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Abstract—Unsupervised Cross-domain Sentiment Classification is the task of adapting a sentiment classifier trained on a particular
domain (source domain), to a different domain (target domain), without requiring any labeled data for the target domain. By adapting
an existing sentiment classifier to previously unseen target domains, we can avoid the cost for manual data annotation for the target
domain. We model this problem as embedding learning, and construct three objective functions that capture: (a) distributional properties
of pivots (i.e. common features that appear in both source and target domains), (b) label constraints in the source domain documents,
and, (c) geometric properties in the unlabeled documents in both source and target domains. Unlike prior proposals that first learn a
lower-dimensional embedding independent of the source domain sentiment labels, and next a sentiment classifier in this embedding,
our joint optimisation method learns embeddings that are sensitive to sentiment classification. Experimental results on a benchmark
dataset show that by jointly optimising the three objectives we can obtain better performances in comparison to optimising each objective
function separately, thereby demonstrating the importance of task-specific embedding learning for cross-domain sentiment classification.
Among the individual objective functions, the best performance is obtained by (c). Moreover, the proposed method reports cross-domain
sentiment classification accuracies that are statistically comparable to the current state-of-the-art embedding learning methods for cross-
domain sentiment classification.
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1 INTRODUCTION

THe ability to correctly identify the sentiment ex-
pressed in user-reviews about a particular product

is an important task for several reasons. First, if there is
a negative sentiment associated with a particular feature
of a product, the manufacturer can take immediate ac-
tions to address the issue. Failing to detect a negative
sentiment associated with a product might result in
decreased sales. From the users’ point-of-view, in online
stores where one cannot physically touch and evaluate
a product as in a real-world store, the user opinions are
the only available subjective descriptors of the product.
By automatically classifying the user-reviews according
to the sentiment expressed in them, we can assist the
potential buyers of a product to easily understand the
overall opinion about that product. Considering the
numerous applications of sentiment classification such
as opinion mining [1], opinion summarisation [2], con-
textual advertising [3], and market analysis [4], it is
not surprising that sentiment classification has received
continuous attention.

Sentiment classification can be considered as an in-
stance of text classification where a given document
must be classified into a pre-defined set of sentiment
classes [5]. We use the term document to refer various
types of user reviews. In binary sentiment classification, a
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document must be classified into two classes depending
on whether it expresses a positive or a negative sentiment
towards an entity. Alternatively, a document can be
assigned a discrete sentiment score (eg. from one to
five stars) that indicates the degree of the positivity (or
negativity) of the sentiment. Once, a document has been
identified as sentiment bearing, then further analysis can
be performed, for example, to extract evidence for an
argument.

In supervised binary sentiment classification, a binary
classifier is trained using manually labeled positive and
negative user-reviews. Considering the vast number of
products sold online, it is both costly as well as infeasible
to manually annotate reviews for each product type.
On the other hand, it is attractive if we could some
how adapt a sentiment classifier that is trained using
labeled reviews for one product to classify sentiment
on a different product. This problem setting is known
as Cross-Domain Sentiment Classification. For example,
consider the situation where we have trained a sentiment
classifier using labeled reviews for books and would like
to apply it to classify sentiment on kitchen utensils such
as knives. We use the term domain to refer to a collection
of reviews written on a particular product. The domain
from which we train our sentiment classifier is called
the source, whereas the domain to which we apply the
trained classifier is called the target. In our example, books
is the source domain and knives is the target domain.
Words such as interesting, exciting, or boring are used
to express sentiment about books in reviews, whereas
words such as durable, sharp, or lightweight are used
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to express sentiment about knives. Unfortunately, this
mismatch of features between the source and target
domains causes a sentiment classifier trained on books
to perform poorly when applied to knives.

Domain adaptation methods can be further classified
into two groups: supervised domain adaptation methods [6]–
[8], and unsupervised domain adaptation methods [9]–[12].
In supervised domain adaptation, one assumes the avail-
ability of a small labeled dataset for the target domain in
addition to the labeled data for the source domain, and
unlabeled data for both the source and the target do-
mains. On the other hand, unsupervised domain adap-
tation does not assume the availability of labeled data for
the target domain. Although supervised domain adapta-
tion methods often outperform unsupervised ones, the
extra burden to annotate labeled data for each of the
target domains is a concern. For example, in large-scale
online shopping sites such as the Amazon.com [13], we
must adapt to a large number of novel target domains.
Consequently, in this paper, we consider unsupervised
cross-domain sentiment classification.

One popular solution to cross-domain sentiment clas-
sification is to first project the source and the target
features into the same lower-dimensional embedding,
and subsequently learn a sentiment classifier on this
embedded feature space [9], [11]. This approach is partic-
ularly attractive when there is little overlap between the
original source and the target feature spaces. Similarly
distributed words in the source and the target domains
get mapped to closer points in the embedded space,
thereby reducing the mismatch of features in the two
domains. Prior work on cross-domain sentiment classifi-
cation use unlabeled data from the source and the target
domains to first learn a low-dimensional embedding
for the two domains [9], [11]. Next, labeled reviews in
the source domain are projected onto this embedding.
Finally, a binary sentiment classifier is trained using the
projected source domain labeled training instances. A
limitation of this two-step approach that decouples the
embedding learning and sentiment classifier training is
that the embeddings learnt in the first step is agnostic
to the sentiment of the documents, which is the ultimate
goal in cross-domain sentiment classification.

We propose an unlabeled cross-domain sentiment clas-
sification method using spectral embeddings where we
project both the words and the documents into the same
lower-dimensional embedding. The embedding learnt by
our method enforces three important requirements. First,
a set of domain independent features (also known as
pivots) are selected from the source and target domains
which must be mapped as close as possible in the em-
bedded space. Second, friend closeness and enemy dis-
persion of the source domain labeled documents must be
preserved. In other words, positively labeled documents
must be embedded closer to each other and far from
the negatively labeled documents. Likewise, negatively
labeled documents must be embedded closer to each
other and far from the positively labeled documents.

Third, within each domain, the local geometry among the
documents must be preserved. For example, unlabeled
neighbour documents in the source domain must be
embedded closer to each other in the embedded space
whereas, unlabeled neighbour documents in the target
domain must be embedded closer to each other in the
embedded space. Here, neighbour documents refer to
similar documents in terms of their text content. We
model each of the above-mentioned requirements as an
objective function, and jointly optimise all three objective
functions. The proposed method can be easily extended
to more than two sentiment classes.

Our experimental results on a benchmark dataset for
multi-domain sentiment classification demonstrate that
by jointly optimising the three objectives in many cases
we obtain better classification accuracies than if we had
optimised each objective separately. Even in cases where
joint optimisation does not improve over the separately
trained objectives, the performance obtained by the joint
optimisation method is never below that obtained by
the best individually trained methods. This result shows
the importance of learning embeddings that are sensitive
to the final task at hand, which is sentiment classi-
fication. Moreover, the proposed method significantly
outperforms several baselines and previously proposed
embedding learning methods when applied to cross-
domain sentiment classification.

