Dimensionality Reduction

COMP 527 Data Mining
Danushka Bollegala

& LIVERPOOL

Outline

e Problems with high dimensional data
e Dimensionality Reduction Methods
e SingularValue Decomposition (SVD)

e Principal Component Analysis (PCA)

Problems in High Dimensions

o Curse of dimensionality

o We need exponentially large number of data
points to cover a high dimensional space

ZEQ‘

’
’
¢ i
]
|
- e --*
’ ’
’ ’
2
’
2 0

Problems in High Dimensions

e Data Sparseness

e Although we have a large feature space (lots of
dimensions to the data), we only observe a
small number of non-zero features in any
Instance

e This was the case for texts (in particular with the
bag-of-words model)

Problems in High Dimensions

e Qverfitting

e Given n train data points, we can come up with an n-dimensional
(n-th order) polynomial that passes through all those data points.

e Butitis very unlikely that it will fit well for the test data points

Problems in High Dimensions

e Time consuming (time complexity is large)

e Consider computing cosine similarity between
two n dimensional vectors, when n increases.

e Memory issues (space complexity is large)

e Storing high dimensional dense vectors can be
problematic when

o the dimensionality of the vectors is large

e there are lots of vectors (instances) to store

Solution

¢ Dimensionality Reduction

e Tryto project the original vectors to a lower
dimensional space L

e What constraints do we have
e Tryto minimise the error due to the projection

e If XandY are neighbours in the original space, then
they must also be neighbours in the projected space

e Try to retain salient/important/principal dimensions as
much as possible and remove the non-salient/
unimportant/auxiliary dimensions as much as possible

7

Eigenvalue Decomposition

e Linear Algebra Revision
e Eigenvalues and Eigenvectors of a Square Matrix
e AX =AX
e X is the eigenvector of A corresponding to the eigenvalue A

e Compute the eigenvalues and eigenvectors of the following
matrix

Singular Value Decomposition

e Eigenvalue decomposition can be performed only for square matrices.
e SingularValue Decomposition (SVD) is a operation that can be applied to any matrix
o M=UXVT

e U and V are unitary (perpendicular) matrices, 2 is a diagonal matrix (singular
values of M are diagonal elements of).

e Columns of UandV are perpendicular. UTU=1and VTV =1.

- 5 — - 7 —> - —» - —
! }
T 4
> 4 i
M = U

r T

Snayperskaya Vintovka sistem'y Dragunova obraz’tsa
(Dragunov Sniper Rifle or SVD)

1 1 1 0 0 14 0
33 3 0 0 42 0
4 4400 2060 124 0 58 58 58 0 0
> 0 o 0 0 =170 0 0 95 o o o0 .71 .71
00 0 4 4 0 .60 ‘ '
00 0 5 5 0 .75

0002 2| | 0 .30

M U > VT

To perform SVD in python (scipy) use scipy.linalg.svd

http://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svd.html

http://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svd.html

Dimensionality Reduction with SVD

e Procedure

e Perform SVD on M. Retain the top-k (largest)

singular values in X and set the remainder to
Zero.

e |et us denote the diagonal matrix produced by
the previous step by 2

e The k-dimensional approximation (projection)
Mg of M is then given by

o My=U 2V

Reason

e The k-dimensional matrix Mk that minimises the
Frobenius norm ||M-M|| is given by the matrix M
computed as described in the previous slide

e Frobenius norm

e Extension of the vector L2 norm to matrices

e Frobenius norm of a matrix M is given by \/Zl‘“

Proof

e By performing SVD on M, let
e M=PQRT

2
mi; = >: >:piqug7°gj HMH2 — ZZ(mw)Q — S: S:(S: S:pz'que’/“ej)

14

k
2
(Z Zpikq.lcérﬁj) — S: S: S: S:pikq,’fﬁrﬁjpinqnm’rmj
kK £ _ kK ¢ m n

IMIP=D "33 3 Y pikrerejPintnmm;
) 9 k ¢ n o m

HMH — >4 >4 >4 >4pszkkrkjpannnrnj
) 9 E n
Much easier proof exists if you use
9 the trace of a matrix and its properties
IMIP =" qrnrhj GenTes

J k

HMHQ — Z(Qkk)Q | 4

k

Proof using Trace

M =PQR'
HMH3 = tr(M ' M)

Z
I

DN N NN NN N
|

< 4 g g o
—

RQP'PQR ")

r(
r(RQQR")
(RQ°R')
(

(Q

r(R'RQ?)
’)

=

SVD and Approximation Error

Ok

Ok+1

On

If My is the matrix with (k+1) and above
singular values set to zero
(k-th rank approximation)

_0_1

Ok

SVD and Approximation error

e Then, the approximation error, ||M - My||2 becomes

IM —M||>=tr | P R'
Ok+1

M — My||" =031+ ...+ 0,

If we want to minimize this error, then we must select the largest
singular values for the first |...k positions!

