
Learning to Compose Relational 
Embeddings in Knowledge Graphs

Wenye Chen, Huda Hakami, Danushka Bollegala



Relation Composition
• Knowledge Graphs (KG) (e.g. Freebase) represent knowledge in the form of 

relations between entities  

• (Tim Cook, CEO-of, Apple) 

• However, KGs are sparse, incomplete, not up to date. Many relations are missing! 

• Knowledge Graph Embedding (KGE) methods (e.g. TransE, TransG, RESCAL, 
CompIE, RelWalk,…) can learn representations for the relations that exist in the 
KGE. 

• We propose Relation Composition as a novel task, where we are given pre-
trained relation embeddings for the relations that exist in the KG and must 
predict representations for relations by composing those. 

• country_of_!lm  + currency_of_country  → currency_of_!lm_budget 

• (The Italian Job, UK), (UK, GBP) → (The Italian Job, GBP)
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Why is this useful?
• KGE methods can only learn representations for the relations that 

exist in the training data. 

• Although they can predict links (relations) that currently do not 
exist between two entities in the KG, these links are limited to the 
relation types that exist in the training data 

• They cannot predict representations for previously unseen (not 
in training data) relations that are encountered during test time. 

• Relation composition can be seen as an instance of zero-shot 
learning setting, where the representations we compute do not 
correspond to any of the relations we have in the training data.  

• A compositional semantic approach for relation representations!
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Relation Compositional Operators
• We will learn compositional operators that take pre-trained relation representations for two 

known relations as the input and return a representation for their composition as the output. 

• We consider/propose both unsupervised and supervised relation compositional operators for 
this purpose. 

• We do not need entity embeddings (or any information regarding the entities between which 
relations hold) 

• We can use relation embeddings learnt using any KGE method. 

• As a running example, we use relation embeddings learnt using RelWalk [Bollegala+, 
2019], which represents relations using matrices and report superior performance on 
KGE benchmarks. 

• Benefits of considering relation composition for RelWalk embeddings 

• Composing matrices is more computationally complex. 

• It is more general than composing vectorial relation embeddings (diagonal matrices can 
be used to represent vectors)
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Background — RelWalk 
• relational walk (RelWalk) [Bollegala+ 2019] is a method for learning KGEs by performing a random walk over 

a given KG. 

• The generative probabilities of head (h) and tail (t) entities for a relation R are modelled using two matrices 
R1 and R2.  

•  

•  

• We proved the following concentration lemma for such a random walk

p(h |R, c) =
1
Zc

exp(h⊤R1c)

p(t |R, c′!) =
1
Zc

exp(t⊤R2c′!)

5

Concentration Lemma 
If the entity embedding vectors satisfy the Bayesian prior , where  is from the 
spherical Gaussian distribution, and  is a scalar random variable, which is always bounded by 
a constant , then the entire ensemble of entity embeddings satisfies that 
                                     

for , and , where  is the number of words and  is 

the partition function for  given by .

v = sv̂ v̂
s

κ
Prc∼C[(1 − ϵz)Z ≤ Zc ≤ (1 + ϵz)Z] ≥ 1 − δ

ϵz = 𝒪(1/ n) δ = exp(−Ω(log2 n)) n ≥ d Zc
c !

h∈ℰ

exp(h⊤R1c)



Background — RelWalk
• Under the conditions where the concentration lemma is satisfied, 

we proved Theorem 1, which relates KGEs to the connections in the 
KG. 

• We can then learn KGEs from a given KG such that the relationship 
given by Theorem 1 is empirically satisfied.
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Theorem 1 
Suppose that the entity and relation embeddings satisfy the concentration lemma. Then, 
we have  

 

for , where .

log p(h, t |R) =
∥R⊤

1 h + R⊤
2 t∥2

2

2d
− 2 log Z ± ϵ

ϵ = 𝒪(1/ n) + 𝒪̃(1/d) Z = Zc = Zc′!



Relation Compositional Operators

• Let us assume that two relations RA and RB jointly imply a third 
relation RC. We denote this fact by  

• Moreover, let relation embeddings for RA and RB be respectively 
(R1A, R2A) and (R1B, R2B). For simplicity, let us assume all relation 
embeddings are in . The predicted relation embeddings 

 for RC are computed using two relation compositional 

operators  such that: 

•  

•

RA ∧ RB ⇒ RC

ℝd×d

(R̂C
1 , R̂C

2 )
(ϕ1, ϕ2)

ϕ1 : RA
1, RA

2, RB
1, RB

2 → R̂C
1

ϕ2 : RA
1, RA

2, RB
1, RB

2 → R̂C
2
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Unsupervised Relation Composition
• Addition 

•  

•  

• Matrix Product 

•  

•  

• Hadamard Product 

•  

•

RA
1 + RB

1 = R̂C
1

RA
2 + RB

2 = R̂C
2

RA
1RB

1 = R̂C
1

RA
2RB

2 = R̂C
2

RA
1 ⊙ RB

1 = R̂C
1

RA
2 ⊙ RB

2 = R̂C
2
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Supervised Relation Composition
• Limitations of the unsupervised relation compositional operators 

• Cannot be fine-tuned for the relations in a given KG. 