2 MOTIVATING EXAMPLE
To explain the motivation behind our proposed method
consider the reviews shown in Table 1, where we have
shown positive (indicated by +) and negative (indicated
by −) labeled reviews for the books (source) domain
and the kitchen appliances (target) domain. The sentiment
bearing words such as excellent, sharp, boring, etc. are
indicated by boldface. From Table 1, we see that the
words that express sentiment in the two domains are
very different. For example, in the source domain, words
such as interesting and thrilling express a positive senti-
ment, whereas in the target domain the same is expressed
by words such as sharp. This makes the task of domain
adaptation a challenging one because a sentiment clas-
sifier trained on the source domain reviews is likely to
perform poorly on the target domain because the features
it has learnt from the source domain might not appear
in the target domain. However, we also see that some
words such as excellent appear in the reviews for both
domains. Such features that represent the same sentiment
in both source and target domains are referred to as
pivots in the literature [10]. Ideally, when we embed
two representations for a pivot created from the two
domains, we must ensure that the projected points are
embedded closer to each other. The first rule in our
proposed method captures this intuition.

Next, consider the labeled reviews in the source do-
main. The first two reviews contain positive sentiment
bearing words such as excellent, interesting, and thrilling.
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TABLE 1: Positive (+) and negative (-) sentiment reviews in two different domains: books and kitchen appliances.

books kitchen appliances
+ This is an excellent survey on deep learning meth-

ods.
10 dollars for a sharp knife like this, could not ask
for a better bargain.

+ The story is interesting and thrilling. Could not
put the book down.

The excellent quality of these sharp knives are well
worth their price.

- A disappointing end to a boring story. Utter waste
of time.

Knives got rusty and blunt after normal usage for
two weeks.

Therefore, we must ensure that these two reviews are
embedded to nearby points. On the other hand, the
negatively labeled review in the source domain contains
words such as disappointing, boring, and waste. Therefore,
when we embed this negative labeled review we must
ensure that it is embedded to a point that is distant
to the embedded points corresponding to the positive
labeled reviews. This requirement can be seen as a friend
attraction and enemy dispersion task. The second rule we
propose captures this intuition.

The distributions of words in the source domain is
different from that of the target domain. Aspects of books
such as the plot, length, style of writing etc. are different
from that of knives such as the weight, durability, sharp-
ness, etc. We attempt to preserve the similarities among
documents from a particular domain as much as possible
in the embedded space. For example, two documents
that are similar in their word distributions must be
embedded close to each other in the embedded space
as well. Note that to measure the similarity between
two documents we do not need their sentiment labels.
Therefore, we can enforce this requirement for unlabeled
documents in the source and the target domains. The
third rule we propose captures this intuition.

The three requirements we discussed above are not
mutually independent. Therefore, it is appropriate to
jointly optimise the three objectives instead of optimising
each one separately.

3 RELATED WORK
Cross-domain sentiment classification methods can be
classified as unsupervised vs. supervised methods. In unsu-
pervised cross-domain sentiment classification, the train-
ing data consist of (a) source domain labeled docu-
ments, (b) source domain unlabeled documents, and
(c) target domain unlabeled documents. Supervised (or
semi-supervised) cross-domain sentiment classification
methods use a small set of labeled data for the target
domain in addition to those three data sources. Unsu-
pervised cross-domain sentiment classification can be
considered as a much harder problem because of the
lack of availability of labeled data for the target domain.
Unsupervised domain adaptation methods assume that
the output labels in the target domain are equally con-
ditioned by the input, even though the input could be
differently distributed in terms of marginal probability.
Therefore, domain adaptation methods adjust for the

differences in this conditional distributions between the
two domains.

Structural correspondence learning (SCL) [10] first se-
lects a set of pivots, common features to both source and
the target domains, using some criteria. One approach
for selecting pivots is to select all features that occur more
than a pre-defined number of times in both domains.
Alternatively, a word association measure such as the
mutual information (MI) could be used to measure the
degree of association of a feature to a domain name,
and select common features that have a high degree
of association between both the source and the target
domains [10]. The latter approach has shown to produce
better results in cross-domain sentiment classification.
Next, linear predictors are trained to predict the pres-
ence (or absence) of pivots in a document. Specifically,
documents in which a particular pivot w occurs are
considered as positive training instances for learning a
predictor for w, whereas an equal number of documents
in which w does not occur are selected as negative
training instances. Unigram and bigram lexical-features
are extracted from the selected training instances as
features to train a binary logistic regression classifier
with l2 regularisation. Finally, the weight vector learnt
by the classifier is considered as the predictor for w. The
predictors learnt for all pivots are arranged in a matrix on
which singular value decomposition (SVD) is performed.
The left singular vectors corresponding to the largest
singular values are selected from the SVD result, and
arranged as row vectors in a matrix. All source domain
labeled training instances are multiplied by this matrix to
predict the presence of pivots. Finally, a binary logistic
regression model is trained using the predicted pivots
and the original features. By first predicting the pivots,
and then learning a classifier using those predicted piv-
ots as additional features, SCL attempts to reduce the
mismatch between features in the source and the target
domains.

Spectral feature alignment (SFA) [11] splits the feature
space into two mutually exclusive groups: domain inde-
pendent features (pivots), and domain specific features
(all other features). Next, a bipartite graph is constructed
between the two groups where the edge connecting
a domain specific and a domain independent feature
is weighted by the number of different documents in
which the corresponding two features co-occur. Spectral
clustering is performed on this bipartite graph to create a



4

lower dimensional representation in which co-occurring
domain specific and domain independent features are
represented by the same set of lower dimensional fea-
tures. Similarly to SCL, SFA trains a binary logistic
regression model in this lower-dimensional space using
the labeled documents from the source domain. Both
SFA and SCL are similar to our proposed method in that
first, a lower-dimensional feature representation is learnt,
and second a binary sentiment classifier is trained on
this embedded space. However, our proposed method is
different from SCL and SFA in that, we consider not only
the unlabeled data but also labeled data for the source
domain when constructing the representation. As we
later see in Section 6, this enables us to learn customised
representations that result in better performance on our
final task of cross-domain sentiment classification.

Bollegala et al. [14] created a Sentiment Sensitive
Thesaurus (SST) that lists words that express similar
sentiments in the source and target domains. For ex-
ample, SST created from the two domains books and
knives lists interesting as a related word for sharp. The
thesaurus is automatically created using a sentiment sen-
sitive asymmetric similarity measure that uses sentiment
labels in the source domain documents. Analogous to the
thesauri-based query expansion in information retrieval,
SST is used to expand the source domain feature vectors
by appending related features in the target domain. A
binary logistic regression classifier is trained using the
expanded feature vectors corresponding to the source
domain labeled documents. Unlike, SCL or SFA, SST
does not create lower-dimensional embeddings.

Glorot et al. [13] used stacked denoising autoencoders
to learn a mapping between source and target domain
feature spaces. Autoencoders are pre-trained using un-
labeled data from both domains, and the post-training
stage fits a binary classifier on top of the trained neu-
ral network. Bollegala [15] proposed an unsupervised
method to predict the distribution of a word across
domains. Specifically, source and target domain feature
representations are created for a set of pivots, and a mul-
tivariate regression model is trained using Partial Least
Squares Regression (PLSR). They evaluate their method
on cross-domain sentiment classification. However, this
method does not consider source domain labeled data
during the PLSR step, which makes the projection agnos-
tic to sentiment classification. In transfer learning [16],
we predict labels in the target domain different from that
in the source domain, whereas in domain adaptation, we
predict the same labels when the data distributions in the
two domains are different.

