
Mathematical Preliminaries

COMP 527 Data Mining and Visualisation



Linear Algebra

• In Data Mining, we will represent data points 
using a set of coordinates (corresponding to 
various attributes/features). This mathematical 
representation is compact and powerful enough 
to describe parallel processing methods. 

• The branch of mathematics that concerns with 
such coordinated representations is called linear 
algebra 

• Reference: Chapter 02 of the MML book  
[https://mml-book.github.io/book/chapter02.pdf]
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https://mml-book.github.io/book/chapter02.pdf


Vectors

• We will denote a vector x in the n-dimensional 
real space by (lowercase bold fonts) 

• We will use column vectors throughout this 
module (transposed by T when written as row 
vectors) 

• e.g. x = (3.2, -9.1, 0.1)T 

• A function can be seen as an infinite 
dimensional vector, where all function values 
are arranged as elements in the vector!

 3

x ∈ ℝn



Matrices
• We obtain matrices by arranging a collection of 

vectors by columns or rows. 

• We use uppercase bold fonts to denote matrices such 
as M ∈ ℝn×m 

• When n = m we say M is square 

• We denote the (i,j) element of M by Mi,j 

• If Mi,j = Mj,i for all i and j, we say M is symmetric. 
Otherwise, M is asymmetric 

• If all elements in M are real numbers, then we call M 
to be a real matrix, otherwise a complex matrix
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Vector arithmetic
• Given two vectors x, y ∈ ℝN their addition is given by the 

vector z ∈ ℝN where i-th element zi is given by zi = xi + yi 

• Their element-wise product (Hadamard product ⊗) is 
given by zi = xi yi 

• Their inner-product (dot product) is defined as 

• Their outer-product (xyT) is defined as the matrix  
M ∈ ℝN×N where Mi,j = xi yj 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x⊤y =
N

∑
i=1

xiyi



Quiz
• Given x = (1,2,3)T and y = (3,2,1)T 

• Find x + y 

• Find x ⊗ y 

• Find xTy 

• Find xyT
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Matrix arithmetic

• Matrices of the same shape (number of rows 
and columns) can be added elementwise 

•  A + B = C where Ci,j = Ai,j + Bi,j 

• Matrices can be multiplied if the number of 
columns of the first matrix is equal to the 
number of rows of the second matrix  

• AB  = C where 
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Ci,j =
m

∑
k=1

Ai,kBk,j

A ∈ ℝn×m, B ∈ ℝm×p



Quiz

• Compute A+B 

• Compute B+A 

• Compute AB 

• Compute BA 

• Is matrix product commutative in general?
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A =
1 2 3
4 5 6
7 8 9

, B = (
0 1 0
1 2 3

−1 0 1)



Transpose and Inverse

• The transpose of a matrix A is denoted by AT 
and the (i,j) element of the transpose is Aj,i 

• (AB)T = BTAT 

• The inverse of a square matrix A is denoted by 
A-1 and satisfies AA-1 = A-1A = I 

• Here, I∈ℝn×n is the unit matrix (all diagonal 
elements are set to 1 and non-diagonal 
elements are set to 0)
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Computing the inverse of a 2x2 matrix

• Compute the inverse of the following matrix
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A = ( 1 2
−2 1)



Determinant of a matrix

• Determinant of a matrix A is denoted by |A| 

• For a  2x2 matrix A  its determinant is given by 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A = (a b
c d), |A | = ad − bc



Quiz: Matrix inversion
• Write the generalised form for the inverse of a 

2x2 matrix using the matrix determinant.
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Linear independence
• Let us consider a vector v formed as the linearly-

weighted sum of a set of vectors  
{x1,…,xK} with respective coefficients λ1,…,λK as follows: 

• v is called a linear combination of {x1,…,xK} 

• The null vector 0 can always be represented as a linear 
combination of K vectors (Quiz: show this) 

• We are interested in cases where we can represent a 
vector as the linear combination of non-zero coefficients. 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v = λ1x1 + … + λKxK =
K

∑
i=1

λixi



Quiz: Linear independence
• Show that v cannot be expressed as a linear 

combination of a and b, where  
v = (1, 2, -3, 4)T  

a = (1, 1, 0, 2)T  
b = (-1, -2, 1, 1)T  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Rank

• The number of linear independent columns of 
a matrix A∈ℝm × n (m≤n) equals the number of 
linearly independent rows and is called the 
rank of A is denoted by rank(A) 

• rank(A) ≤ min(m,n) = m 

• If rank(A) = m, then A is said to be full-rank, 
otherwise rank deficit. 

