
Logistic Regression
COMP 527

Danushka Bollegala

Binary Classification

• Given an instance x we must classify it to either
positive (1) or negative (0) class

• We can use {1,-1} instead of {1,0} but we will use
the latter formulation as it simplifies the
notation in subsequent derivations

• Binary classification can be seen as learning a
function f such that f(x) returns either 1 or 0,
indicating the predicted class

 2

Some terms in Machine Learning
• Training dataset with N instances

• {(x1,t1), ..., (xN,tN)} This can also be written as {(xn,tn)}Nn=1

• Target label (class)

• t: The class labels in the training dataset

• Annotated by humans (supervised learning)

• Predicted label

• Labels predicted by our model f(x)

• P(A|B): conditional probability of observing an event A, given an event B

• P(A): marginal probability of event A

• We have marginalised out all the variables on which A depends upon (cf.
margin of a probability table)

• Prior probability P(B)

• Posterior probability P(B|A)
 3

Logistic Regression

• is not a regression model

• is a classification model

• is the basis of many advanced machine learning
methods

• neural networks, deep learning, conditional
random fields, ...

• Try to fit a logistic sigmoid function to predict the
class labels

 4

Logistic Sigmoid Function

 5

-2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4

-1.5

-1

-0.5

0.5

1

1.5

y =
1

1 + exp(�x)

Why do we use logistic sigmoid?
• Reason 1:

• We must squash the prediction score wTx, which is in the range (-∞,+∞)
to the range [0,1] when performing binary classification

• Reason 2: (Bayes’ Rule)

• Posterior ∝ Conditional x Prior

 6

A Note on Logistic Regression

Danushka Bollegala danushka.bollegala@liverpool.ac.uk

Department of Computer Science, The University of Liverpool,

Ashton Street, Liverpool, L69 3BX, United Kingdom.

1. Why use logistic sigmoid function?

P (t = 1|x) =
P (x|t = 1)P (t = 1)

P (x)

=
P (x|t = 1)P (t = 1)

P (t = 1)P (x|t = 1) + P (t = 0)P (x|t = 0)

=
1

1 + 1
P (x|t=1)P (t=1)
P (t=0)P (x|t=0)

exp(a) =
P (x|t = 1)P (t = 1)

P (t = 0)P (x|t = 0)

P (t = 1|x) = 1

1 + exp(�a)
= �(a)

1

Likelihood
• We have a probabilistic model (logistic sigmoid function

σ(wTx)) that tells us the probability of a particular training
instance x being positive (t=1) or negative (t=0)

• We can use this model to predict the probability of the entire
training dataset

• likelihood of the training dataset

• However, this dataset is already observed (we have it with us)

• If we want to explain this training dataset, then our model
must maximise the likelihood for this training dataset (more
than any other labelling of the dataset)

• Maximum Likelihood Estimate/Principle (MLE)

 7

Maximum Likelihood Estimate

 8

A Note on Logistic Regression

Danushka Bollegala danushka.bollegala@liverpool.ac.uk

Department of Computer Science, The University of Liverpool,

Ashton Street, Liverpool, L69 3BX, United Kingdom.

1. Why use logistic sigmoid function?

P (t = 1|x) =
P (x|t = 1)P (t = 1)

P (x)

=
P (x|t = 1)P (t = 1)

P (t = 1)P (x|t = 1) + P (t = 0)P (x|t = 0)

=
1

1 + 1
P (x|t=1)P (t=1)
P (t=0)P (x|t=0)

exp(a) =
P (x|t = 1)P (t = 1)

P (t = 0)P (x|t = 0)

P (t = 1|x) = 1

1 + exp(�a)
= �(a)

2. Maximum Likelihood Estimate

yn = �(w>xn) =
1

1 + exp(�w>xn)

t = (t1, . . . , tn)
>

p(t|w) =
NY

n=1

ytnn (1� yn)
(1�tn)

By taking the negative logarithm of the above likelihood we define the cross-entropy
error function

1

By taking the negative of the logarithm of the above
product we define the cross-entropy error function

206 4. LINEAR MODELS FOR CLASSIFICATION

For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n =
1, . . . , N , the likelihood function can be written

p(t|w) =
N∏

n=1

ytn
n {1 − yn}1−tn (4.89)

where t = (t1, . . . , tN)T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (4.90)

where yn = σ(an) and an = wTφn. Taking the gradient of the error function with
respect to w, we obtainExercise 4.13

∇E(w) =
N∑

n=1

(yn − tn)φn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.

Q1

By differentiating E(w) w.r.t. w we get ∇E(w) as follows:

A Note on Logistic Regression

Danushka Bollegala danushka.bollegala@liverpool.ac.uk

Department of Computer Science, The University of Liverpool,

Ashton Street, Liverpool, L69 3BX, United Kingdom.