Unsupervised dimensionality reduction methods such
as the Latent Semantic Indexing (LSI) [17], Principle
Component Analysis (PCA) [18], and Locality Preserving
Projections (LLP) [19]–[21], generate lower-dimensional
embeddings of unlabeled data points. Supervised di-
mensionality reduction methods such as the Fischer Dis-
criminant Analysis (FDA) [22] considers the within and
cross-class scattering of data points, when creating lower-

dimensional embeddings. However, supervised dimen-
sionality reduction methods are prone to overfitting
when the number of labeled instances are small [23].
Semi-supervised dimensionality reduction methods [24],
[25] are proposed to overcome this problem by taking
into consideration the unlabeled data points. Our pro-
posed method can also be seen as an instance of semi-
supervised dimensionality reduction. Embedding learn-
ing is an active research field and we believe unsuper-
vised cross-domain sentiment classification can benefit
from this line of work in the future.

4 CROSS-DOMAIN SENTIMENT CLASSIFICA-
TION
Without loss of generality, we denote the source and the
target domains by A and B in the subsequent discussion.
As we describe later in Section 5, different methods
have been proposed for selecting a set of pivots from
a given pair of domains. Our proposed embedding
learning method is independent of the pivot selection
step and we assume that M pivots to be given. In our
experiments, the used pivot selection method is based on
the pointwise mutual information between a pivot and
a domain label so that words that are closely associated
with both the source and the target domains are selected.

We denote the pivots by {Ui}Mi=1. The pivots are
common features to both source and the target do-
mains and appear in both domains. However, the
word context around the same pivot under differ-
ent domains cannot be the same, thus, different fea-
ture vectors have to be used to characterise the same
pivot in different domains. For example, for the ith
pivot word, we represent it as a d-dimensional fea-

ture vector u
(A)
i =

[
u
(A)
i1 , u

(A)
i2 , . . . , u

(A)
id

]T
in domain

A, while an h-dimensional feature vector u
(B)
i =[

u
(B)
i1 , u

(B)
i2 , . . . , u

(B)
ih

]T
in domain B. These result in a

vector set
{
u
(A)
i

}M

i=1
in domain A and a set

{
u
(B)
i

}M

i=1
in domain B, which correspond to one M × d and
one M × h pivot feature matrices UA =

[
u
(A)
ij

]
and

UB =
[
u
(B)
ij

]
. In our experiment, unigrams and bigrams

from the documents with which a pivot Ui co-occurs are

extracted as features to obtain
{
u
(A)
i

}M

i=1
and

{
u
(B)
i

}M

i=1
.

The remaining words are non-pivot ones, which only
appear in one of the two domains. Within the same do-
main, we assume the documents are constructed follow-
ing the same word distributions, thus, non-pivot words
and the pivots are represented by the same unigram and
bigram features. Letting {Ai}MA

i=1 denote a total of MA

non-pivot words in domain A, each is represented by a d-
dimensional vector ai = [ai1, ai2, . . . , aid]

T , leading to the
vector set {ai}MA

i=1 and the corresponding MA×d feature
matrix A = [aij ]. Similarly, we use {Bi}MB

i=1 to denote the
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MB non-pivot words in domain B, each represented by
anh-dimensional vector bi = [bi1, bi2, . . . , bih]

T , leading
to the vector set {bi}MB

i=1 and the corresponding MB × h
feature matrix B = [bij ].

Given a document, we characterise it by both the piv-

ots and domain-specific non-pivot words. Let
{
D

(A)
i

}NA

i=1
to denote a total of NA document in domain A while{
D

(B)
i

}NB

i=1
the NB documents in domain B. The doc-

ument D(A)
i is modelled as a (M + MA)-dimensional

vector with its first M elements corresponding to the
frequencies (alternatively some salience scores such as
the tf-idf values) of the pivot words appearing in it and
the next MA elements to the frequencies (or scores) of the
non-pivot words. Similarly, a document D(B)

i in domain
B is modelled as a (M +MB)-dimensional vector with
its elements corresponding to the occurrence frequencies
(or scores) of the M pivots and MB non-pivot words
in this document. We use the NA × (M + MA) and
NB × (M + MB) feature matrices XA =

[
x
(A)
ij

]
, and

XB =
[
x
(B)
ij

]
to store feature vectors of the documents

in the two domains, where ij-th element of each matrix
(x(A)

ij and x
(B)
ij ) indicates the frequency (or score) of the

j-th word appearing in the i-th document.
Among the NA documents in domain A, let us

assume that there are NlA labeled and NuA unla-
beled ones, where NA = NlA + NuA. Different super-
scripts/subscripts are used to distinguish the two groups
(“lA” for labeled and “uA” for unlabeled ones), for
example, the NlA × (M + MA), and NuA × (M + MA)

feature matrices XlA, and XuA, where XT
A =

[
XT
lA,X

T
uA

]
.

Class information of the labeled documents is stored
in an NlA × c binary matrix Y = [yij ], where yij = 1
indicates that the i-th document belongs to the j-th class,
and yij = 0 otherwise. Note that in binary sentiment
classification we have only two classes: positive class and
the negative class.

To further explore the relationships between the doc-
uments from the two domains, the distributions of the
pivots under different domains, also how the word dis-
tribution affects the document distribution in the two do-
mains, we propose to generate a k-dimensional embed-
ding space Rk to map both the words {Ui}Mi=1, {Ai}MA

i=1

and {Bi}MB
i=1 and documents {D(A)

i }
NA
i=1 and {D(B)

i }NB
i=1 in

the same space according to the following three rules:

• Rule 1: The same pivot u
(A)
i and u

(B)
i should be

mapped as close as possible in Rk. This preserves
the word-based connection between the source and
the target domains.

• Rule 2: The friend closeness and enemy dispersion
[26] of the labeled documents in domain A should
be enhanced in Rk. This improves the class separa-
bility of documents in domain A.

• Rule 3: Within each domain, local geometry be-

tween documents, characterised by XA (or XB),
should be preserved in Rk. This captures the inher-
ent data structure within the source and target do-
mains, and prevents the generation of an overfitted
space to the small number of labeled documents.

The constructed embedding space preserves the local
connections between documents built upon the piv-
ots and non-pivot words within each domain (rule 3),
meanwhile it aligns the source and target domains by
matching the distributions of the pivots (rule 1). This
potentially enables the two structured spaces of source
and target to be connected together by the pivot words.
As a result, the enhancement of the class separation in
the source domain (rule 2) will be propagated to the tar-
get domain. This thus achieves unsupervised sentiment
classification in the target domain through the use of
supervised information in source domain enabled by the
cross-domain alignment driven by the pivot information.

4.1 Mapping Function
The main strategy of mapping the words and documents
to the space is to first compute the word embeddings,
and then derive the document embeddings based on the
word embeddings by considering the word occurrences.

Linear projection is assumed to transform the original
feature representation of words to their embedding pre-
sentation. Specifically, a d×k projection matrix PA is used
to map words in domain A to a k-dimensional embed-
ding space Rk, while a d×h projection matrix PB is used
to map words in domain B to the same embedding space.
Given in total M+MA words in domain A including the
M pivots appearing in both domains and MA non-pivot

words only appearing in domain A, we let
{
z̃
(A)
i

}M+MA

i=1
denote their corresponding word embeddings stored in
an (M+MA)×k embedding matrix Z̃A computed by the
linear projection mapping given as

Z̃
T

A =
[
PTAUT

A, PTAAT
]
. (1)

Similarly,
{
z̃
(B)
i

}M+MB

i=1
denotes the embeddings for

words in domain B, which results in an (M +MB) × k
embedding matrix Z̃B computed by

Z̃
T

B =
[
PTBUT

B , PTBBT
]
. (2)

Here, the pivots appear in both domains, thus possess
two sets of feature representations UA and UB . Sub-
sequently, they possess two sets of embedding repre-
sentations after being mapped from the two domains,
which are UAPA and UBPB . Later on, we will show that
according to rule 1 these two representations should be
as similar as possible in order to reach the alignment
between the two domains via pivots matching.