• Only full-rank square matrices are invertible.
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Quiz:

• Find the ranks of the following matrices:
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A = (
1 0 1
0 1 1
0 0 0), B = (

1 2 1
−2 −3 1
3 5 0)



Matrix trace

• The sum of diagonal elements is called the 
trace of the matrix. Specifically, 

• Find tr(A) for  

 17

tr(A) = ∑
i

Ai,i

A = (
1 0 1
0 1 1
0 0 0)



Eigendecomposition
• Let A ∈ℝn×n be a square matrix. Then λ∈ℝ is an 

eigenvalue of A and a nonzero x∈ℝn is the 
corresponding eigenvector of A if 
Ax = λx 

• We call this the eigenvalue equation 

• an n-dimensional square matrix has exactly n 
eigenvectors and we can express A using its 
eigenvectors as follows. This called the 
eigendecomposition of A.  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A =
n

∑
i=1

λixix⊤
i



Quiz:
• Find the eigenvalues and the corresponding 

eigenvectors of A
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A = (4 2
1 3)



Vector Calculus

• This is also known as multivariate calculus, 
where we have functions of multiple variables 
(such as the dimensions in a vector) and we 
must compute partial or total derivatives w.r.t. 
the variables. 

• All what you know from A/L calculus is still 
valid and can be used to derive the rules in 
vector calculus starting from the first 
principles.
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Differentiation Rules
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148 Vector Calculus

where we used the power series representations power series
representations

cos(x) =
1X

k=0

(�1)k
1

(2k)!
x
2k
, (5.26)

sin(x) =
1X

k=0

(�1)k
1

(2k + 1)!
x
2k+1

. (5.27)

Figure 5.4 shows the corresponding first Taylor polynomials Tn for n =
0, 1, 5, 10.

Remark. A Taylor series is a special case of a power series

f(x) =
1X

k=0

ak(x � c)k (5.28)

where ak are coefficients and c is a constant, which has the special form2890

in Definition 5.4. }2891

5.1.2 Differentiation Rules2892

In the following, we briefly state basic differentiation rules, where we2893

denote the derivative of f by f
0.2894

Product Rule: (f(x)g(x))0 = f
0(x)g(x) + f(x)g0(x) (5.29)

Quotient Rule:
✓
f(x)

g(x)

◆0

=
f
0(x)g(x) � f(x)g0(x)

(g(x))2
(5.30)

Sum Rule: (f(x) + g(x))0 = f
0(x) + g

0(x) (5.31)

Chain Rule:
�
g(f(x))

�0
= (g � f)0(x) = g

0(f(x))f 0(x) (5.32)

Here, g � f denotes function composition x 7! f(x) 7! g(f(x)).2895

Example 5.5 (Chain rule)

Let us compute the derivative of the function h(x) = (2x + 1)4 using the
chain rule. With

h(x) = (2x+ 1)4 = g(f(x)) , (5.33)
f(x) = 2x+ 1 , (5.34)
g(f) = f

4 (5.35)

we obtain the derivatives of f and g as

f
0(x) = 2 , (5.36)

g
0(f) = 4f3

, (5.37)

Draft (2018-12-24) from Mathematics for Machine Learning. Errata and feedback to https://mml-book.com.

Quiz: Given f(x) = log(x) and g(x) = 2x + 1, compute the four 
derivatives corresponding to the rules stated above.



Partial derivative
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such that the derivative of h is given as

h
0(x) = g

0(f)f 0(x) = (4f3) · 2 (5.34)
= 4(2x+ 1)3 · 2 = 8(2x+ 1)3 , (5.38)

where we used the chain rule (5.32), and substituted the definition of f
in (5.34) in g

0(f).

5.2 Partial Differentiation and Gradients2896

Differentiation as discussed in Section 5.1 applies to functions f of a2897

scalar variable x 2 R. In the following, we consider the general case2898

where the function f depends on one or more variables x 2 Rn, e.g.,2899

f(x) = f(x1, x2). The generalization of the derivative to functions of sev-2900

eral variables is the gradient.2901

We find the gradient of the function f with respect to x by varying one2902

variable at a time and keeping the others constant. The gradient is then2903

the collection of these partial derivatives.2904

Definition 5.5 (Partial Derivative). For a function f : Rn ! R, x 7!
f(x), x 2 Rn of n variables x1, . . . , xn we define the partial derivatives as partial derivatives

@f

@x1
= lim

h!0

f(x1 + h, x2, . . . , xn) � f(x)

h

...
@f

@xn
= lim

h!0

f(x1, . . . , xn�1, xn + h) � f(x)

h

(5.39)

and collect them in the row vector

rxf = gradf =
df

dx
=

h
@f(x)
@x1

@f(x)
@x2

· · · @f(x)
@xn

i
2 R1⇥n

, (5.40)

where n is the number of variables and 1 is the dimension of the im-2905

age/range/co-domain of f . Here, we defined the column vector x =2906

[x1, . . . , xn]> 2 Rn. The row vector in (5.40) is called the gradient of f or gradient2907

the Jacobian and is the generalization of the derivative from Section 5.1. Jacobian2908

Remark. This definition of the Jacobian is a special case of the general2909

definition of the Jacobian for vector-valued functions as the collection of2910

partial derivatives. We will get back to this in Section 5.3. }2911

Example 5.6 (Partial Derivatives using the Chain Rule)

For f(x, y) = (x+ 2y3)2, we obtain the partial derivatives We can use results
from scalar
differentiation: Each
partial derivative is
a derivative with
respect to a scalar.