• Considers R1 and R2 independently and cannot model their interactions. 

• We can use a non-linear neural network as a learnable operator!

9



Training settings
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Hadamard Product

R A
1 ! R B

1 = öR
C
1 (12)

R A
2 ! R B

2 = öR
C
2 (13)

Here, ! denotes the Hadamard (elementwise) product of two matrices. Unlike
the matrix product, both addition and Hadamard product are commutative.

3.2 Supervised Relation Composition

The unsupervised compositional operators described in subsection 3.1 are not
guaranteed to correctly predict the embeddings because they cannot be tuned
to the relations in a given KG. Moreover, each unsupervised operator considers
either one of R 1 or R 2, and do not model their possible interactions. There-
fore, we propose to learn twosupervised relation composition operators with
shared parameters. The parameter sharing enables the two operators to learn a
consistent relation embedding.

Di!erent models can be used to express! 1 and ! 2. In this paper, we use
feed-forward neural nets, which are universal approximators [7] for this purpose.
We Þrst linearise the input d " d matrix relation embeddings to d2-dimensional
vector embeddings via a linearisation operatorL. We then concatenate the four
linearised relational embeddingsL(R A

1 ), L(R A
2 ), L(R B

1 ), L(R B
2 ) and feed it to the

neural net. The weight and bias for the Þrst layer are respectivelyW # R4d2 ! m

and b # Rm , wherem is the number of neurones in the hidden layer. A nonlinear
activation function, f is applied at the hidden layer. In our experiments, we
used tanh as the activation function. The weight and bias for the output layer,
respectively U # Rm ! 2d2

and b" # R2d2
, are chosen such that by appropriately

splitting the output into two parts and applying the inverse mapping of the

linearisation, we can predict öR
C
1 and öR

C
2 . Denoting the concatenation by$ and

inverse linearisation by L# 1, we can write the predicted embeddings forrC as
follows:

x = L(R A
1 ) $ L(R A

2 ) $ L(R B
1 ) $ L(R B

2 ) (14)

h = f (W x + b) (15)

y = U h + b" (16)

öR
C
1 = L# 1y :d2 (17)

öR
C
2 = L# 1y d2 : (18)

Using a training set of relational tuples { (RA , RB , RC )} , where RA %RB &
RC and their RelWalk embeddings, using Adam [10], we Þnd the network pa-
rameters that minimise the squared Frobenius norm given in (19).

L (W , U , b, b") =
!
!
!
!
!
!R C

1 ' öR
C
1

!
!
!
!
!
!
2

2
+

!
!
!
!
!
!R C

2 ' öR
C
2

!
!
!
!
!
!
2

2
(19)

Forward-pass

Loss function
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Hadamard Product

RA
1 ! RB

1 = R̂
C

1 (12)

RA
2 ! RB

2 = R̂
C

2 (13)

Here, ! denotes the Hadamard (elementwise) product of two matrices. Unlike
the matrix product, both addition and Hadamard product are commutative.

3.2 Supervised Relation Composition

The unsupervised compositional operators described in subsection 3.1 are not
guaranteed to correctly predict the embeddings because they cannot be tuned
to the relations in a given KG. Moreover, each unsupervised operator considers
either one of R1 or R2, and do not model their possible interactions. There-
fore, we propose to learn two supervised relation composition operators with
shared parameters. The parameter sharing enables the two operators to learn a
consistent relation embedding.