After computing the word embeddings
{
z̃
(A)
i

}M+MA

i=1

and
{
z̃
(B)
i

}M+MB

i=1
, it is straightforward to derive the
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TABLE 2: Summary of the main variables and quantities used in the proposed algorithm.

Variable name Range Description

{Ui}Mi=1 NA A set of M selected pivots appearing in both domains A and B.

{Ai}
MA
i=1 NA A set of MA non-pivot words only appearing in domain A.

{Bi}
MB
i=1 NA A set of MB non-pivot words only appearing in domain B.{

u
(A)
i

}M

i=1
Rd A set of d-dimensional feature vectors to characterise the M pivots in domain A, u(A)

i =
[
u
(A)
i1 , u

(A)
i2 , . . . , u

(A)
id

]T
.

{ai}
MA
i=1 Rd A set of d-dimensional feature vectors to characterise the MA non-pivot words in domain A, ai = [ai1, ai2, . . . , aid]

T .{
u

(B)
i

}M

i=1
Rh A set of h-dimensional feature vectors to characterise the M pivots in domain B, u(B)

i =
[
u
(B)
i1 , u

(B)
i2 , . . . , u

(B)
ih

]T
.

{bi}
MB
i=1 Rh A set of h-dimensional feature vectors to characterise the MB non-pivot words in domain B, bi = [bi1, bi2, . . . , bih]

T .

UA RM×d The pivot feature matrix in domain A, UA =
[
u
(A)
ij

]
.

A RMA×d The non-pivot feature matrix in domain A, A = [aij ].

UB RM×h The pivot feature matrix in domain B, UB =
[
u
(B)
ij

]
.

B RMB×h The non-pivot feature matrix in domain B, B = [bij ].{
D

(A)
i

}NA

i=1
NA A set of NA documents from domain A.{

D
(B)
i

}NB

i=1
NA A set of NB documents from domain B.

XlA RNlA×(M+MA) The feature matrix of labeled documents in domain A.

XuA RNuA×(M+MA) The feature matrix of unlabeled documents in domain A.

XA RNA×(M+MA) The feature matrix of all the documents in domain A, XT
A =

[
XT
lA, XT

uA

]
.

XB RNB×(M+MB) The feature matrix of all the documents in domain B.

Y RNlA×c The binary class matrix for the labeled documents in domain A.{
z̃
(A)
i

}M+MA

i=1
Rk The set of k-dimensional embeddings for words in domain A.{

z̃
(B)
i

}M+MB

i=1
Rk The set of k-dimensional embeddings for words in domain B.

PA Rd×k The projection matrix to map the d-dimensional words in domain A to the k-dimensional embedding space.

PB Rh×k The projection matrix to map the h-dimensional words in domain B to the k-dimensional embedding space.

Z̃A R(M+MA)×k The embedding matrix of words in domain A, Z̃
T

A =
[

PT
AUT

A, PT
AAT

]
.

Z̃B R(M+MB)×k The embedding matrix of words in domain B, Z̃
T

B =
[

PT
BUT

B , PT
BBT

]
.{

z
(A)
i

}NA

i=1
Rk The set of k-dimensional embeddings for documents in domain A.{

z
(lA)
i

}NlA

i=1
Rk The set of k-dimensional embeddings for the labeled documents in domain A.{

z
(uA)
i

}NuA

i=1
Rk The set of k-dimensional embeddings for the unlabeled documents in domain A.{

z
(B)
i

}NB

i=1
Rk The set of k-dimensional embeddings for documents in domain B.

ZA RNA×k The embedding matrix of documents in domain A, ZA = D−1(XA)XAZ̃A.

ZlA RNlA×k The embedding matrix of the labeled documents in domain A.

ZuA RNuA×k The embedding matrix of the unlabeled documents in domain A.

ZB RNB×k The embedding matrix of documents in domain B, ZB = D−1(XB)XB Z̃B .

SlA RNlA×NlA The similarity matrix between the labeled documents in domain A, computed based on XlA.

SuA RNuA×NuA The similarity matrix between the unlabeled documents in domain A, computed based on XuA.

SB RNB×NB The similarity matrix between all the documents in domain B, computed based on XB .
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embedding representations for documents. For example,
it is possible to view the embedding vector of each docu-
ment as a weighted sum of the embedding vectors of all
the words that appear in the corresponding document.
The occurrence frequencies (or scores) can be used as
the summation weights to determine the contribution

level of the words. Letting
{
z
(A)
i

}NA

i=1
and

{
z
(B)
i

}NB

i=1
denote the document embeddings in domains A and B,
respectively, we thus have

z
(A)
i =

∑M+MA

j=1 x
(A)
ij z̃

(A)
j∑M+MA

j=1 x
(A)
ij

, i = 1, 2, . . . , NA, (3)

z
(B)
i =

∑M+MB

j=1 x
(B)
ij z̃

(B)
j∑M+MB

j=1 x
(B)
ij

, i = 1, 2, . . . , NB . (4)

Letting ZA and ZB denote the NA × k and NB × k
document embedding matrices, the above formulations
can be converted to their matrix presentation, given as

ZA = D−1(XA)XAZ̃A, (5)
ZB = D−1(XB)XBZ̃B , (6)

where the notation D−1(X) denotes a diagonal matrix
computed from an input matrix X = [xij ] with its i-th

diagonal element obtained by
(∑

j xij

)−1
.

Although a document is represented using the words
that appear in that document, we are free to select
any feature representation for the individual words.
Specifically, the d features we use in the domain A (or
the h features we use in the domain B) need not be
words limited to the domain and can be, for example,
bigrams of words or part-of-speech tags of the words.
The document feature space and the word feature spaces
are connected via Eqs. (3) and (4). This de-coupling
of document and word representations allows us to
incorporate semantically rich word representation such
as the recently developed neural word embeddings [27],
[28]. For the simplicity of the presentation, we limit the
discussion in this paper to lexical features (unigrams and
bigrams of words) and differ a study of rich semantic
feature spaces to future work.

4.2 Model Construction
According to Eqs. (1), (2), (5) and (6), the computation
of the word and document embeddings relies on the
computation of the two projection matrices of PA and
PB based on the input matrices of UA, UB , A, B, XA,
XB and Y. In the following, we show how to derive PA

and PB by solving an optimisation problem constructed
based on the three rules.

4.2.1 Rule 1 based Modelling
Rule 1 aims at mapping the two embedded points u

(A)
i

and u
(B)
i that represent the same pivot but are mapped

from different domains as close as possible in Rk. This
is equivalent to minimising the difference between their

corresponding embedding vectors
∥∥∥z̃(A)

i − z̃
(B)
i

∥∥∥2
2
, where

‖ · ‖2 denotes the l2-norm and it is equivalent to the
Euclidean norm if the input is a vector. To minimise
such differences for all the pivots, the following objective
function can be constructed

M∑
i=1

∥∥∥z̃(A)
i − z̃

(B)
i

∥∥∥2
2
. (7)

Incorporating the linear projection mapping as in Eqs.
(1) and (2) for pivots, Eq. (7) can be expressed in matrix
representation of

tr

([
UAPA
UBPB

]T
L
([

0M×M IM×M
IM×M 0M×M

])[
UAPA
UBPB

])
. (8)

The notation IM×M denotes an identity matrix of size
M , 0M×N denotes an M × N matrix with all elements
equal to 0, and 1M×N denotes an M × N matrix with
all elements equal to one. In the above equation, L(W)
defines the Laplacian matrix of an input square matrix
of size M , given as L(W) = D(W) −W, where D(W) is
a diagonal matrix formed by the vector W1M×1.