@f(x, y)

@x
= 2(x+ 2y3)

@

@x
(x+ 2y3) = 2(x+ 2y3) , (5.41)

c�2018 Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong. To be published by Cambridge University Press.

Quiz: For f(x,y) = (x+2y3)2 compute ∂f/∂x, ∂f/∂y and ∇(x,y)f



Chain rule for multivariate functions
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Chain Rule:
@

@x
(g � f)(x) =

@

@x

�
g(f(x))

�
=

@g

@f

@f

@x
(5.48)

Let us have a closer look at the chain rule. The chain rule (5.48) resem- This is only an
intuition, but not
mathematically
correct since the
partial derivative is
not a fraction.

2927

bles to some degree the rules for matrix multiplication where we said that2928

neighboring dimensions have to match for matrix multiplication to be de-2929

fined, see Section 2.2.1. If we go from left to right, the chain rule exhibits2930

similar properties: @f shows up in the “denominator” of the first factor2931

and in the “numerator” of the second factor. If we multiply the factors to-2932

gether, multiplication is defined, i.e., the dimensions of @f match, and @f2933

“cancels”, such that @g/@x remains.2934

5.2.2 Chain Rule2935

Consider a function f : R2 ! R of two variables x1, x2. Furthermore,
x1(t) and x2(t) are themselves functions of t. To compute the gradient of
f with respect to t, we need to apply the chain rule (5.48) for multivariate
functions as

df

dt
=

h
@f
@x1

@f
@x2

i "@x1(t)
@t

@x2(t)
@t

#

=
@f

@x1

@x1

@t
+

@f

@x2

@x2

@t
(5.49)

where d denotes the gradient and @ partial derivatives.2936

Example 5.8

Consider f(x1, x2) = x
2
1 + 2x2, where x1 = sin t and x2 = cos t, then

df

dt
=

@f

@x1

@x1

@t
+

@f

@x2

@x2

@t
(5.50a)

= 2 sin t
@ sin t

@t
+ 2

@ cos t

@t
(5.50b)

= 2 sin t cos t � 2 sin t = 2 sin t(cos t � 1) (5.50c)

is the corresponding derivative of f with respect to t.

If f(x1, x2) is a function of x1 and x2, where x1(s, t) and x2(s, t) are
themselves functions of two variables s and t, the chain rule yields the
partial derivatives

@f

@s
=

@f

@x1

@x1

@s
+

@f

@x2

@x2

@s
, (5.51)

@f

@t
=

@f

@x1

@x1

@t
+

@f

@x2

@x2

@t
, (5.52)

c�2018 Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong. To be published by Cambridge University Press.

Quiz: Consider f(x1,x2)=x12 + 2x2, where x1=sin(t) and x2=cos(t).  
Find, df/dt.



Useful identities for computing gradients
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When we now compute the partial derivative @Kpq

@Rij
, we obtain

@Kpq

@Rij
=

MX

k=1

@

@Rij
RkpRkq = @pqij , (5.97)

@pqij =

8
>><

>>:

Riq if j = p, p 6= q

Rip if j = q, p 6= q

2Riq if j = p, p = q

0 otherwise

. (5.98)

From (5.93), we know that the desired gradient has the dimension (N ⇥
N) ⇥ (M ⇥ N), and every single entry of this tensor is given by @pqij

in (5.98), where p, q, j = 1, . . . , N and i = q, . . . ,M .

5.5 Useful Identities for Computing Gradients3034

In the following, we list some useful gradients that are frequently required
in a machine learning context (Petersen and Pedersen, 2012). Here, we
use tr(·) as the trace (see Definition 4.4), det(·) as the determinant (see
Section 4.1) and f(X)�1 as the inverse of f(X), assuming it exists.

@

@X
f(X)> =

✓
@f(X)

@X

◆>

(5.99)

@

@X
tr(f(X)) = tr

✓
@f(X)

@X

◆
(5.100)

@

@X
det(f(X)) = det(f(X))tr

✓
f(X)�1@f(X)

@X

◆
(5.101)

@

@X
f(X)�1 = �f(X)�1@f(X)

@X
f(X)�1 (5.102)

@a
>
X

�1
b

@X
= �(X�1)>ab>(X�1)> (5.103)

@x
>
a

@x
= a

> (5.104)

@a
>
x

@x
= a

> (5.105)

@a
>
Xb

@X
= ab

> (5.106)

@x
>
Bx

@x
= x

>(B +B
>) (5.107)

@

@s
(x � As)>W (x � As) = �2(x � As)>WA for symmetric W

(5.108)

c�2018 Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong. To be published by Cambridge University Press.
Note: You do not need to memorise these but 
must be able to verify these by yourself.


