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Binary Classification

e Given an instance x we must classify it to either
positive (1) or negative (0) class

e We can use {1,-1} instead of {1,0} but we will use
the latter formulation as it simplifies the
notation in subsequent derivations

e Binary classification can be seen as learning a
function f such that f(x) returns either 1 or 0,
indicating the predicted class



Some terms in Machine Learning

e Training dataset with N instances

o {(x1,t1), ..., (Xn,tn)} This can also be written as {(Xn,tn)Nn=1
e Target label (class)

e t:The class labels in the training dataset

¢ Annotated by humans (supervised learning)

e Predicted labe
e Labels predicted by our model f(x)

e P(A|B): conditional probability of observing an event A, given an event B

e P(A): marginal probability of event A

e We have marginalised out all the variables on which A depends upon (cf.
margin of a probability table)

e Prior probability P(B)
e Posterior probability P(B|A)



Logistic Regression

e isnota regression model
e s aclassification model

e is the basis of many advanced machine learning
methods

e neural networks, deep learning, conditional
random fields, ...

e Tryto fit a logistic sigmoid function to predict the
class labels



Logistic Sigmoid Function

1 4+ exp(—x)




Why do we use logistic sigmoid?

e Reason 1:

e We must squash the prediction score w'x, which is in the range (-c0,+00)
to the range [0,1] when performing binary classification

e Reason 2: (Bayes'Rule)

e Posterior « Conditional x Prior

Plzlt = 1)P(t = 1)

Pt=1lz) = P(z)
B Pzlt=1)P(t=1)
~ P(t=1)P(z|t=1)+ P(t = 0)P(z|t = 0)
1
1 -4 p(x|t:11)P(t:1)
P(t=0)P(z|t=0)
_ P(lt=1)P(t=1)
exp(a) = P(t = 0)P(z|t = 0)
P(t = 1|z) = : =ole)

1 4 exp(—a)



Likelihood

e We have a probabilistic model (logistic sigmoid function
o(wTx)) that tells us the probability of a particular training
instance x being positive (t=1) or negative (t=0)

e We can use this model to predict the probability of the entire
training dataset

e Jikelihood of the training dataset
e However, this dataset is already observed (we have it with us)

o If we want to explain this training dataset, then our model
must maximise the likelihood for this training dataset (more
than any other labelling of the dataset)

e Maximum Likelihood Estimate/Principle (MLE)



Maximum Likelihood Estimate

1
-
— w € —
In g ) 1 +exp(—w'xy,)
t = (ti,..., tn)!
N

pthw) =TT (=)

By taking the negative of the logarithm of the above
product we define the cross-entropy error function

E(w) = —Inp(tjw) = Z{t Iny, + (1 —t,) In(1 —y,)} Q1

n=1

By differentiating E(w) w.r.t. w we get VE(w) as follows:

N
VE(w) = (Yo — ta)Zn Q2

n=1 8



Q1: Derivation of Cross Entropy Error Function
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Q2: Derivation of the gradient
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Updating the weight vector

e Generic update rule

w™) = w" — yVE(w)

e Update rule with cross-entropy error function

w(r—l—l) _ w(fr) - n(yn - tn)mn



Logistic Regression Algorithm

e Given a set of training instances {(x1,t1), ..., (Xn,tN)},
learning rate, n, and iterations T

e [nitialise weight vectorw =0
e Forjini,..,T
e For nin1,...,N
o if pred(x;) #t;
o wirth =wl - n(yn-tn)Xx

e Return the final weight vector w



Prediction Function pred

e Given the weight vector w, returns the class label
for an instance x

o ifwix>O0:
e predicted label =+1 # positive class
o c¢lse:

e predicted label =0 # negative class



Online vs. Batch

e Online vs. Batch Logistic Regression

e The algorithm we discussed in the previous slides is an online algorithm
because it considers only one instance at a time and updates the weight vector

e Referred to as the Stochastic Gradient Descent (SGD) update

¢ |n the batch version, we will compute the cross-entropy error over the entire
training dataset and then update the weight vector

e Popular optimisation algorithm for the batch learning of logistic regression
is the Limited Memory BFGS (L-BFGS) algorithm

e Batch version is slow compared to the SGD version. But shows slightly improved
accuracies in many cases

e SGD version can require multiple iterations over the dataset before it converges (if
ever)

e SGD is a technique that is frequently used with large scale machine learning tasks
(even when the objective function is non-convex)



Reqgularisation

e Regularisation

¢ Reducing overfitting in a model by constraining it
(reducing the complexity/no. of parameters)

e For classifiers that use a weight vector, regularisation can
be done by minimising the norm (length) of the weight
vector.

e Several popular regularisation methods exist

e |2 reqgularisation (ridge regression or Tikhonov
regularisation)

e L1 regularisation (Lasso regression)

e L1+L2 regularisation (mixed regularisation)



L2 regularisation

Let us denote the Loss of classifying a dataset D using a model
represented by a weight vector w by L(D,w) and we would like
to impose L2 regularisation on w.

The overall objective to minimise can then be written as

follows (here 1 is called the regularisation coefficient and is set
via cross-validation)

J(D,w) = L(D,w) + \||w]|3

The gradient of the overall objective simply becomes the
addition of the loss-gradient and the scaled weight vector w.

0J (D, w) _ OL(D,w)

Oow ow - 2Aw




Examples

e Note that SGD update for minimising a loss multiplies the loss
gradient by a negative learning rate (n). Therefore, the L2
regularised update rules will have a -2nAw term as shown in

the following examples

e L2 reqularised Perceptron update (for a misclassified instance
we do)

wF ) = w®) 4t — 22w

e |2 reqgularised logistic regression

w* ) = w® —n((y — ) + 2 w®))
(1 =22 w™ —n(y — t)



How to set )

e Split your training dataset into training and
validation parts (eg. 80%-20%)

* Try different values for X (typically in the
logarithmic scale). Train a different classification

model for each X and select the value that gives
the best performance (eg. accuracy) on the
validation data.

® 2=10>,104103,102107,1,0,107, 104 103, 104, 10°



References

e Bishop (Pattern Recognition and Machine
Learning) Section 4.3.2

e Software
e scikit-learn (Python)

o http://scikit-learn.org/stable/modules/
generated/
sklearn.linear_model.LogisticRegression.html

e (lassias (C)

o http://www.chokkan.org/software/classias/
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