
Perceptron
Danushka Bollegala

Bio-inspired model

• Perceptron is a bio-inspired algorithm that
tries to mimic a single neuron

• We simply multiply each input (feature) by a
weight and check whether this weighted sum
(activation) is greater than a threshold.

• If so, then we “fire” the neuron (i.e. a decision
is made based on the activation)

2

A single neuron

3

a

x1 x2
x3 x4

x5

w1
w2 w3 w4

w5

a = w1x1+w2x2+w3x3+w4x4+w5x5activation (score) =

if a > θ then
 output = 1
else
 output = 0

If the activation is greater than a
predefined threshold, then the
neuron fires.

Bias

• Often we need to adjust a fixed shift from zero, if the
“interesting” region happens to be far from the origin.

• We adjust the previous model by including a bias
term b as follows

4

a = b+
DX

i=1

wdxd

Notational trick

• By introducing a feature that is always ON (i.e.
x0 = 1 for all instances), we can squeeze the bias
term b into the weight vector by setting w0 = b

5

a =
DX

i=0

wdxd = w

>
x

This is more “elegant” as we can write the activation as
the inner-product between the weight vector and the
feature vector. However, we should keep in mind that
bias term still appears in the model.

Perceptron

• Consider only one training instance at a time

• online learning

• k-NN considers ALL instances (batch learning)

• Learn only if we make a mistake when we
classify using the current weight vector.
Otherwise, we do not make adjustments to the
weight vector

• Error-driven learning

6

7

D
ra

ft:
D

o
N

ot
D

ist
rib

ut
e

the perceptron 39

Algorithm 5 PerceptronTrain(D, MaxIter)
1: wd 0, for all d = 1 . . . D // initialize weights
2: b 0 // initialize bias
3: for iter = 1 . . . MaxIter do
4: for all (x,y) 2 D do
5: a ÂD

d=1 wd xd + b // compute activation for this example
6: if ya 0 then
7: wd wd + yxd, for all d = 1 . . . D // update weights
8: b b + y // update bias
9: end if

10: end for
11: end for
12: return w0, w1, . . . , wD, b

Algorithm 6 PerceptronTest(w0, w1, . . . , wD, b, x̂)
1: a ÂD

d=1 wd x̂d + b // compute activation for the test example
2: return sign(a)

that instead of considering the entire data set at the same time, it only
ever looks at one example. It processes that example and then goes
on to the next one. Second, it is error driven. This means that, so
long as it is doing well, it doesn’t bother updating its parameters.

The algorithm maintains a “guess” at good parameters (weights
and bias) as it runs. It processes one example at a time. For a given
example, it makes a prediction. It checks to see if this prediction
is correct (recall that this is training data, so we have access to true
labels). If the prediction is correct, it does nothing. Only when the
prediction is incorrect does it change its parameters, and it changes
them in such a way that it would do better on this example next
time around. It then goes on to the next example. Once it hits the
last example in the training set, it loops back around for a specified
number of iterations.

The training algorithm for the perceptron is shown in Algo-
rithm 3.2 and the corresponding prediction algorithm is shown in
Algorithm 3.2. There is one “trick” in the training algorithm, which
probably seems silly, but will be useful later. It is in line 6, when we
check to see if we want to make an update or not. We want to make
an update if the current prediction (just sign(a)) is incorrect. The
trick is to multiply the true label y by the activation a and compare
this against zero. Since the label y is either +1 or �1, you just need
to realize that ya is positive whenever a and y have the same sign.
In other words, the product ya is positive if the current prediction is
correct. It is very very important to check

ya 0 rather than ya < 0. Why?The particular form of update for the perceptron is quite simple.
The weight wd is increased by yxd and the bias is increased by y. The

slide credit: CIML (Daume III)

Detecting errors
• In Line 6 of PerceptronTrain code we have

• ya <= 0

• If the current instance is positive (y = 1), we should
have a positive activation (a > 0) in order to have a
correct prediction

• If the current instance is negative (y = -1), we should
have a negative activation (a < 0) in order to have a
correct prediction

• In both cases ya > 0.

• Therefore, if ya <= 0 then we have a misclassification
8

Update rule — Intuitive Explanation

• Perceptron update rule is

• w = w + yx

• If we incorrectly classify a positive instance as negative

• We should have a higher (more positive) activation to avoid this

• We should increase wTx

• Therefore, we should ADD the current instance to the weight vector

• If we incorrectly classify a negative instance as positive

• We should have a lower (more negative) activation to avoid this

• We should decrease wTx

• Therefore, we should DEDUCT the current instance from the weight
vector

9

Update rule — Math Explanation

10

D
ra

ft:
D

o
N

ot
D

ist
rib

ut
e

40 a course in machine learning

goal of the update is to adjust the parameters so that they are “bet-
ter” for the current example. In other words, if we saw this example
twice in a row, we should do a better job the second time around.