Di!erent models can be used to express �1 and �2. In this paper, we use
feed-forward neural nets, which are universal approximators [7] for this purpose.
We first linearise the input d " d matrix relation embeddings to d

2-dimensional
vector embeddings via a linearisation operator L. We then concatenate the four
linearised relational embeddings L(RA

1 ),L(RA
2 ),L(RB

1 ),L(RB
2 ) and feed it to the

neural net. The weight and bias for the first layer are respectively W # R4d2⇥m

and b # Rm, where m is the number of neurones in the hidden layer. A nonlinear
activation function, f is applied at the hidden layer. In our experiments, we
used tanh as the activation function. The weight and bias for the output layer,
respectively U # Rm⇥2d2

and b0 # R2d2

, are chosen such that by appropriately
splitting the output into two parts and applying the inverse mapping of the

linearisation, we can predict R̂
C

1 and R̂
C

2 . Denoting the concatenation by $ and
inverse linearisation by L�1, we can write the predicted embeddings for rC as
follows:

x = L(RA
1 ) $ L(RA

2 ) $ L(RB
1 ) $ L(RB

2 ) (14)

h = f(Wx + b) (15)

y = Uh + b0 (16)

R̂
C

1 = L�1y:d2 (17)

R̂
C

2 = L�1yd2: (18)

Using a training set of relational tuples { (RA, RB , RC)} , where RA %RB &
RC and their RelWalk embeddings, using Adam [10], we find the network pa-
rameters that minimise the squared Frobenius norm given in (19).

L(W,U, b, b0) =
���
���RC

1 ' R̂
C

1

���
���
2

2
+
���
���RC

2 ' R̂
C

2

���
���
2

2
(19)

• Learn relational embeddings for d = 20, 50, and 100 from Freebase 15k-237 dataset 
using RelWalk.  

• This dataset contains 237 relation types for 14541 entities. 
• Train, test and validation parts of this dataset contain respectively 544230, 40932 and 

35070 triples. 
• To preserve the asymmetry property for relations, we consider that each relation R< in 

the relation set has its inverse R>, so that for each triple (h, R<, t) in the KG we regard     
(t, R>, h) is also in the KG.



Evaluation Dataset
• We use the relation composition (RC) dataset created by Takahashi+ [ACL 2018] 

from FB15-23k as follows. 

• For a relation R, the content set  C(R) is defined as the set of (h,t) pairs such 
that (h, R, t) is a fact in the KG. 

• Likewise,  is defined as the set of (h,t) pairs such that (h, RA → RB, 
t) is a path in the KG. 

•  is considered as a compositional constraint if their content sets 
are similar 

• i.e.  and the Jaccard similarity between 
 and  is greater than 0.4 

• 154 compositional constraints are listed in this RC dataset 

• We perform 5-fold cross-validation on the RC dataset

C(RA ∧ RB)

RA ∧ RB ⇒ RC

|C(RA ∧ RB) ∩ C(RC) | ≥ 50
C(RA ∧ RB) C(RC)
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Evaluation — Relation Composition

• Relation Composition Task 

• Given two relations RA and RB, we predict the embedding for 
their composition, . We then find the closest test relation RL 
for the predicted embedding according to 

•  

• We model this as a ranking task and use Mean Rank (MR), Mean 
Reciprocal Rank (MRR) and Hits@10 to measure the accuracy of 
the composition.

R̂C

d(RL, R̂C) = ∥RL
1 − R̂C

1 ∥F + ∥RL
2 − R̂C

2 ∥F
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Results — Relation Composition
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4.2 Relation Composition

Let us assume that the composition of the two relationsRA and RB is the
relation RC . Moreover, let us denote the pre-trained RelWalk embeddings for a
relation Rx to be R x

1 and R x
2 , wherex ! { A, B, C } . We will denote the composed

embedding forRC by öR
C
1 and öR

C
2 .

Following Takahashi et al. [22], we rank the test relationsRL by its similarity
to öRC , the composed version ofRC using the distance function,d(RL , öRC ), given
by (20).

d(RL , öRC ) =
!
!
!
!
!
!R L

1 " öR
C
1

!
!
!
!
!
!
F

+
!
!
!
!
!
!R L

2 " öR
C
2

!
!
!
!
!
!
F

(20)

If the RC is ranked higher for öRC , then it is considered better. We use Mean Rank
(MR), Mean Reciprocal Rank (MRR) and Hits@10 to measure the accuracy of
the composition.

Table 1 presents the average performance of relation compositions using 5-
folds cross validation on RC compositional constraints. We consider the 474
relation types in FB15K-474 for this evaluation. Lower MR indicates better per-
formance. As can be observed, the supervised relation composition achieves the
best results for MR, MRR and Hits@10 with signiÞcant improvements over the
unsupervised compositional operators. In fact, MR, MRR and Hits@10 results
for the unsupervised operators are close to the random baseline.