Defining a (d+ h)× k matrix P so that PT = [PT
A,P

T
B ],

and a 2M × (d+ h) matrix U1 so that

U1 =

[
UA 0M×h

0M×d UB

]
, (9)

we have [
UAPA
UBPB

]
= U1P. (10)

Eq. (8) can then be formulated as a function of P as

O1(P) = tr
(

PTUT
1 L(W1)U1P

)
, (11)

where the weight matrix is defined as

W1 =

[
0M×M IM×M
IM×M 0M×M

]
. (12)

4.2.2 Rule 2 based Modelling

Rule 2 aims at minimising the friend closeness (CF )
while maximising the enemy dispersion (DE) in the
embedded space Rk for the labeled documents in domain
A. Here, we refer documents that are within a certain
neighbourhood of each other and belong to the same
class as friends, while documents that are neighbours of
each other but belong to different classes as enemies.

To identify the relationships between the NlA labeled
documents in terms of friend or enemy, we first construct
an NlA × NlA similarity matrix SlA =

[
s
(lA)
ij

]
based on

their original feature representation stored in the NlA ×
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(M +MA) matrix XlA =
[
x
(lA)
ij

]
, for example, using the

cosine similarity measure:

s
(lA)
ij =

∑M+MA

k=1 x
(lA)
ik x

(lA)
jk√∑M+MA

k=1

∣∣∣x(lA)
ik

∣∣∣2√∑M+MA

k=1

∣∣∣x(lA)
jk

∣∣∣2 (13)

Then, an NlA×NlA graph is constructed by applying K-
nearest-neighbour (K-NN) search to SlA. Its correspond-
ing adjacencies {δij}NlA

i,j=1 are functions of the neighbour
number K, similarity matrix SlA and the class matrix Y,
defined as follows

δij(K,SlA,Y) =


+1, if x(lA)

i andx
(lA)
j are from the same

class and are undirected K-NNs,
−1, if x(lA)

i andx
(lA)
j are from different

classes and are undirected K-NNs,
0, otherwise.

(14)
The adjacency δij = 1 indicates the ith and jth docu-
ments are friends of each other, δij = −1 for enemy, while
δij = 0 implies neither friend nor enemy relationship
exists between the two documents.

Next, we define the following measures of friend
closeness CF and and enemy dispersion DE to evaluate
the overall distances between the friend and enemy
documents in the embedded space Rk, respectively,

CF =
∑

δij(K,SlA,Y)=1

s
(lA)
ij

∥∥∥z(lA)
i − z

(lA)
j

∥∥∥2 , (15)

DE =
∑

δij(K,SlA,Y)=−1

s
(lA)
ij

∥∥∥z(lA)
i − z

(lA)
j

∥∥∥2 , (16)

where
{
z
(lA)
i

}NlA

i=1
denotes the set of embedding vectors

of the labeled documents in domain A. The above two
quantities assess the overall distances weighted by the
similarity values between friends and between enemies.
According to rule 2, CF is to be minimised while DE

to be maximised. This enables more similar friends with
larger weights to be forced to come even closer in the
embedded space to improve within-class compactness,
while more similar enemies with larger weights that
are very likely to be boundary points to be forced to
stay further away from each other in the embedded
space to improve the overall between-class separation.
We maximise DE − λ1CF to achieve the minimisation
of CF and the maximisation of DE , where the weight
parameter λ1 > 0 controls the balance between DE and
CF . After incorporating Eqs. (15) and (16), DE − λ1CF

can be written as

tr
(

ZT
lAL(W2)ZlA

)
, (17)

where ZlA denotes the embedding matrix of the labeled
documents in domain A. Each element of the NlA×NlA

weight matrix W2 =
[
w

(2)
ij

]
is defined as

w
(2)
ij =


−λ1s

(lA)
ij , if x(lA)

i andx
(lA)
j are from the same

class and are undirected K-NNs,
s
(lA)
ij , if x(lA)

i andx
(lA)
j are from different

classes and are undirected K-NNs,
0, otherwise.

(18)
After incorporating Eq. (5) to compute the embeddings

for the labeled documents and Eq. (1) to compute the
projection-based word embeddings, Eq. (17) becomes

tr
(

PTAF2PA
)
, (19)

where the d× d matrix F2 is given as

F2 = [UT
A,A

T ]XTlAD−1(XlA)L(W2)D−1(XlA)XlA
[

UA

A

]
. (20)

Introducing PT = [PT
A,P

T
B ], Eq. (19) becomes

O2(P) = tr
(

PTQ2P
)
, (21)

where Q2 is a square matrix of size d+ h defined as

Q2 =

[
F2 0d×h

0h×d 0h×h

]
. (22)

4.2.3 Rule 3 based Modelling
Rule 3 aims at preserving the local neighbour geometry
between the unlabeled documents in the source domain
A and between the documents in the target domain B.
This is a standard task in spectral embedding [29], [30]
achieved by minimising a penalised distance error that
pulls neighbour points closer in the embedded space.
Two error functions are constructed for the two domains,
respectively, of which one is

errorA =

NuA∑
i,j=1

w
(3,uA)
ij

∥∥∥z(uA)
i − z

(uA)
j

∥∥∥2 , (23)

where
{
z
(uA)
i

}NuA

i=1
denotes the set of embedding vectors

of the unlabeled documents in domain A, the other is

errorB =

NB∑
i,j=1

w
(3,B)
ij

∥∥∥z(B)
i − z

(B)
j

∥∥∥2 , (24)

defined for all the documents in domain B. The penal-
ising weights w

(3,uA)
ij and w

(3,B)
ij represent degrees of

similarity between documents in the two domains.
Letting the NuA×NuA and NB×NB proximity weight

matrices W(A)
3 =

[
w

(3,uA)
ij

]
and W(B)

3 =
[
w

(3,B)
ij

]
model

the local neighbour geometry between documents, they
can be constructed as follows: First, we construct an
NuA × NuA similarity matrix SuA =

[
s
(uA)
ij

]
between

the unlabeled documents in domain A based on their
original feature representation XuA using the same cosine
similarity measure as shown in Eq. (13). Similarly, an
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NB×NB similarity matrix SB =
[
s
(B)
ij

]
is constructed for

all the documents in domain B by applying the cosine
similarity measure over XB . Then, W(uA)

3 and W(B) are
constructed from SuA and SB respectively by applying
the K-NN search such that

w
(3,uA)
ij =

{
s
(uA)
ij , if x(uA)

i andx
(uA)
j are undirected K-NNs,

0, otherwise,
(25)

and

w
(3,B)
ij =

{
s
(B)
ij , if x(B)

i andx
(B)
j are undirected K-NNs,

0, otherwise.
(26)

Simultaneous minimisation of both errors in Eqs. (23)
and (24) leads to the minimisation of the following joint
error function of

errorA + λ2errorB (27)

= tr
(

ZT
uAL

(
W(uA)

3

)
ZuA

)
+ λ2tr

(
ZT
BL
(

W(B)
3

)
ZB

)
,

where the weight parameter λ2 > 0 balances between
the geometry measures in the two domains. After in-
corporating Eqs. (5) and (6) for computing document
embeddings and Eqs. (1) and (2) for computing word
embeddings, Eq. (27) can be written as

tr
(

PTAF(A)
3 PA

)
+ λ2tr

(
PTBF(B)

3 PB
)
. (28)

Here, the d× d matrix F(A)
3 and the h×h matrix F(B)

3 are
computed by

F(A)
3 =

[
UT
A,A

T
]

XTuAD−1(XuA)L
(

W(A)
3

)
D−1(XuA)XuA

[
UA

A

]
,

F(B)
3 = [UT

B ,B
T ]XTBD−1(XB)L

(
W(B)

3

)
D−1(XB)XB

[
UB

B

]
.