To see why this particular update achieves this, consider the fol-
lowing scenario. We have some current set of parameters w1, . . . , wD, b.
We observe an example (x, y). For simplicity, suppose this is a posi-
tive example, so y = +1. We compute an activation a, and make an
error. Namely, a < 0. We now update our weights and bias. Let’s call
the new weights w0

1, . . . , w0
D, b0. Suppose we observe the same exam-

ple again and need to compute a new activation a0. We proceed by a
little algebra:

a0 =
D

Â
d=1

w0
dxd + b0 (3.3)

=
D

Â
d=1

(wd + xd)xd + (b + 1) (3.4)

=
D

Â
d=1

wdxd + b +
D

Â
d=1

xdxd + 1 (3.5)

= a +
D

Â
d=1

x2
d + 1 > a (3.6)

So the difference between the old activation a and the new activa-
tion a0 is Âd x2

d + 1. But x2
d � 0, since it’s squared. So this value is

always at least one. Thus, the new activation is always at least the old
activation plus one. Since this was a positive example, we have suc-
cessfully moved the activation in the proper direction. (Though note
that there’s no guarantee that we will correctly classify this point the
second, third or even fourth time around!) This analysis hold for the case pos-

itive examples (y = +1). It should
also hold for negative examples.
Work it out.

Figure 3.3: training and test error via
early stopping

The only hyperparameter of the perceptron algorithm is MaxIter,
the number of passes to make over the training data. If we make
many many passes over the training data, then the algorithm is likely
to overfit. (This would be like studying too long for an exam and just
confusing yourself.) On the other hand, going over the data only
one time might lead to underfitting. This is shown experimentally in
Figure 3.3. The x-axis shows the number of passes over the data and
the y-axis shows the training error and the test error. As you can see,
there is a “sweet spot” at which test performance begins to degrade
due to overfitting.

One aspect of the perceptron algorithm that is left underspecified
is line 4, which says: loop over all the training examples. The natural
implementation of this would be to loop over them in a constant
order. The is actually a bad idea.

Consider what the perceptron algorithm would do on a data set
that consisted of 500 positive examples followed by 500 negative

If the misclassified instance
is a positive one, then
after we update using
w = w + x,
the new activation a’ is
greater than the old
activation a.

Quiz 1

• Show that the analysis in the previous slide holds
when y = -1 (i.e. we misclassified a negative instance)

11

Danushka

Danushka

Danushka

Danushka

Danushka

Danushka

Danushka

Danushka

Danushka

Danushka

Danushka

Danushka

Danushka

Things to remember
• There is no guarantee that we will correctly

classify a misclassified instance in the next
round.

• We have simply increased/decreased the
activation but this adjustment might not be
sufficient. We might need to do more
aggressive adjustments

• There are algorithms that enforce such
requirements explicitly such as the Passive
Aggressive Classifier (not discussed here)

12

Ordering of instances

• Ordering training instances randomly within
each iteration produces good results in
practice

• Showing only all the positives first and all the
negatives next is a bad idea

13

Hyperplane
• The decision in perceptron is made depending on

wTx > 0 or wTx <= 0

• Therefore, wTx = 0 is the critical region (decision
boundary)

• wTx = 0 defines a hyperplane

• Example:

• In 2D space we have w1x1 + w2x2 = 0 (ignoring the bias
term), which is a straight line through the origin.

• In N dimensional space this is an (N-1) dimensional
hyperplane

14

Geometric Interpretation of Hyperplane

15

weight vector w

hyperplane defined by the
weight vector is perpendicular
to the weight vector

wTx = 0

Geometric interpretation

16

O

w
x (+1)

The angle between the current weight vector w
and the positive instance x is greater than 90o.
Therefore, wTx < 0, and this instance is going to
 get misclassified as negative.

Geometric interpretation

17

O

w
x (+1)

The new weight vector w’ is the addition of w + x
according to the perceptron update rule. It lies
in between x and w. Notice that the angle between
w’ and x is less than 90o. Therefore, x will be classified
as positive by w’.

w’ = w + x

Vector algebra revision

18

Quiz 2
• Let x = (1, 0)T and y = (1, 1)T. Compute x+y and x-y using

the parallelogram approach described in the previous
slide.

19

Quiz 3

• Provide a geometric interpretation for the update rule in
Perceptron when a negative instance is mistaken to be positive.

20

Linear separability
• If a given set of positive and negative training

instances can be separated into those two groups
using a straight line (hyperplane), then we say that
the dataset is linearly separable.

21

Linearly separable

Remarks
• When a dataset is linearly separable, there can

exist more than one hyperplanes that separates
the dataset into positive/negative groups.

• In other words, the hyperplane that linearly
separates a linearly separable dataset might not
be unique.

• However, (by definition) if a dataset is non-
linearly separable, then there exist NO
hyperplane that separates the dataset into
positive/negative groups.

22

A non-linearly separable case

23

No matter how we draw straight lines, we cannot
separate the red instances from the blue instances

Negation handling in Sentiment Classification

24

ExcellentTerrible

NOT=1

NOT=-1

Mutually exclusive OR (XOR): XOR(A,B) = 1 only when
one of the two inputs is 1.

Further Remarks

• When a dataset is linearly separable it can be
proved that the perceptron will always find a
separating hyperplane!

• The final weight vector returned by the
Perceptron is more influenced by the final
training instances it sees.

• Take the average over all weight vectors
during the training (averaged perceptron
algorithm)

25