1. Why use logistic sigmoid function?

P (t = 1|x) =
P (x|t = 1)P (t = 1)

P (x)

=
P (x|t = 1)P (t = 1)

P (t = 1)P (x|t = 1) + P (t = 0)P (x|t = 0)

=
1

1 + 1
P (x|t=1)P (t=1)
P (t=0)P (x|t=0)

exp(a) =
P (x|t = 1)P (t = 1)

P (t = 0)P (x|t = 0)

P (t = 1|x) = 1

1 + exp(�a)
= �(a)

2. Maximum Likelihood Estimate

yn = �(w>xn) =
1

1 + exp(�w>xn)

t = (t1, . . . , tn)
>

p(t|w) =
NY

n=1

ytnn (1� yn)
(1�tn)

By taking the negative logarithm of the above likelihood we define the cross-entropy
error function as follows:

E(w) = � ln p(t|w) = �
NX

n=1

{tn ln yn + (1� tn) ln(1� yn)}

By taking the derivative of the error function w.r.t. w, we obtain:

rE(w) =
NX

n=1

(yn � tn)xn

1

Q2

Q1: Derivation of Cross Entropy Error Function

 9

Q2: Derivation of the gradient

 10

Updating the weight vector
• Generic update rule 
 

• Update rule with cross-entropy error function

 11

Update rule

w(r+1) = w(r) � ⌘rE(w)

2

w(r+1) = w(r) � ⌘(yn � tn)xn

Logistic Regression Algorithm
• Given a set of training instances {(x1,t1), ..., (xN,tN)},

learning rate, η, and iterations T

• Initialise weight vector w = 0

• For j in 1,...,T

• For n in 1,...,N

• if pred(xi) ≠ ti #misclassification

• w(r+1) = w(r) - η(yn-tn)xn

• Return the final weight vector w
 12

Prediction Function pred

• Given the weight vector w, returns the class label
for an instance x

• if wTx > 0:

• predicted label = +1 # positive class

• else:

• predicted label = 0 # negative class

 13

Online vs. Batch
• Online vs. Batch Logistic Regression

• The algorithm we discussed in the previous slides is an online algorithm
because it considers only one instance at a time and updates the weight vector

• Referred to as the Stochastic Gradient Descent (SGD) update

• In the batch version, we will compute the cross-entropy error over the entire
training dataset and then update the weight vector

• Popular optimisation algorithm for the batch learning of logistic regression
is the Limited Memory BFGS (L-BFGS) algorithm

• Batch version is slow compared to the SGD version. But shows slightly improved
accuracies in many cases

• SGD version can require multiple iterations over the dataset before it converges (if
ever)

• SGD is a technique that is frequently used with large scale machine learning tasks
(even when the objective function is non-convex)

 14

Regularisation
• Regularisation

• Reducing overfitting in a model by constraining it
(reducing the complexity/no. of parameters)

• For classifiers that use a weight vector, regularisation can
be done by minimising the norm (length) of the weight
vector.

• Several popular regularisation methods exist

• L2 regularisation (ridge regression or Tikhonov
regularisation)

• L1 regularisation (Lasso regression)

• L1+L2 regularisation (mixed regularisation)
 15

L2 regularisation
• Let us denote the Loss of classifying a dataset D using a model

represented by a weight vector w by L(D,w) and we would like
to impose L2 regularisation on w.

• The overall objective to minimise can then be written as
follows (here ℷ is called the regularisation coefficient and is set
via cross-validation)

• The gradient of the overall objective simply becomes the
addition of the loss-gradient and the scaled weight vector w.

 16

Examples
• Note that SGD update for minimising a loss multiplies the loss

gradient by a negative learning rate (η). Therefore, the L2
regularised update rules will have a -2ηλw term as shown in
the following examples

• L2 regularised Perceptron update (for a misclassified instance
we do)

• L2 regularised logistic regression

 17

How to set ℷ

• Split your training dataset into training and
validation parts (eg. 80%-20%)

• Try different values for ℷ (typically in the
logarithmic scale). Train a different classification
model for each ℷ and select the value that gives
the best performance (eg. accuracy) on the
validation data.

• ℷ = 10-5, 10-4, 10-3, 10-2, 10-1, 1, 0, 101, 102, 103, 104, 105

 18

References
• Bishop (Pattern Recognition and Machine

Learning) Section 4.3.2

• Software

• scikit-learn (Python)

• http://scikit-learn.org/stable/modules/
generated/
sklearn.linear_model.LogisticRegression.html

• Classias (C)

• http://www.chokkan.org/software/classias/
 19

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://www.chokkan.org/software/classias/

