Perceptron

Danushka Bollegala

Bio-inspired model

- Perceptron is a bio-inspired algorithm that tries to mimic a single neuron
- We simply multiply each input (feature) by a weight and check whether this weighted sum (activation) is greater than a threshold.
- If so, then we "fire" the neuron (i.e. a decision is made based on the activation)

A single neuron

activation (score) = $a = W_1X_{1+}W_2X_{2+}W_3X_{3+}W_4X_{4+}W_5X_5$

if a > θ then output = 1 else output = 0

If the activation is greater than a predefined threshold, then the neuron fires.

Bias

- Often we need to adjust a fixed *shift* from zero, if the "interesting" region happens to be far from the origin.
- We adjust the previous model by including a bias term b as follows

$$a = b + \sum_{i=1}^{D} w_d x_d$$

Notational trick

By introducing a feature that is always ON (i.e.
x₀ = 1 for all instances), we can squeeze the bias term b into the weight vector by setting w₀ = b

$$a = \sum_{i=0}^{D} w_d x_d = \boldsymbol{w}^\top \boldsymbol{x}$$

This is more "elegant" as we can write the activation as the inner-product between the weight vector and the feature vector. However, we should keep in mind that bias term still appears in the model.

Perceptron

- Consider only one training instance at a time
 - online learning
 - k-NN considers ALL instances (batch learning)
- Learn only if we make a mistake when we classify using the current weight vector.
 Otherwise, we do not make adjustments to the weight vector
 - Error-driven learning

Algorithm 5 PERCEPTRONTRAIN(**D**, *MaxIter*)

1:
$$w_d \leftarrow o$$
, for all $d = 1 \dots D$ // initialize weights2: $b \leftarrow o$ // initialize bias3:for iter = 1 \ldots MaxIter do4:for all $(x,y) \in D$ do5: $a \leftarrow \sum_{d=1}^{D} w_d x_d + b$ 6:if $ya \leq o$ then7: $w_d \leftarrow w_d + yx_d$, for all $d = 1 \dots D$ 8: $b \leftarrow b + y$ 9:end if10:end for11:end for12:return w_0, w_1, \dots, w_D, b

Algorithm 6 PERCEPTRONTEST $(w_0, w_1, \ldots, w_D, b, \hat{x})$

1: $a \leftarrow \sum_{d=1}^{D} w_d \hat{x}_d + b$ // compute activation for the test example 2: **return** SIGN(*a*)

slide credit: CIML (Daume III)

Detecting errors

- In Line 6 of PerceptronTrain code we have
 - ya <= 0
 - If the current instance is positive (y = 1), we should have a positive activation (a > 0) in order to have a correct prediction
 - If the current instance is negative (y = -1), we should have a negative activation (a < 0) in order to have a correct prediction
 - In both cases ya > 0.
 - Therefore, if ya <= 0 then we have a misclassification

Update rule — Intuitive Explanation

- Perceptron update rule is
 - **w** = **w** + y**x**
- If we incorrectly classify a positive instance as negative
 - We should have a higher (more positive) activation to avoid this
 - We should increase **w**^T**x**
 - Therefore, we should ADD the current instance to the weight vector
- If we incorrectly classify a negative instance as positive
 - We should have a lower (more negative) activation to avoid this
 - We should decrease **w**^T**x**
 - Therefore, we should DEDUCT the current instance from the weight vector

Update rule — Math Explanation

$$a' = \sum_{d=1}^{D} w'_{d} x_{d} + b'$$

= $\sum_{d=1}^{D} (w_{d} + x_{d}) x_{d} + (b+1)$
= $\sum_{d=1}^{D} w_{d} x_{d} + b + \sum_{d=1}^{D} x_{d} x_{d} + 1$
= $a + \sum_{d=1}^{D} x_{d}^{2} + 1 > a$

If the misclassified instance is a positive one, then after we update using $\mathbf{w} = \mathbf{w} + \mathbf{x}$, the new activation a' is

greater than the old activation a.

Quiz 1

 Show that the analysis in the previous slide holds when y = -1 (i.e. we misclassified a negative instance)

Things to remember

- There is no guarantee that we will correctly classify a misclassified instance in the next round.
- We have simply increased/decreased the activation but this adjustment might not be sufficient. We might need to do more aggressive adjustments
- There are algorithms that enforce such requirements explicitly such as the Passive Aggressive Classifier (not discussed here)

Ordering of instances

- Ordering training instances randomly within each iteration produces good results in practice
- Showing only all the positives first and all the negatives next is a bad idea

Hyperplane

- The decision in perceptron is made depending on w^Tx > 0 or w^Tx <= 0
- Therefore, w^Tx = 0 is the critical region (decision boundary)
- $\mathbf{w}^{\mathsf{T}}\mathbf{x} = 0$ defines a hyperplane
- Example:
 - In 2D space we have $w_1x_1 + w_2x_2 = 0$ (ignoring the bias term), which is a straight line through the origin.
 - In N dimensional space this is an (N-1) dimensional hyperplane

Geometric Interpretation of Hyperplane

Geometric interpretation **x**(+1) W \bigcirc The angle between the current weight vector w and the positive instance **x** is greater than 90°.

Therefore, **w**[⊤]**x** < 0, and this instance is going to get misclassified as negative.

Geometric interpretation

The new weight vector **w'** is the addition of **w** + **x** according to the perceptron update rule. It lies in between **x** and **w**. Notice that the angle between **w'** and **x** is less than 90°. Therefore, **x** will be classified as positive by **w'**.

Vector algebra revision

Quiz 2

 Let x = (1, 0)^T and y = (1, 1)^T. Compute x+y and x-y using the parallelogram approach described in the previous slide.

Quiz 3

• Provide a geometric interpretation for the update rule in Perceptron when a negative instance is mistaken to be positive.

Linear separability

 If a given set of positive and negative training instances can be separated into those two groups using a straight line (hyperplane), then we say that the dataset is *linearly separable*.

Remarks

- When a dataset is linearly separable, there can exist more than one hyperplanes that separates the dataset into positive/negative groups.
- In other words, the hyperplane that linearly separates a linearly separable dataset might not be unique.
- However, (by definition) if a dataset is nonlinearly separable, then there exist NO hyperplane that separates the dataset into positive/negative groups.

A non-linearly separable case

No matter how we draw straight lines, we cannot separate the red instances from the blue instances

Negation handling in Sentiment Classification

one of the two inputs is 1.

Further Remarks

- When a dataset is linearly separable it can be proved that the perceptron will always find a separating hyperplane!
- The final weight vector returned by the Perceptron is more influenced by the final training instances it sees.
 - Take the average over all weight vectors during the training (averaged perceptron algorithm)