Introducing PT =
[
PT
A,P

T
B

]
, Eq. (28) becomes

O3(P) = tr
(

PTQ3P
)
, (29)

where Q3 is a composite square matrix of size d + h
defined as

Q3 =

[
F(A)
3 0d×h

0h×d λ2F(B)
3

]
. (30)

4.2.4 Joint Optimisation
In order to simultaneously apply all the three rules in the
embedded space, we construct a composite optimisation
model that minimises O1 and O3, also maximises O2,
which leads to the following maximisation objective
function:

O(P) =w2O2(P)− w1O1(P)− w3O3(P) (31)

= tr
(

PT QP
)
, (32)

where the objective weights 0 ≤ w1, w2, w3 ≤ modify the
contributions of the three objective functions of O1, O2

and O3, and w1 + w2 + w3 = 1. The (d + h) × (d + h)
objective matrix Q is computed by

Q =

[
w2F2 − w3F(A)

3 0d×h
0h×d −w3λ2F(B)

3

]
− w1UT

1 L(W1)U1. (33)

Usually, when multi-dimensional embeddings are
computed, it is important to ensure independence be-
tween different embedding dimensions to maximise the
information offered by the multi-dimensional space and
to avoid redundancy between dimensions. In our case,
each embedding dimension is induced by a projection
vector corresponding to one column of the projection
matrix P. Thus, we enforce the orthogonality constraint
PT P = Ik×k to achieve linear independence between
different dimensions. Subsequently, this leads to the
following constrained optimisation problem:

max
PT P=Ik×k

tr
(

PT QP
)
. (34)

The optimal solution of this constrained optimisation
problem corresponds to the top k eigenvectors of Q with
the largest k eigenvalues [30].

The computational complexity of the proposed method
is dominated by the eigenvalue decomposition of the ma-
trix Q. The computational complexity of the eigenvalue
decomposition of an n × n symmetric square matrix Q
is in general O(n3) [31]. However, we do not require the
full eigenvalue decomposition of Q, but only the largest
k eigenvectors. Truncated methods that require only
O(kn2) can be used in this case [32]. Moreover, for larger
matrices, stochastic methods that approximately com-
pute eigenvalue decomposition inO(n2 log(k)+2nk2) can
be used [33]. We note that the computational complexity
of the proposed method is comparable to SCL or SFA
which are based on respectively SVD and eigenvalue
decomposition.

4.3 Model Training
The above model involves the computation of three
square similarity matrices of SlA, SuA and SB with the
corresponding sizes of NlA, NuA and NB . It also involves
the K-NN search for each of the three similarity matrices.
In the end, it requires the eigen-decomposition of the
(d+h)×(d+h) matrix Q, which is not necessarily sparse.
Five parameters are to be set, including the neighbour
number K, and four weight parameters λ1, λ2 > 0 and
0 < w1, w2 < 1 (another weight parameter can be com-
puted by w3 = 1−w1−w2). If the three similarity matrices
of SlA, SuA and SB are computed by measures involving
extra parameters, e.g., polynomial kernel rather than
cosine similarity, more parameters would need to be
selected.

For a given source and target domain pair, we find
the neighbourhood sizes K for the similarity matrices
using held-out data that we set aside from the training
dataset. The effect of K and the dimensionality of the
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embedding on the performance of the proposed method
is empirically studied in Section 6. We consider the
unweighted combinations of the different objective func-
tions. Specifically, we set one or more variables among
w1, w2, and w3 to zero, and measure the performance of
domain adaptation. An extensive study of all possible
combinations of weights is beyond the scope of this
work. Because of its popularity and simplicity, we use
cosine similarity as the similarity measure for finding
nearest neighbours when creating the matrices SlA, SuA

and SB . We use NumPy1, a numeric Python library,
for eigenvalue decomposition. The source code and the
data used in the paper will be publicly released. Lo-
gistic regression with l2 regularisation is used as the
binary sentiment classifier. We use the implementation
of logistic regression in scikit-learn2 in our experiments.
l2 regularisation coefficient is set to 1 throughout the
experiments described in the paper.

5 DATASET

We use the cross-domain sentiment classification dataset3

prepared by Blitzer et al. [10] in our experiments. This
dataset consists of Amazon product reviews for four
different product types: books, DVDs, electronics and
kitchen appliances. Each review is assigned with a rating
(0-5 stars), a reviewer name and location, a product
name, a review title and date, and the review text.
Reviews with rating > 3 are labeled as positive, whereas
those with rating < 3 are labeled as negative. For each
domain, there are 1000 positive and 1000 negative ex-
amples, the same balanced composition as the polarity
dataset constructed by Pang et al. [34]. The dataset also
contains on average 17, 547 unlabeled reviews for the
four domains. Following previous work, we randomly
select 800 positive and 800 negative labeled reviews
from each domain as training instances (total number of
training instances are 1600×4 = 6400), and the remainder
is used for testing (total number of test instances are
400× 4 = 1600).

Mutual information between a feature and the labeled
reviews have been used in [10] for selecting pivots.
However, in unsupervised domain adaptation we have
labeled data only for the source domain. Therefore, there
is no guarantee that we will obtain pivots that behave
similarly in both the source as well as the target domains
by this method. Moreover, source domain labeled data
are only a fraction of all the data available for the
adaptation task. Co-occurrence counts and probability
estimates conducted using small datasets are likely to
be sparse and unreliable. To overcome these issues, we
use a pointwise mutual information (PMI)-based pivot
selection method to select pivots that consider both
source and the target domains. Specifically, we measure

1. www.numpy.org
2. http://scikit-learn.org/
3. http://www.cs.jhu.edu/∼mdredze/datasets/sentiment/

the PMI between a feature w in a domain and the label
(name) of that domain as follows,

PMI(w,Dl) =
p(w|Dl)
p(w)

= log

(
h(w,Dl)N
h(w)h(Dl)

)
. (35)

Here, Dl denotes the label (name) of the domain. For
example, for the books domain we consider book as the
domain label. h(w,Dl) is the total number of documents
in which w and Dl co-occurred, h(w) is the total num-
ber of documents in which w occur, and h(Dl) is the
total number of documents in which the domain label
Dl occur. N is the total number of documents in the
domain D. For a given source domain S and target
domain T , we sort features w in the descending order
of PMI(w,Sl) + PMI(w, Tl), and select the top ranked
features as pivots in the proposed method. Intuitively,
for a particular feature to get ranked high enough to
be selected as a pivot under this method, it must be
closely associated to both the source and the target
domains. Indeed, manual inspection of the pivots se-
lected for various pairs of domains reveal that the above-
mentioned procedure accurately selects pivots that are
domain independent.

