
Learning to Compose Relational Embeddings in
Knowledge Graphs

Wenye Chen1, Huda Hakami1,2, and Danushka Bollegala1

Department of Computer Science, University of Liverpool, United Kingdom
{W.Chen29@student, h.a.hakami,danushka}@liverpool.ac.uk

Abstract. Knowledge Graph Embedding methods learn lower-dimensional
representations for entities and relations in knowledge graphs, which can
be used to infer previously unknown relations between pairs of entities
in the knowledge graph. This is particularly useful for expanding other-
wise sparse knowledge graphs. Often the set of relations that exist be-
tween two entities are not independent, and it is possible to predict what
other relations are likely to exist between two entities by composing the
embeddings of the relations in which each entity participates. We intro-
duce relation composition as the task of inferring embeddings for unseen
relations by combining existing relations in a knowledge graph. Specifi-
cally, we propose a supervised method to compose relational embeddings
for novel relations using pre-trained relation embeddings for existing re-
lations. Our experimental results on a previously proposed benchmark
dataset for relation composition and triple classification show that the
proposed supervised relation composition method outperforms several
unsupervised relation composition methods.

1 Introduction

Knowledge graphs (KGs) such as Freebase [1] organise the knowledge that we
have about entities and the relations that exist between entities in the form
of labelled graphs, where entities are denoted by the vertices and the relations
are denoted by the edges that connect the corresponding entities. A KG can be
represented using a set of relational tuples of the form (h,R, t), where the relation
R ∈ R exists between the (head) entity h ∈ E and the (tail) entity t ∈ E such
that the direction of the relation is from h to t. Here, E andR respectively denote
the sets of entities and relations in the KG. For example, the relational tuple
(Donald Trump, president of, US) indicates that the president of relation
holds between Donald Trump and US. Despite the best efforts to create complete
and large-scale KGs, most KGs remain incomplete and does not represent all the
relations that exist between entities. In particular, new entities are constantly
being generated and new relations are formed between new as well as existing
entities. Therefore, it is unrealistic to assume that a real-world KG would be
complete at any given time point.

Knowledge graph embedding (KGE) methods [17,28,14,18,24,25,4,2] learn
representations (also known as embeddings) for the entities and relations in a

2 W. Chen et al.

given KG. The learnt KGEs can be used for link prediction, which is the task
of predicting whether a particular relation exists between two given entities in
the KG. Specifically, given KGEs for entities and relations, in link prediction we
predict the R that is most likely to exist between h and t according to some
scoring formula. For example, in translational embeddings (TransE), h, t, R are
all embedded into the same d-dimensional vector space respectively by h ∈ Rd,
t ∈ Rd and R ∈ Rd and the tuple (h,R, t) is scored by ||h + R− t||2. Once
KGEs for all the entities and relations in a given KG are learnt, for two entities
h′ and t′ that are not connected by a relation, TransE finds the relation R′ ∈ R
that minimises ||h′ + R′ − t′||. However, the relation types that can be predicted
using KGEs are confined to R, the set of relation types that already exists in the
KG. In other words, we cannot predict novel relation types using the pre-trained
KGEs alone.

On the other hand, the relations that exist in a KG are often closely re-
lated [22]. For example, given the embeddings for the relations country of film

and currency of country relations, we can compose the embedding for a pre-
viously unseen relation such as currency of film budget because entities are
shared across many tuples such as (Movie, country of film, Country), (Country,
currency of country, Currency), where Movie, Country, and Currency can be re-
placed respectively by valid instances such as The Italian Job, UK and GBP.

