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Classification vs. Regression
• In classification 

• We are given a dataset {x, y} where each instance x must be classified into a pre-
defined finite (and often small) unordered set of classes y. We are required to 
learn a function f(x) that predicts the class y, given x. 

• Example 

• In binary classification f(x) = sgn(ax + b) ∈ [-1,+1] 

• In regression 

• We are given a dataset {x, y} where each instance x is associated with a real 
number y, and we are required to learn a function f(x) that predicts the value of y, 
given x. 

• Example 

• In linear regression f(x) = ax + b  

• Note that in “ordinal regression” we have integer values instead of real-values. 
There is a clear total ordering among the target values. Therefore, ordinal 
regression is “regression” and not “classification”.
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Classification Algorithms
• There are loads of them… 

• k-NN, Perceptron, Naive Bayes, logistic regression, 
SVM, neural networks, decision trees, random 
forests,… 

• When you learn new classification algorithms look 
for two main points 

• What is the loss function that the classifier 
minimizes? 

• What optimization method does it use for the 
minimization of the loss function?
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World’s simplest classifier!
• Given a training dataset Dtrain of N instances 

{x,y}, simply “remember” the entire N instance 
in the memory (or hard-disk) 

• memory-based learning 

• When we want to classify a test (previously 
unseen, not in Dtrain) instance x*, we would 
simply check whether x* is in Dtrain 

• if x* ∈ Dtrain the return the label of x*  

• otherwise make a random guess
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Quiz 1

• What is the problem with the memory-based 
learner described in the previous slide?
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k-Nearest Neighbour Classifier

1. Find the k closest (nearest) instances 
(neighbours) to the test instance 

2. Find the majority label among those nearest 
neighbours 

3. The majority label in the nearest neighbours is 
predicted to the test instance
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Example
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5-NN – �nd 5 closest to black point, 3 blue and 2 red, so 
predict blue 
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Measuring similarity/distance

• Various distance/similarity measures can be 
used 

• Cosine similarity 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Quiz 2

• Let x = (1, 0, -1)T and y = (-1, 1, 0)T. Compute 
the cosine similarity between the two vectors x 
and y.
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Euclidean Distance

• Euclidean distance between two vectors x and 
y is defined as follows
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Quiz 3

• Let x = (1, 0, -1)T and y = (-1, 1, 0)T. Compute 
the Euclidean distance between the two 
vectors x and y.
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Manhattan Distance

• Manhattan (city block) distance between two 
vectors x and y is defined as follows
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Manhattan
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Quiz 3

• Let x = (1, 0, -1)T and y = (-1, 1, 0)T. Compute 
the Manhattan distance between the two 
vectors x and y.
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Vector norms

• “norm” is a mathematical concept that expresses the 
“size/length” of a measure 

• Popular vector norms in data mining are as follows 

• L1 norm   
  

• L2 norm  

• L0 norm  

• L∞ norm
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Quiz 4

• Give the vector x = (1, 0, -1, 2)T, compute the 
following
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||x||1, ||x||2, ||x||0, ||x||1



k-NN classification

• Select odd k values to avoid ties 

• What value to use for k? 

• Depends on the dataset size. Large and 
diverse datasets need a higher k, whereas a 
high k for small datasets might cross out of 
the class boundaries 

• Calculate accuracy on a validation set for 
increasing values of k, and use the best value 
on the test data
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Train/Test/Validation datasets
• Validation data 

• Set aside (hold-out) a fraction of train data for validation purposes.  

• Hyper-parameters are often tuned using validation data 

• Hyper-parameter is a parameter that is NOT learnt during training, 
but is set BEFOR running the training algorithm. (e.g. k in k-NN is a 
hyper-parameter) 

• Using validation data to set hyper-parameters reduce overfitting 

• Of course, you CANNOT use test data for any tuning except for testing. 
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Implementation considerations
• During train time 

• nothing to do 

• During test time 

• Classification can be very slow when finding the k 
nearest neighbours. 

• In a trivial implementation it could require N 
number of comparisons, where N is the size of the 
train dataset 

• By using indexing we can speed up this look up 
process
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Indexing trick in k-NN
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Let us assume that the test instance 
has a red feature and a blue feature

We would like to find train instances 
that are similar to this test instance

Obviously, only train instances that have 
at least a red or a blue feature will have 
non-zero similarity with this test instance

Let us create an index that lists which 
train instances have which color features

[x1, x3, x9]
[x2, x4, x5]

We only need to measure similarity 
between these train instances

Exploits the spareness in feature vectors