6 EXPERIMENTS AND RESULTS
In our experiments, we select 500 pivots (ie. M = 500)
for each pair of domains. We select most co-occurring
1000 features (unigrams and bigrams) from each domain
to represent pivots (ie. d = h = 1000). Rules 2 and 3
have neighbourhoods (K) and combination coefficients
(λ1 and λ2) as parameters. We later discuss the effect of
parameters on each rule.

In Table 3, we show the classification accuracy on the
target domain reviews for the individual rules (denoted
by R1, R2, and R3), and their combinations (denoted by
+ signs) for different source domains. For succinctness
in Table 3, we denote the four domains books, DVDs,
electronics, and kitchen appliances respectively by letters B,
D, E, and K. We create 30 dimensional embeddings in all
those combinations. No Adapt baseline shows the level
of performance we would obtain if we use the classifier
trained on the source domain labeled documents without
any domain adaptation on the target domain. Therefore,
No Adapt can be considered as a lower-baseline that
denotes the level of performance we could expect if we
did not perform any domain adaptations.

We use the same set of 500 pivots we selected for the
proposed method as the domain independent features
required by SFA. The dimensionality of the embeddings
created by SFA is set to 30. SFA is considered as the
current state-of-the-art cross-domain sentiment classifica-
tion method. We use the same 500 pivots as used by the
proposed method and SFA to train linear pivot predictor
required by SCL. The dimensionality of the feature space
created by the SVD step in SCL is set to 30.4

4. We observed that the performance of SCL is largely unaffected
over a range of dimensionalities within [10, 100].

www.numpy.org
http://scikit-learn.org/
http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
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Although Amazon review dataset that we use in
this work has been used frequently in prior eval-
uations, the differences in pre-processing (lemmatisa-
tion, unigram/bigram extraction, pivot selection, feature
weighting, vector normalisation via l1/l2), differences
in train/test splits (different random splits), and dif-
ferences in classification algorithms used for sentiment
classification (SVM, logistic regression etc. and their
regularisation parameters) make direct comparisons of
results reported across different publications difficult.
Therefore, to conduct a fair comparison, we fix all those
settings across different methods, and evaluate under
the same conditions. We use the same feature space and
pivot set for all methods, and use a logistic regression
classifier with l2 regularisation coefficient set to 1.0 as
the sentiment classifier with all the methods compared
in Table 3. Because the set of pivots, dimensionality of the
embeddings created, and the binary sentiment classifier
trained are all equal among the different methods com-
pared in Table 3, the differences in performance reported
in Table 3 can be directly attributable to the embeddings
created by those methods.

For each pair of source and target domains in the
benchmark dataset, we show the best classification ac-
curacies obtained by a method on the target domain test
reviews in boldface in Table 3. As an upper baseline, we
train and test a sentiment classifier using target domain
data. Although this is not a domain adaptation setting,
it demonstrates the level of performance we can expect
to achieve if we had labeled data for the target domain.
The respective accuracies on the four domains are: books
(0.8010), electronics (0.8388), DVDs (0.7954), and kitchen
(0.8442). From Table 3 we see that out of the 12 pairs of
domains, some combination of the proposed embeddings
report the best results for 9 pairs of domains. Best results
are obtained by SFA, for the three domain pairs: E-B, K-
B, and D-K. However, the differences in performance
by the proposed method and SFA is not statistically
significant according to the binomial exact test under 0.05
confidence level.

Among the three rules we proposed, R1 performs
poorly on its own. Recall that R1 is concerned with
projecting pivots in the two domains into closer locations
in the embedded space. This rule is agnostic to sentiment
information available only in the labels assigned to the
source reviews. Therefore, it is not surprising that using
R1 alone results in poor performance. Comparatively, R2,
which attempts to enforce the label information available
in the source domain reviews performs better than R1
in all cases. This shows the importance of using label
information available for the final task (i.e. sentiment
classification), when performing the auxiliary tasks such
as embedding learning. R3 considers the target domain
unlabeled reviews which is the only source of informa-
tion regarding the target domain in which the trained
sentiment classifier will be ultimately evaluated upon.
Among R1, R2, and R3, we see that R3 reports the best
performance in all 12 domain pairs. This result demon-

strates the differences between the source and the target
domains, and the need for domain adaptation methods.
Simply considering all the data available in the source
domain (both labeled reviews and unlabeled reviews)
alone is insufficient to obtain good performances in the
target domain, and we must consider the target domain
reviews when creating embeddings.

Among the three pairwise combinations R1+R2,
R1+R3, and R2+R3, we see that by combining R1 which
performed poorly on its own with R3, we get better
results than when R1 is combined with R2. This trend
can be observed for all 12 domain pairs. Among all the
combinations we compare in Table 3, R2+R3 reports best
results for the most number of domain pairs (6 out of
12). Considering that R2 captures labeled information
for the source domain and R3 captures the geometry
in the target domain, the combination of the two rules
performing best in most cases supports our proposal
to use the labeled reviews for the source domain when
learning embeddings for domain adaptation.

The combination of the three rules R1+R2+R3 does not
surpass the best result obtained using only a single rule.
Note that the overall objective function given by Eq. 31 is
the linearly weighted sum of the three objective functions
corresponding to the three rules. There exist only a small
amount of source domain labeled reviews for training
(e.g. 400 for a pair of domains in the benchmark dataset),
compared to the large number of unlabeled reviews. Our
preliminary studies show that balancing the objective
functions by the number of documents or considering
different linear combinations of the objectives other than
the 0/1 combinations shown in Table 3 is insufficient to
produce a combination that consistently outperform the
best results obtained by any single rule. An extensive
study of the optimal combination of different rules is
beyond the scope of this work, and is differed to future
work.

An interesting observation in Table 3 is that domain
adaptation is not a symmetric process. For example,
when we adapt from the books domain to the kitchen do-
main, we obtain an accuracy of 0.7736 for the R1+R2+R3
approach, whereas the same for the reverse adaptation
task is as low as 0.6649. Selecting the correct source
domain to adapt to a given target domain is an important
decision. For example, if we would like to train a senti-
ment classifier for the kitchen domain, it is best to use elec-
tronics as the source domain. Considering that there are
many electronic appliances such as ovens, microwaves,
blenders, etc. that are used in the kitchen, we can expect
a high degree of similarity between the electronics and
kitchen domains, making it easier to adapt from electronics
domain to kitchen domain. Theoretical and empirical
studies have shown that the similarity between two
domains (e.g. measured using α divergence) is a factor
related to the ease of adaptation [35]. However, in prac-
tice, we encounter the situation that we have thousands
of source domains available and selecting the best source
domain to adapt to a given target domain remains a
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Fig. 1: Accuracy vs. the dimensionality of the embedding
for DVDs source and electronics target domains.

challenging task. Prior work on cross-domain sentiment
classification have been limited to pairwise adaptation
(e.g. one source domain to one target domain), except for
a notable few that use a collection of source domains [13],
[14]. In certain circumstances, adapting from a particular
source domain has shown to result in performance lower
than not adapting. This phenomenon is referred to as
negative transfer, and makes the task of finding suitable
source domains for adapting to a given target domain a
difficult one [36].