In this paper, we propose a method for composing relation embeddings for
novel (unseen in the KG) relation types by composing the embeddings for exist-
ing relation types. Our problem setting differs from that of KGE in two impor-
tant ways. First, we do not learn relation embeddings from scratch for a given
KG, but instead use pre-trained KGEs and learn a composition function to pre-
dict the embeddings for the relations that currently do not exist in the KG.
In our experiments, we use the state-of-the-art matrix embeddings produced by
the Relational Walk (RelWalk) method [2] as the relation embeddings. Second,
the composition functions we learn are universal [19] in the sense that they are
not parametrised by the entities or relations in the KG, thereby making the
composition function independent from a particular KG. This is attractive be-
cause, theoretically the learnt composition function can be used to compose any
relation type, not limited to the relations that exist in the KG used for training.

2 Background

2.1 Knowledge Graph Embedding Methods

Various methods have been proposed in the literature for representing entities
and relations from a given KG. A popular choice for representing entities is to use
vectors, whereas relations have been represented by vectors, matrices or tensors.
For example, TransE [4], TransH [26], TransD [8], TransG [27], TransR [14],
lppTransD [29], DistMult [28], HolE [17] and ComplEx [24] represent relations
by vectors, whereas Structured Embeddings [4], TranSparse [9], STransE [16],
RESCAL [18], RelWalk [2] use matrices and Neural Tensor Network (NTN) [21]
uses three dimensional tensors. ComplEx [24] introduced complex embedding

Learning to Compose Relational Embeddings in Knowledge Graphs 3

vectors for KGEs to capture the asymmetry in semantic relations. [5] obtained
state-of-the-art performance for KGE by imposing non-negativity and entailment
constraints to ComplEx.

Given that the number of entities in a KG is significantly larger than that of
its relations, from a space complexity point-of-view, it is desirable to represent
entities using vectors. On the other hand, relations are often asymmetric and
directional, which cannot be modelled using vector addition or multiplication.
For example, the is father of relation requires the head entity to be the father
of the tail entity whereas, the is son of relation requires the reverse. Matrices
are a natural choice for representing relations because matrix multiplication in
general is non-commutative and this property can be used to encode the direc-
tionality of a relation. On the other hand, it is desirable to embed both entities
and relations in the same vector space for carrying out linear algebraic opera-
tions for the purpose of learning KGEs. This requires a O(d2) space for storing
relation embeddings relative to the O(d) required for the entity embeddings.
This requirement can be infeasible for large KGs such as Freebase, which cov-
ers over 39 million topics1. Therefore, much prior work on KGE has opted to
represent both entities as well as relations using vectors.

As already stated in the introduction, we emphasise that we do not propose
a method for learning KGEs in this paper. Instead, given pre-trained entity and
relation embeddings, our goal is to compose relation embeddings for the relations
that currently do not exist in the KG. Our proposed method is agnostic to the
algorithm used to learn the input KGEs. In this regard, it can be used to compose
relation embeddings using KGEs produced by any KGE learning method. As a
concrete example, we use the state-of-the-art relation embeddings produced by
RelWalk [2] in our experiments. RelWalk represents relations using matrices and
is further detailed in subsection 2.2.

2.2 Relational Walk

In this section, we briefly describe RelWalk, the method that produces the rela-
tion embeddings we use in this paper. For a detailed overview refer [2].

RelWalk assumes that the task of generating a relational triple (h,R, t) in a
given KG to be a two-step process. First, given the current knowledge vector at
time k, c = ck and the relation R, the probability of an entity h satisfying the
first argument of R to be given by (1).

p(h | R, c) =
1

Zc
exp

(
h>R1c

)
. (1)

Here, R1 ∈ Rd×d is a relation-specific orthogonal matrix that evaluates the
appropriateness of h for the first argument of R and Zc is a normalisation co-
efficient such that

∑
h∈E p(h | R, c) = 1. After generating h, the state of our

random walker changes to c′ = ck+1, and the second argument of R is generated

1 https://developers.google.com/freebase/guide/basic_concepts

https://developers.google.com/freebase/guide/basic_concepts

4 W. Chen et al.

with probability given by (2).

p(t | R, c′) =
1

Zc′
exp

(
t>R2c

′
)
. (2)

Here, R2 ∈ Rd×d is a relation-specific orthogonal matrix that evaluates the
appropriateness of t as the second argument of R and Zc′ is a normalisation
coefficient such that

∑
t∈E p(t | R, c′) = 1. In RelWalk, we consider (R1 and

R2) to collectively represent the embedding of R. Bollegala et al. [2] proved
Lemma 1 for a slow random walk over the KG.

