeper problems which requires larger
population size.

TABLE VII
THE NUMBER OF FITNESS EVALUATIONS FOR THE ROYAL TREE PROBLEM.

VALUES OF THE STANDARD DEVIATION (STDEV) FOR EACH CASE ARE
GIVEN IN PARENTHESES

Dp = 4 Dp = 5 Dp = 6 Dp = 7

POLE-BP
average
stdev

260
(66)

1352
(413

14720
(2844)

67250
(3250)

POLE
average
stdev

290
(54)

1560
(469)

25375
(1431)

94600
(4432)

SGP
average
stdev

420
(144)

3000
(316)

29520
(2115)

119800
(6750)

Fig. 7. The number of evaluations required for the Royal tree problem

TABLE VIII
t-TEST.THE VALUES REPRESENT P-VALUES FOR THE ROYAL TREE

PROBLEM

Dp = 4 Dp = 5 Dp = 6 Dp = 7

POLE-BP
vs POLE 1.24E-1 1.45E-1 6.88E-15 underflow
POLE-BP
vs SGP 1.11E-5 2.22E-16 underflow underflow

VI. DISCUSSION

We have employed LBP in the sampling process of POLE
in order to generate the most probable solutions. POLE,
which estimates interactions between any nodes and over-
comes problems accompanied with prototype tree-based meth-
ods, using EPT, is a powerful algorithm to solve problems

which require estimation of dependencies between nodes.
Nevertheless, POLE does not show good performance on
small population cases due to the sampling bias with PLS.
Regarding the sampling bias in PMBGPs, Ref. [35] recently
reported that the sampling bias is of problematic especially
for small population cases. Because our approach generates
the most probable solutions with LBP, we have improved the
success probability in small population cases in PMBGPs.
We have applied the proposed method, POLE-BP, to three
problems with different characteristics: the MAX problem (no
interactions), the DMAX problem (lateral interactions) and the
royal tree problem (parent―child interactions).

In the MAX problem, the number of the average fitness
evaluations of the proposed method is superior to POLE and
SGP. Because the MAX problem has no deceptiveness and
the fitness monotonically increases by combining building
blocks, Bayesian networks constructed in the MAX problem
always grow toward optimal distribution. We consider that
this would be a reason why generating the most probable
solution works well in the problem. On the other hand, in the
DMAX problem, the number of the average fitness evaluation
between POLE-BP and POLE is not significant compared to
the MAX problem case. DMAX problem has deceptiveness,
and hence Bayesian networks do not necessarily converges
to the optimum distribution as generation elapses. The most
probable solutions generated from such distributions are not
always superior, and LBP does not necessarily work well in
deceptive problems. However, we found that POLE-BP tends
to succeed better than POLE in small population cases. This
results supports our expectation that in the small population
cases, PLS does not work well due to the sampling bias, and
generating the most probable solutions by LBP is effective. In
the royal tree problem, it is significant that the number of the
average fitness evaluation of the proposed method is superior
to POLE and SGP. Because generating the most probable
solutions by sampling is more difficult in royal tree problem
which has more symbols than MAX and DMAX problems,
effects of LBP have been shown more clearly.

VII. CONCLUSION

We have proposed POLE-BP, which is a hybrid approach
which combines LBP and POLE, a PMBGP using prototype
tree. Experiments for three benchmark tests showed that
POLE-BP is superior to POLE alone.

In this paper, we applied POLE-BP to three benchmark tests
in order to demonstrate effectiveness of POLE-BP. However,
application to real world, especially multiobjective, problems
is also important, and extension of our approach for such
problems is a remaining objective.
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