For rule 2, we study the effect of the two parameters
neighbourhood K for the k-NN step, and the parameter
λ1 that balances the influence between friend closeness
and enemy dispersion factors. Table 4 shows the clas-
sification accuracy for three target domains when the
books domain is used as the source. We experimented
with three values for the neighbourhood K (i.e.. 1, 5, 9),
and three values for λ1 (i.e. 0, 1, 10000). λ1 = 0 simulates
the scenario where we only consider enemy dispersion in
rule 2. On the other hand, λ1 = 10000 assigns a very high
emphasis on friend closeness, thereby effectively neglect-
ing the enemy dispersion. λ1 = 1 gives an equal weight
to enemy dispersion and friend closeness factors. From
Table 4 we see that overall the classification accuracy on
target domain test reviews decreases when larger K val-
ues are used when constructing the k-NN graph. Recall
that in Rule 2, we are considering labeled documents. Be-
cause documents with low similarity scores get attached
when the neighbourhood size is increased, it results in
poor embeddings. This result shows that it is sufficient to
consider smaller K values in practice for Rule 2. Smaller
K values are desirable from a computational efficiency
point of view because smaller K values often result in
sparser k-NN graphs, which can be conveniently stored
and processed even when the number of source domain
labeled documents increases. On the other hand, the

parameter λ1 has a lesser influence compared to the
neighbourhood K. In fact, when we consider smaller
neighbourhoods such as when K = 1, we see that λ1
does not affect the performance of the proposed method.
Although for the limited availability of space we showed
the results when the books domain is used as the source
in Table 4, similar trends were observed for all domain
pairs in the benchmark dataset.

Table 5 shows the effect of the neighbourhood size K
and parameter λ2 on the performance of Rule 3. Value
ranges for K and λ2 are set to the same ranges as for
Rule 2 in Table 4. We see that increasing the size of the
neighbourhood K reduces performance when λ2 = 0
or 1. However, the trend is reversed for λ2 = 10000.
Recall that λ2 is the relative weight assigned to the
objective function corresponding to the target domain
unlabeled reviews. Higher λ2 values emphasise preserv-
ing the geometry in the target domain’s feature space
compared to that in the source domain. Therefore, when
we increase the neighbourhood size in the λ2 = 10000
setting we are considering similar documents from the
target domain in which we will be applying the trained
sentiment classifier eventually. Therefore, increasing the
neighbourhood size in Rule 3 has a positive effect when
target domain reviews are considered.

We study the relationship between the dimensionality
of the embeddings we learn using the proposed method
and the accuracy obtained on the target domain. The
performance obtained using DVDs as the source domain
and electronics as the target domain is shown in Figure 1.
From Figure 1 we see that the performances of rules 2
and 3 reach a peak at 30 dimensions and then decreases
and saturates. Embeddings with smaller dimensionalities
are insufficient to capture the information in the source
and target domains. On the other hand, we must have
a sufficiently abstract representation of data in order to
be able to transfer the knowledge we learn from one
domain to another. We believe the trade-off of these two
factors appears as a peak point in Figure 1. Although
the exact value of the peak point shown in Figure 1
differs from one pair of domains to another, similar
trends could be observed for all domain pairs. Rule 1
shows almost 0.5 classification accuracy irrespective of
the dimensionality of the embeddings used. This result
shows that we cannot learn a good sentiment classifier
by using an embedding learnt purely from the pivots.

We show the nearest neighbours measured by the co-
sine similarity (shown within parenthesis) in the source
and the target domains for the embeddings learnt from
the three rules for some randomly selected words in Ta-
ble 6. Bigrams are denoted by a + sign. We see that in the
original space the nearest neighbours are not necessarily
semantically related to the target word. However, in the
embeddings learnt using rules 1, 2, and 3 contain some
related features such as fact of a story, bad points, read and
remember. Note that rule 2 considers features only for the
source domain, thus the target domain projection matrix
learnt using rule 2 is always zero (i.e. Pb = 0). Therefore,
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TABLE 3: Classification accuracies on the target domain when different source domains are used.

source target R1 R2 R3 R1+R2 R1+R3 R2+R3 R1+R2+R3 No Adapt SFA SCL
B D 0.5063 0.6879 0.7212 0.5063 0.6828 0.7212 0.6828 0.6086 0.6445 0.6803
B E 0.5012 0.6826 0.7027 0.5012 0.7027 0.7027 0.7027 0.6221 0.6625 0.6675
B K 0.5 0.7060 0.7311 0.5 0.7336 0.7311 0.7336 0.6532 0.7161 0.6834
E B 0.5012 0.6221 0.6246 0.5012 0.6246 0.6246 0.6246 0.5919 0.6474 0.6045
E K 0.5 0.7914 0.8065 0.5 0.8040 0.8065 0.8040 0.6658 0.6256 0.7462
E D 0.5063 0.6675 0.6828 0.5063 0.6828 0.6828 0.6828 0.5831 0.6266 0.6164
K B 0.5037 0.6448 0.6649 0.5037 0.6649 0.6649 0.6649 0.6246 0.6675 0.6599
K E 0.5012 0.7405 0.7405 0.5012 0.7380 0.7405 0.7380 0.6675 0.6096 0.7053
K D 0.5063 0.6803 0.7007 0.5063 0.7007 0.7007 0.7007 0.6138 0.6419 0.6496
D B 0.5012 0.7052 0.7002 0.7103 0.7002 0.7002 0.7002 0.5994 0.5919 0.6398
D E 0.5012 0.6952 0.7002 0.5012 0.7052 0.7002 0.7052 0.6347 0.6877 0.6474
D K 0.5 0.7236 0.7311 0.5 0.7311 0.7311 0.7311 0.6859 0.7362 0.6683

Average 0.5024 0.6956 0.7089 0.5198 0.7059 0.7089 0.7059 0.6291 0.6547 0.6604

TABLE 4: Effect of the neigbourhood size K and the
parameter λ1 on the classification accuracy of rule 2.

K λ1 B-D B-E B-K
1 0 0.6879 0.6725 0.6758
5 0 0.6445 0.6498 0.6783
9 0 0.6393 0.5919 0.5979
1 1 0.6879 0.6725 0.6758
5 1 0.6572 0.6397 0.6356
9 1 0.6496 0.6523 0.6231
1 10000 0.6879 0.6725 0.6758
5 10000 0.6521 0.6372 0.6306
9 10000 0.6521 0.6221 0.6206

TABLE 5: Effect of the neighbourhood size K and the
parameter λ2 on the classification accuracy of Rule 3.

K λ2 B-D B-E B-K
1 0 0.6828 0.6675 0.6758
5 0 0.6393 0.6246 0.6080
9 0 0.6675 0.6070 0.63316
1 1 0.6828 0.6675 0.6758
5 1 0.6803 0.6523 0.6783
9 1 0.6803 0.6397 0.6809
1 10000 0.6828 0.6675 0.6758
5 10000 0.7109 0.6826 0.7211
9 10000 0.7109 0.6826 0.7211

no neighbours in the target domain are listed for rule 2
in Table 6.

7 CONCLUSION

We considered three constraints that must be satisfied
by an embedding that can be used to train a cross-
domain sentiment classification method. We evaluated
the performance of the individual constraints as well as
their combinations using a benchmark dataset for cross-
domain sentiment classification. Our experimental re-
sults show that some of the combinations of the proposed
constraints obtain results that are statistically comparable
to the current state-of-the-art methods for cross-domain

sentiment classification. Unlike previously proposed em-
bedding learning approaches for cross-domain sentiment
classification, our proposed method uses the label infor-
mation available for the source domain reviews, thereby
learning embeddings that are sensitive to the final task
of application, which is sentiment classification.
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