Lemma 1 (Concentration Lemma). If the entity embedding vectors satisfy
the Bayesian prior v = sv̂, where v̂ is from the spherical Gaussian distribution,
and s is a scalar random variable, which is always bounded by a constant κ, then
the entire ensemble of entity embeddings satisfies that

Pr
c∼C

[(1− εz)Z ≤ Zc ≤ (1 + εz)Z] ≥ 1− δ, (3)

for εz = O(1/
√
n), and δ = exp(−Ω(log2 n)), where n ≥ d is the number of

words and Zc is the partition function for c given by
∑

h∈E exp
(
h>R1c

)
.

Under the conditions required to satisfy Lemma 1, Bollegala et al. [2] proved
the following theorem.

Theorem 1. Suppose that the entity embeddings satisfy (1). Then, we have

log p(h, t | R) =

∣∣∣∣R1
>h + R2

>t
∣∣∣∣2

2

2d
− 2 logZ ± ε. (4)

for ε = O(1/
√
n) + Õ(1/d), where

Z = Zc = Zc′ . (5)

Theorem 1 states that the log-likelihood of observing R between h and t is
related to the squared `2 norm of R1

>h + R2
>t. This provides an objective

function for learning KGEs. Specifically, we can randomly initialise entity and
relation embeddings and iterate such that above `2 norm is approximately equal
to the empirical probabilities p(h, t | R), estimated from a KG.

2.3 Inference in Knowledge Graphs

Lao et al. [12] used the Path Ranking Algorithm (PRA) [11] for predicting rela-
tions between two entities in a KG. The number of paths connecting two entities
in a large KG can be large and it is difficult to systematically enumerate them
all. Instead, PRA performs random walks and selects paths that cover most of
the entities in a given training set. Next, the likelihood of a path is computed
as the product of the transition probabilities when moving from one vertex to
another. Neelakantan et al. [15] used PRA to find paths connecting entity pairs
and ran a recurrent neural net (RNN) to combine the vector embeddings of re-
lations to compose an embedding for the relation between two entities. They

Learning to Compose Relational Embeddings in Knowledge Graphs 5

learnt separate RNNs for each relation type, but also proposed a zero-shot [13]
version, where they used pre-trained KGEs and learn a single composition func-
tion. However, the performance of their zero-shot model was significantly worse
than the relation-specific model.

Guu et al. [6] considered path queries in a knowledge graph connecting two
entities and proposed a composition method that multiplies the relation embed-
ding matrices corresponding to the relations along the connecting path. They
considered relation composition under the TransE model [3], where relational
embedding vectors are added, and under the bilinear-diagonal model [28], where
relations are represented using diagonal matrices. Both these composition op-
erators can be seen as unsupervised in the sense that there are no learnable
parameters in the composition function. In our experiments, we use both matrix
addition and multiplication as unsupervised baseline methods for comparisons.
On the other hand, our proposed method is a supervised relation composition
method and we consider relations represented by orthogonal matrices, which are
not diagonal in general.

