Sequential Data

COMP 527 Data Mining Danushka Bollegala

Types of Sequential Data

- Natural Language Texts
 - Lexical or POS patterns that represent semantic relations between entities
 - *Tim Cook* is the CEO of *Apple*
 - X is the CEO of Y
- Microarray Data (gene expression data)
- Substrings, subsequences in a database
 - frequent item sets
- Time series analysis
 - Stock market prediction
 - Foreign exchange rate prediction

Sequential Pattern Mining

- The Problem
 - Given a database D, which stores strings consisting letters from some alphabet, find all substrings (or subsequences) in D that occur some pre-defined minimum value.

Substrings vs. Subsequences

- Substring of a string must have *consecutive* elements selected from the substring
 - note, ote, book, ebook are all substrings of the word notebook
- Subsequence of a string can have gaps (must be in the same relative order but need not be consecutive)
 - {n,t,k}, {n,o,b,k}, {n,o,o,k} are all subsequences of the word notebook

Quiz

- Give a word *w* of n unique letters (the maximum number of occurrence of any letter within the word is 1)
 - How many unique substrings can you generate from w?
 - How many unique subsequences can you generate from w?

Naive Algorithm

- Take each string *s* in the given database *D*
 - Generate all substrings/subsequences of s
- Count the occurrences of each subsequence generated in the previous step
- Select the substrings/subsequences that occur more than the pre-defined threshold

Problems with the Naive Algorithm

- The number of all substrings/subsequences can be very large in practice
 - storing all substrings will be challenging because of the memory requirements
 - counting the occurrences mean we need to update a hash table (eg. Python dictionary) with the substrings/subsequences as the keys
 - Time consuming
- Waste of resources and computation because we will be deleting most of the generated and stored substrings/ subsequences in the end.

Apriori Algorithm

- An efficient algorithm for extracting frequent itemsets from a database
- One of the most famous data mining algorithms
 - Proposed by Rakesh Agrawal@MSR in 1994
- Fast Algorithms for Mining Association Rules, R. Agrawal and R. Srikant, VLDB, 1994
- Apriori
 - Following from theoretical deduction rather than from observation or experience.

Terminology (1/3)

- Item
 - A product, entity, letter (any object for that matter) stored in a database
- Itemset
 - A set of items
- Transaction
 - A record in a database
- Example
 - John bought milk, sugar, and eggs when he went to the supermarket last Sunday.
 - Itemset = {milk, sugar, eggs}
 - Individual items = milk, sugar, eggs
 - Transaction: Because all three items above were purchased at the same time it can be considered as a single transaction.
- We can assign a transaction id (TID) for a transaction for the ease of reference
 - eg. 001, 002, etc.

Terminology

- Support (frequency) of an itemset
 - The number of different transactions in which a particular itemset appears as a subset is defined as the frequency of that itemset
 - If {milk, sugar} appears in 10 different transactions in the database, then 10 is the frequency of the itemset {milk, sugar}.
- The length of an itemset
 - The number of items in an itemset is defined as its length.
 - The length of {milk, sugar} is 2.

(2/3)

Terminology (3/3)

- minimum support
 - As we discussed previously, there can be a large number of subsets (itemsets) in a database.
 - Often we are interested in extracting itemsets that occur more than in a minimum number of transactions (with a minimum support)
- Large itemsets
 - Itemsets that have support larger than the minimum support are said to be *large itemsets*.
- Small itemsets
 - Itemsets that have support smaller than the minimum support are said to be *smaller itemsets*.
- large and small in the above definitions *does not* relate to the length of the itemset!

Apriori Property

- If S is a large itemset (with minimum support t), then any subset of S is also a large itemset (with minimum support t)
- Obvious???
 - This property, although obvious when someone mentions it, can be used to reduce the search space significantly, thereby speeding up the discovery of large itemsets

Apriori Algorithm

1	
$I_1 = \{large lemsets\}$	Natation
2.for (k=2; $L_{k-1} \neq \emptyset$; k++) do	INOLALION
3. $C_k = gen(L_{k-1})$	L _k length k itemset
4. forall transactions $t \in D$ do	C. condidate cot o
5. $C_t = subset(C_k, t)$	C _k candidate set o
6. forall candidates $c \in C_t$ do	iength k
7. c.count++	minsup: minimum
8. end	support
9. $L_k = \{c \in C_k \mid c.count \ge minsup\}$	a null cot
10. end	w nun set
11. return U_{k} L _k	

n

gen function (1/2)

- To generate the candidates of length k, we compute the join of all itemsets in L_{k-1}
 - We find two itemsets p and q that match upto length (k-2) and differ only at the (k-1)-th item and create an itemset of length k by including the matching component, (k-1)-th item of p and the (k-1)-th item of q.

insert into
$$C_k$$

select $p.item_1$, $p.item_2$, ..., $p.item_{k-1}$, $q.item_{k-1}$
from L_{k-1} p , L_{k-1} q
where $p.item_1 = q.item_1$, ..., $p.item_{k-2} = q.item_{k-2}$,
 $p.item_{k-1} < q.item_{k-1}$;

gen function (2/2)

 Filter out all candidates that are have (k-1) length subsets that are not in L_{k-1}

forall itemsets $c \in C_k$ do forall (k-1)-subsets s of c do if $(s \notin L_{k-1})$ then delete c from C_k ;

Example

TID	ltemset	minimum frequency = 2 minimum support = 2/6 = 0.33 items in an itemset are ordered in the alphabetical order to speed up the subset search. Quiz Find all large itemsets of the given database.
τ001	{I,2}	
T002	{2,3,4}	
Т003	{3,4}	
T004	{I,3}	
T005	{1,2,3,4}	
T006	{2,4}	

L_1

itemset	frequency	
	3 ≥ 2	$L_1 = \{\{1\}, \{2\}, \{3\}, \{4\}\}$
2	4 ≥ 2	$C_2 = \{\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}\}$
3	4 ≥ 2	
4	4 ≥ 2	

 L_2

ltemset	frequency	{1,4} is small.
{I,2}	2 ≥ 2	Therefore,
{I,3}	2 ≥2	$L_2 = \{\{1,2\}, \{1,3,\}, \{2,3\}, \{2,3\}, \{2,4\}, \{2,4\}, \{2,4\}, \{3,4\},$
{I,4}	l≱2	{∠,4}, {ऽ,4}}
{2,3}	2 ≥2	$C_3 = \{\{1,2,3\},\{2,3,4\}\}$
{2,4}	3 ≥2	
{3,4}	3 ≥2	

	L ₃	
		$C_3 = \{\{1,2,3\},\{2,3,4\}\}$
Itemset	frequency	Therefore, $L_3 = \{\{2,3,4\}\}$
{1,2,3}	1 ≱ 2	This is the only itemset and we cannot generate candidates of length 4.
{2,3,4}	2 ≱2	Thus, $c_4 = \emptyset$

Termination

- There are no itemsets for C₄
- Therefore the apriori algorithm terminates and returns the three itemsets
 - {1}, {2}, {3}, {4}, {1,2}, {1,3}, {2,3}, {2,4}, {3,4}, and {2,3,4} with minmum support 0.33 (2/6) for the given database of 6 transactions.