Table 1. Performance in the relation composition task.

d=20 d=50 d=100

Method MR MRR Hits@10 MR MRR Hits@10 MR MRR Hits@10

Supervised Relation Composition 75 0.412 0.581 64 0.390 0.729 49 0.308 0.703
Addition 238 0.010 0.012 250 0.008 0.019 247 0.007 0
Matrix Product 225 0.018 0.032 233 0.012 0.025 231 0.010 0.019
Hadamard Product 215 0.020 0.051 192 0.037 0.051 209 0.016 0.032

4.3 Triple ClassiÞcation

To evaluate the e!ectiveness of the learnt operator for generating composed re-
lation embeddings, we consider the triple classiÞcation task using the composed
embeddings forRC . Triple classiÞcation task is originally proposed by Socher et
al. [20], and aims to predict whether a triple (h, R, t ) is a valid triple or not given
entity and relation embeddings and a scoring function that map the embeddings
to a conÞdence score. SpeciÞcally, in this paper, we use the embeddings learnt by
RelWalk for the entities and the relations in FB15k-474 and the joint probability
p(h, R, t ) given by Theorem 1 to determine whether a relationR exists between

• Supervised relation composition achieves the best results for MR, MRR and 
Hits@10 with significant improvements over the unsupervised relational 
compositional operators. 

• Hadamard product is the best among unsupervised relation compositional 
operators. 

• However, the performance of unsupervised operators are close to the 
random baseline, which picks a relation type uniformly at random from the 
test relation types.



Evaluation — Triple Classification
• Triple Classification Task 

• Given a triple (h,R,t), predict whether it is True (a fact in the KG) or False (not). 

• A binary classification task 

• We use p(h,R,t) computed according to Theorem 1 to determine whether (h,R,t) is True or 
False. 

• Positive triples 

• Triples that actually appear in the training dataset 

• Negative triples 

• Random perturbation of positive triples to create pseudo-negative triples. For 
example, given (h,R,t) we replace t with t’ to create a negative triple (h,R,t’) that does 
not appear in the set of training triples. 

• 5-fold cross-validation is performed on the RC dataset to find a threshold on the 
probability to predict positive/negative triples.
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Results — Triple Classification

• Across the relational compositional operators and for different 
embedding dimensionalities, the proposed supervised relational 
composition operator achieves the best accuracy.
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two given entities h and t. We need positive and negative triples for classifica-
tion. The negative triples are generated by randomly corrupting entities of the
positive examples. For example, for a test triple (h,R, t), we consider (h,R, t

0)
as a negative example where t

0 is sampled from all entities that appear in the
corresponding argument in the entire KG.

We perform 5 folds cross-validation on RC compositional constraints. Once
the proposed supervised relation composition is learnt using a training set, we
perform triple classification for those triples in FB15K-474 testing set that are
connected by the relation types in the test compositional constraints of RC.
We evaluate the performance using the accuracy which is the percentage of the
correctly classified test triples. We use the validation set to find a threshold ✓

for each test relation such that if p(h,R, t) > ✓ , the relation (h,R, t) holds,
otherwise we consider it as a negative triple.

The performance of the supervised and unsupervised relational compositional
operators for triple classification is shown in Table 2. Across the relational com-
positional operators and for di↵erent dimensionalities, the proposed supervised
relational composition method achieves the best accuracy for this task. Despite
increasing the dimensionality of relation embeddings from 20 to 100 leading to
a complex model with a large number of parameters to be tuned using a small
set of compositional constraints as in RC, the trained operator shows better
performance in all cases.

Table 2. Triple classification accuracy for the di↵erent relational compositional oper-
ators.

Method d=20 d=50 d=100

Supervised Relation Composition 77.55 77.73 77.62
Addition 68.9 70.44 69.45
Matrix Product 67.6 65.24 75.71
Hadamard Product 58.44 63.01 70.94

5 Conclusion

In this paper, we addressed the problem of composing pre-trained relation em-
beddings in KGs. Given a set of compositional constraints over relations in the
form RA ^ RB ) RC , our proposed method learns a supervised operator that
maps the relation embeddings of two relation to a new relation embedding. The
learnt operator can be used to infer relation embeddings for rare or unseen rela-
tion types. Evaluating the predicted relation embeddings for triple classification
task indicates the e↵ectiveness of the proposed relation composition method.

Accuracy for triple classification



Conclusions
• We proposed a novel task — relation composition to predict embeddings 

for relations that can be composed using the pre-trained embeddings for 
the existing relation types in a KG. 

• We compared unsupervised and supervised (modelled as a non-linear 
neural network) for this purpose. 

• Supervised relation composition operator outperforms its unsupervised 
counterparts in relation composition and triple classification tasks. 

• Code: https://github.com/Bollegala/RelComp 

• Future work 

• Compositions involving more than two relations! 

• Multi-hop composition!!!
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