3 Relation Composition

Let us assume that the two relations RA and RB jointly imply a third relation
RC . In this paper, we use the notation RA ∧ RB ⇒ RC to express this fact.
Moreover, let us assume that the relational embeddings produced by RelWalk
for RA and RB to be respectively (RA

1 ,R
A
2) and (RB

1 ,R
B
2). For simplify the

explanation, let us assume all relation embedding matrices are in Rd×d. We

model the problem of composing a relation embedding (R̂
C

1 , R̂
C

2) for RC as
learning two joint compositional operators (φ1, φ2) such that:

φ1 : RA
1 ,R

A
2 ,R

B
1 ,R

B
2 −→ R̂

C

1 (6)

φ2 : RA
1 ,R

A
2 ,R

B
1 ,R

B
2 −→ R̂

C

2 (7)

3.1 Unsupervised Relation Composition

When the compositional operators φ1, φ2 do not have learnable parameters we
call them unsupervised. In the case of matrix relation embeddings, we consider
the following unsupervised operators.

Addition

RA
1 + RB

1 = R̂
C

1 (8)

RA
2 + RB

2 = R̂
C

2 (9)

Matrix Product

RA
1 RB

1 = R̂
C

1 (10)

RA
2 RB

2 = R̂
C

2 (11)

6 W. Chen et al.

Hadamard Product

RA
1 �RB

1 = R̂
C

1 (12)

RA
2 �RB

2 = R̂
C

2 (13)

Here, � denotes the Hadamard (elementwise) product of two matrices. Unlike
the matrix product, both addition and Hadamard product are commutative.

3.2 Supervised Relation Composition

The unsupervised compositional operators described in subsection 3.1 are not
guaranteed to correctly predict the embeddings because they cannot be tuned
to the relations in a given KG. Moreover, each unsupervised operator considers
either one of R1 or R2, and do not model their possible interactions. There-
fore, we propose to learn two supervised relation composition operators with
shared parameters. The parameter sharing enables the two operators to learn a
consistent relation embedding.

Different models can be used to express φ1 and φ2. In this paper, we use
feed-forward neural nets, which are universal approximators [7] for this purpose.
We first linearise the input d× d matrix relation embeddings to d2-dimensional
vector embeddings via a linearisation operator L. We then concatenate the four
linearised relational embeddings L(RA

1),L(RA
2),L(RB

1),L(RB
2) and feed it to the

neural net. The weight and bias for the first layer are respectively W ∈ R4d2×m

and b ∈ Rm, where m is the number of neurones in the hidden layer. A nonlinear
activation function, f is applied at the hidden layer. In our experiments, we
used tanh as the activation function. The weight and bias for the output layer,
respectively U ∈ Rm×2d2

and b′ ∈ R2d2

, are chosen such that by appropriately
splitting the output into two parts and applying the inverse mapping of the

linearisation, we can predict R̂
C

1 and R̂
C

2 . Denoting the concatenation by ⊕ and
inverse linearisation by L−1, we can write the predicted embeddings for rC as
follows:

x = L(RA
1)⊕ L(RA

2)⊕ L(RB
1)⊕ L(RB

2) (14)

h = f(Wx + b) (15)

y = Uh + b′ (16)

R̂
C

1 = L−1y:d2 (17)

R̂
C

2 = L−1yd2: (18)

Using a training set of relational tuples {(RA, RB , RC)}, where RA ∧RB ⇒
RC and their RelWalk embeddings, using Adam [10], we find the network pa-
rameters that minimise the squared Frobenius norm given in (19).

L(W,U, b, b′) =
∣∣∣∣∣∣RC

1 − R̂
C

1

∣∣∣∣∣∣2
2

+
∣∣∣∣∣∣RC

2 − R̂
C

2

∣∣∣∣∣∣2
2

(19)