Applications of SVD

e [Latent Semantic Analysis

e words vs. document matrix

e Find similar words (query expansion)

e Find similar documents (similarity search)
e Recommendation Systems

e users vs. items/products

e Recommend similar products to users

Two uses of SVD

e SVD for dimensionality reduction
e Compute M =U2VT

e Getthe largest k singular values from 2 to
construct a diagonal matrix 2

e Get the corresponding left singular vectors from
U to construct a matrix Uy

e Reduce the number of columns of M to k to
construct the matrix M

o M= Uik

Two uses of SVD

e SVD to increase the density of a matrix

Compute M = Ux VT

Get the largest k singular values from X to construct a diagonal matrix 2

Get the corresponding left singular vectors from U to construct a matrix
Uk

Get the corresponding right singular vectors from U to construct a
matrix Vi

Reproduce a dense version of M, M
o M=U2 VKT
e Lesser number of non-zero values in Mg

e However, we end up with negative values in My even though Mis a
matrix with all non-negative values!

20

Principal Component Analysis

e We would like to project our high dimensional data
points to a low dimensional space by preserving the
geometric properties in the original space as much
as possible

e Two ways to do this:
e Maximise the variance of the projected data

e Linear projection that minimises the average
projection cost (e.g. sum of squared Euclidean
distance between original and projected points)

e PCA s also known as the Karhunen-Loéve Transform

21

ldea

Ln
minimise

squared error \

(V5]

First principal
component

22

Maximum Variance Formulation

e Problem

e Given D dimensional N data points {x,}, where
n=1,...,N, we must project those into an M<D
dimensional space

e Misgiven

e Let us consider the case M=1 (one-dimensional
projection)

e The projection direction is given by the unit vector u;

o Ui'u;=1

~ T
® Lpn — Ul Lp

23

Maximum Variance Formulation

e Mean of the data points
N
Tr = % Z Ty
n=1

e Variance of the projected data

| N
— E (ulTa:n—ulTi)Q — ' Suq
N 1

n—

*An unbiased estimator of variance uses (N-1) instead of N.
But this does not matter because we are only interested in the maximisation of the variance.

e S isthe covariance matrix given by
N

1 . T
S = NZ(:L'” —x)(x, —)

Maximum Variance Formulation

e \We must maximize the variance subjected to the
normalization constraint on u;

Lagrange multiplier method

L(’u,l,)\1) = ’U,lTS’U,l —+)\1(1 — ulTul)

OL(uq, A1) — 0 * Su; = AU

8u1

T : :
u; Suyp = A U, is the eigenvector of
S that corresponds to
the largest eigenvalue of S

This is variance!

25

PCA Algorithm

® INPUT

® D dimensional N data points {xn}, where
n=1,...,N

® Dimensionality M

@® Procedure
® Compute the covariance matrix S for the dataset

® Compute the first M eigenvectors of S

® return the computed eigenvectors

26

A Word on Complexity

Eigenvalue decomposition of a DxD matrix is O(D3)

However, we only need the largest M eigenvectors
of S

This can be computed efficiently using truncated

methods such as the power-iteration method in
O(MD?2)

Reference

e Golub &Van Loan, Matrix Computations, John
Hopkins University Press, 1996.

27

Computational Remarks (1/2)

e The following methods for computing PCA are
equivalent (i.e. gives the same principal components)

1. Compute the sum of squared Euclidean distance
between original and projected points and
minimise it.

2. Compute the pairwise squared Euclidean distance
between projected points and maximise it.

3. Compute the variance of the projected points on
the projection line and maximise it.

28

Computational Remarks (2/2)

e Letusshow that (2) and (3) are equivalent

(3) = Z(wzu —z'u

)2

Using (2) for computing
PCA is usually a bad
idea when the dataset is
large because the
pairwise combinations
grow quadratically with
the number of data
points in the dataset.
But could be helpful for
small examples because
we do not have to
compute the mean.

29

References

e Mining of Massive Datasets

e http://infolab.stanford.edu/~ullman/
mmds.html#original

e Chapter 11 on Dimensionality Reduction (SVD)
e Pattern Recognition and Machine Learning

e Section 1.1 (overfitting)

e Section 1.4 (curse of dimensionality)

e Page 561 onwards: PCA

30

http://infolab.stanford.edu/~ullman/mmds.html#original
http://infolab.stanford.edu/~ullman/mmds.html#original