Learning to Compose Relational Embeddings in Knowledge Graphs 7

4 Experiments

4.1 Datasets

We use the FB15k-237 dataset2 created by Toutanova and Chen [23] for training
KGEs using RelWalk. This dataset was created by removing the reverse relations
between train and test portions in the original FB15k dataset and is considered as
a more appropriate benchmark dataset for evaluating KGEs. FB15k-237 dataset
contains 237 relation types for 14541 entities. To preserve the asymmetry prop-
erty for relations, we consider that each relation R< in the relation set has its
inverse R>, so that for each triple (h,R<, t) in the KG we regard (t, R>, h) is
also in the KG. Thus as a total we have 474 relation types to be learnt (we
call this extended version as FB15k-474). The train, test and validation parts of
this dataset contains respectively 544230, 40932 and 35070 tuples. Following the
recommendations by the authors, RelWalk is trained using 100 minibatches for
1000 epochs until convergence. Negative sampling rate is set to 50 and we learn
KGEs of dimensionalities d = 20, 50 and 100. We consider two tasks to evaluate
relational composition operators namely, relation composition (subsection 4.2)
and triple classification task (subsection 4.3). The matrix relational embeddings
produced by RelWalk are used in the subsequent experiments described in the
paper when learning supervised compositional operators.

To evaluate the ability of a relation composition operator, we use the dataset
created by Takahashi et al. [22] from FB15-23k as follows. For a relation R,
they define the content set C(R) as the set of (h, t) pairs such that (h,R, t) is
a fact in the KG. Likewise, they define C(RA ∧ RB) as the set of (h, t) pairs
such that (h,RA → RB , t) is a path in the KG. Next, RA ∧ RB ⇒ RC is
considered as a compositional constraint if their content sets are similar; that is,
if |C(RA ∧ RB) ∩ C(RC)| ≥ 50 and the Jaccard similarity between C(RA ∧ RB)
and C(RC) is greater than 0.4. They obtained 154 compositional constraints of
the form RA ∧ RB ⇒ RC after this filtering process. We name this dataset as
the Relation Composition (RC) dataset in the remainder of the paper.

We perform 5-fold cross validation on the RC dataset to train a supervised
relation composition operator using our proposed method described in subsec-
tion 3.2. Using a separate validation dataset, we set the initial learning rate for
Adam to 5E-4 and minibatch size to 25. We apply dropout with rate 0.5 and
`2 regularisation with coefficient 1E-10 to avoid overfitting during training. For
d = 20 dimensional embeddings, we use a single hidden layer of 300 neurones,
whereas for d = 50 and 100 we used two hidden layers, where each has 600 neu-
rones. In all settings training converged after 25000 epochs, which took less than
5 minutes in a single GPU instance available in the Google Colab cloud-based
ipython notebooks3. The source code implementation of the proposed method is
available4.

2 https://www.microsoft.com/en-us/download/details.aspx?id=52312
3 https://colab.research.google.com/
4 https://github.com/Bollegala/RelComp

https://www.microsoft.com/en-us/download/details.aspx?id=52312
https://colab.research.google.com/
https://github.com/Bollegala/RelComp

8 W. Chen et al.

4.2 Relation Composition

Let us assume that the composition of the two relations RA and RB is the
relation RC . Moreover, let us denote the pre-trained RelWalk embeddings for a
relation Rx to be Rx

1 and Rx
2 , where x ∈ {A,B,C}. We will denote the composed

embedding for RC by R̂
C

1 and R̂
C

2 .
Following Takahashi et al. [22], we rank the test relations RL by its similarity

to R̂C , the composed version of RC using the distance function, d(RL, R̂C), given
by (20).

d(RL, R̂C) =
∣∣∣∣∣∣RL

1 − R̂
C

1

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣RL

2 − R̂
C

2

∣∣∣∣∣∣
F

(20)

If the RC is ranked higher for R̂C , then it is considered better. We use Mean Rank
(MR), Mean Reciprocal Rank (MRR) and Hits@10 to measure the accuracy of
the composition.

Table 1 presents the average performance of relation compositions using 5-
folds cross validation on RC compositional constraints. We consider the 474
relation types in FB15K-474 for this evaluation. Lower MR indicates better per-
formance. As can be observed, the supervised relation composition achieves the
best results for MR, MRR and Hits@10 with significant improvements over the
unsupervised compositional operators. In fact, MR, MRR and Hits@10 results
for the unsupervised operators are close to the random baseline.

Table 1. Performance in the relation composition task.

d=20 d=50 d=100

Method MR MRR Hits@10 MR MRR Hits@10 MR MRR Hits@10

Supervised Relation Composition 75 0.412 0.581 64 0.390 0.729 49 0.308 0.703
Addition 238 0.010 0.012 250 0.008 0.019 247 0.007 0
Matrix Product 225 0.018 0.032 233 0.012 0.025 231 0.010 0.019
Hadamard Product 215 0.020 0.051 192 0.037 0.051 209 0.016 0.032

4.3 Triple Classification

To evaluate the effectiveness of the learnt operator for generating composed re-
lation embeddings, we consider the triple classification task using the composed
embeddings for RC . Triple classification task is originally proposed by Socher et
al. [20], and aims to predict whether a triple (h,R, t) is a valid triple or not given
entity and relation embeddings and a scoring function that map the embeddings
to a confidence score. Specifically, in this paper, we use the embeddings learnt by
RelWalk for the entities and the relations in FB15k-474 and the joint probability
p(h,R, t) given by Theorem 1 to determine whether a relation R exists between

Learning to Compose Relational Embeddings in Knowledge Graphs 9

two given entities h and t. We need positive and negative triples for classifica-
tion. The negative triples are generated by randomly corrupting entities of the
positive examples. For example, for a test triple (h,R, t), we consider (h,R, t′)
as a negative example where t′ is sampled from all entities that appear in the
corresponding argument in the entire KG.

We perform 5 folds cross-validation on RC compositional constraints. Once
the proposed supervised relation composition is learnt using a training set, we
perform triple classification for those triples in FB15K-474 testing set that are
connected by the relation types in the test compositional constraints of RC.
We evaluate the performance using the accuracy which is the percentage of the
correctly classified test triples. We use the validation set to find a threshold θ
for each test relation such that if p(h,R, t) > θ , the relation (h,R, t) holds,
otherwise we consider it as a negative triple.

The performance of the supervised and unsupervised relational compositional
operators for triple classification is shown in Table 2. Across the relational com-
positional operators and for different dimensionalities, the proposed supervised
relational composition method achieves the best accuracy for this task. Despite
increasing the dimensionality of relation embeddings from 20 to 100 leading to
a complex model with a large number of parameters to be tuned using a small
set of compositional constraints as in RC, the trained operator shows better
performance in all cases.

Table 2. Triple classification accuracy for the different relational compositional oper-
ators.

Method d=20 d=50 d=100

Supervised Relation Composition 77.55 77.73 77.62
Addition 68.9 70.44 69.45
Matrix Product 67.6 65.24 75.71
Hadamard Product 58.44 63.01 70.94

5 Conclusion

In this paper, we addressed the problem of composing pre-trained relation em-
beddings in KGs. Given a set of compositional constraints over relations in the
form RA ∧ RB ⇒ RC , our proposed method learns a supervised operator that
maps the relation embeddings of two relation to a new relation embedding. The
learnt operator can be used to infer relation embeddings for rare or unseen rela-
tion types. Evaluating the predicted relation embeddings for triple classification
task indicates the effectiveness of the proposed relation composition method.

10 W. Chen et al.

Acknowledgement

We would like to thank Ran Tian for sharing the relation composition benchmark
dataset.

References

1. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collab-
oratively created graph database for structuring human knowledge. In: Proc. of
SIGMOD. pp. 1247 – 1250 (2008)

2. Bollegala, D., Hakami, H., Yoshida, Y., Kawarabayashi, K.i.: Relwalk – a la-
tent variable model approach to knowledge graph embedding (2019), https:

//openreview.net/forum?id=SkxbDsR9Ym

3. Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., Yakhenko, O.: Translating
embeddings for modeling multi-relational data. In: Proc. of NIPS (2013)

4. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings
of knowledge bases. In: Proc. of AAAI (2011)

5. Ding, B., Wang, Q., Wang, B., Guo, L.: Improving knowledge graph embedding
using simple constraints. In: Proc. of ACL. pp. 110–121 (2018)

6. Guu, K., Miller, J., Liang, P.: Traversing knowledge graphs in vector space. In:
Proc. of EMNLP. pp. 318–327 (2015)

7. Hornik, K.: Multilayer feedforward networks are universal approximators. Neural
Networks 2, 359–366 (1989)

8. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic
mapping matrix. In: Proc. of ACL. pp. 687–696 (2015)

9. Ji, G., Liu, K., He, S., Zhao, J.: Knowledge graph completion with adaptive sparse
transfer matrix. In: Proc. of AAAI. pp. 985–991 (2016)

10. Kingma, D.P., Ba, J.L.: Adam: A method for stochastic optimization. In: Proc. of
ICLR (2015)

11. Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-
constrained random walks. Machine Learning 81(1), 53–67 (Jul 2010).
https://doi.org/10.1007/s10994-010-5205-8

12. Lao, N., Mitchell, T., Cohen, W.W.: Random walk inference and learning in a large
scale knowledge base. In: Proc. of EMNLP. pp. 529–539 (2011)

13. Larochelle, H., Erhan, D., Bengio, Y.: Zero-data learning of new tasks. In: Proc.
of AAAI. pp. 646–651 (2008)

14. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: Proc. of AAAI. pp. 2181–2187 (2015)

15. Neelakantan, A., Roth, B., McCallum, A.: Compositional vector space models for
knowledge base completion. In: Proc. of ACL. pp. 156–166 (2015)

16. Nguyen, D.Q., Sirts, K., Qu, L., Johnson, M.: Stranse: a novel embedding model
of entities and relationships in knowledge bases. In: Proc. of NAACL-HLT. pp.
460–466 (2016)

17. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs.
In: Proc. of AAAI (2016)

18. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on
multi-relational data. In: Proc. of ICML. pp. 809–816 (2011)

19. Riedel, S., Yao, L., McCallum, A., Marlin, B.M.: Relation extraction with matrix
factorization and universal schemas. In: Proc. of NAACL. pp. 74–84 (2013)

https://openreview.net/forum?id=SkxbDsR9Ym
https://openreview.net/forum?id=SkxbDsR9Ym
https://doi.org/10.1007/s10994-010-5205-8

Learning to Compose Relational Embeddings in Knowledge Graphs 11

20. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor net-
works for knowledge base completion. In: Advances in neural information process-
ing systems. pp. 926–934 (2013)

21. Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor
networks for knowledge base completion. In: Proc. of NIPS (2013)

22. Takahashi, R., Tian, R., Inui, K.: Interpretable and compositional relation learning
by joint training with an autoencoder. In: Proc. of ACL. pp. 2148–2159 (2018)

23. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and
text inference. In: Proc. of 3rd Workshop on Continuous Vector Space Models and
their Compositionality. pp. 57–66 (2015)

24. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: Proc. of ICML (2016)

25. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions on Knowledge and Data Engineer-
ing 29(12), 2724–2743 (Dec 2017). https://doi.org/10.1109/TKDE.2017.2754499

26. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: Proc. of AAAI. pp. 1112 – 1119 (2014)

27. Xiao, H., Huang, M., Zhu, X.: TransG : A generative model for knowledge graph
embedding. In: Proc. of ACL. pp. 2316–2325 (2016)

28. Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations
for learning and inference in knowledge bases. In: ICLR (2015)

29. Yoon, H.G., Song, H.J., Park, S.B., Park, S.Y.: A translation-based knowledge
graph embedding preserving logical property of relations. In: Proc. of NAACL. pp.
907–916 (2016)

https://doi.org/10.1109/TKDE.2017.2754499

	Learning to Compose Relational Embeddings in Knowledge Graphs

