
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.1 JANUARY 2010

1

PAPER

A Supervised Classification approach for Measuring

Relational Similarity between Word Pairs

Danushka BOLLEGALA†, Yutaka MATSUO†, Nonmembers,
and Mitsuru ISHIZUKA†, Member

SUMMARY Measuring the relational similarity between
word pairs is important in numerous natural language processing
tasks such as solving word analogy questions, classifying noun-
modifier relations and disambiguating word senses. We propose
a supervised classification method to measure the similarity be-
tween semantic relations that exist between words in two word
pairs. First, each pair of words is represented by a vector of au-
tomatically extracted lexical patterns. Then a binary Support
Vector Machine is trained to recognize word pairs with similar
semantic relations to a given word pair. To train and evaluate the
proposed method, we use a benchmark dataset that contains 374
SAT multiple-choice word-analogy questions. To represent the re-
lations that exist between two word pairs, we experiment with 11
different feature functions, including both symmetric and asym-
metric feature functions. Our experimental results show that the
proposed method outperforms several previously proposed rela-
tional similarity measures on this benchmark dataset, achieving
an SAT score of 46.9.
key words: relational similarity, supervised classification, sup-

port vector machines, word analogies

1. Introduction

Relational similarity can be defined as the correspon-
dence between semantic relations that exist between
words. For example, the semantic relation, X is a large

Y holds between the words in the word pair (lion, cat)
and (ostrich, bird), because lion is a large cat, whereas
ostrich is a large bird. Here, we use variables X and Y

as placeholders for words between which a relation ex-
ists. Consequently, the two word pairs, (lion, cat) and
(ostrich, bird), are considered to be relationally simi-
lar. If four words A, B, C, and D form a proportional
analogy A : B :: C : D, then we can observe a high de-
gree of relational similarity between the two word pairs
(A,B) and (C,D).

Relational similarity measures are useful for nu-
merous tasks in natural language processing such as
classification of semantic relations in noun-modifier
pairs, word sense disambiguation (WSD) and auto-
matic thesaurus generation. Noun-modifier pairs such
as flu virus, storm cloud, expensive book, etc. are fre-
quent in English language. In fact, WordNet contains
more than 26, 000 noun-modifier pairs. Natase and Sz-
pakowicz [1] classified noun-modifiers into five classes
according to the relations between the noun and the
modifier. Turney [2] used a relational similarity mea-

†The University of Tokyo
DOI: 10.1587/transinf.E93.D.1

sure to compute the similarity between noun-modifier
pairs and classify them according to the semantic re-
lations that hold between a noun and its modifier. In
WSD [3] identifying the various relations that hold be-
tween an ambiguous word and its context is vital. For
example, the word “plant” can refer to an industrial
plant or a living organism. If the word “food” appears
in the immediate context of “plant”, then a typical
WSD approach is to compare the attributional simi-
larity between “food” and “industrial plant” to that of
“food” and “living organism” and to select the sense
with higher attributional similarity. Considering the
fact that industrial plants often produce food and liv-
ing orgasms often serve as food, the decision may not
be very clear. However, if we can identify the relation
between “food” and “plant” as “food for the plant”
then it strongly suggests that the plant is a living or-
ganism. On the other hand, a relation such as “food at

the plant” suggests the plant to be an industrial plant.
To accurately measure the relational similarity be-

tween two word pairs, we must overcome several chal-
lenges. First, the relations themselves are only implic-
itly stated by a word pair. Therefor, we must first
extract the relation that exists between the two words
in each of the word pairs. For example, from the word
pair (ostrich, bird), we must first identify the relation
X is a large Y. Second, there might exist more than
one relation between two words. For example, in ad-
dition to the relation X is a large Y, there exists the
relation X is a flightless Y between the two words os-
trich and bird. Third, we must identify how much each
relation contributes to the relational similarity between
two word pairs. For example, a general relation such
as X and Y which holds between many words might
contribute less towards relational similarity, whereas a
specific relation such asX is a large Y might contribute
more. However, it is not known a priori as to how much
each relation contributes to the relational similarity be-
tween two given word pairs. In this paper, we follow a
supervised machine learning approach to measure the
relational similarity between two given word pairs.

We model the problem of detecting relational sim-
ilarity as a binary classification problem in which given
two word pairs, (A,B) and (C,D) the classifier must
return a positive or a negative decision depending on
whether the word pair (A,B) is relationally similar to

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.1 JANUARY 2010

Question: Ostrich is to Bird as:
a. Cub is to Bear
b. Lion is to Cat

c. Ewe is to Sheep
d. Turkey is to Chicken
e. Jeep is to Truck

Fig. 1 An SAT word analogy question. Choice (b) is the an-
swer.

the word pair (C,D) or otherwise. We use Support
Vector Machine (SVM)s [4] as the binary classifier and
converts the distance from the decision hyperplane into
a calibrated posterior probability, thereby enabling us
to measure degree of relational similarity between two
given word pairs. Following previous work on relational
similarity, we represent the implicit semantic relations
that exist between two words using lexical patterns.
Specifically, we use the method proposed by Bollegala
et al. [5] to extract lexical patterns to represent seman-
tic relations that exist between two given words using
text-snippets returned from a Web search engine. Snip-
pets provide useful information about the relations that
hold between words. For example, Google∗ returns the
snippet ...the ostrich is the largest bird in the world

and can be found in South Africa... for the conjunc-
tive query ostrich AND bird. This snippet alone sug-
gests that ostrich is a large bird. We automatically
extract lexical patterns that describe the relations im-
plied by the two words in a word pair and compute the
relational similarity using a machine learning approach.
Moreover, by using snippets, we can obviate the need
to download Web pages which can be time consuming
if those pages are large.

2. Related Work

Scholastic Aptitude Test (SAT) word analogy questions
have been used for evaluating relational similarity mea-
sures. An SAT word analogy question consists of a word
pair (which we designate as the question word pair) and
five candidate answer word pairs (which we designate
as the candidate word pairs). Only one of the candi-
date word pairs is analogous to the source word pair
in an SAT word analogy question. An examinee is re-
quired to select the analogous word pair to the question
word pair. An example is shown in Figure 1. The rela-
tively low average human score of 57% reported for the
SAT word analogy questions indicates that detecting
the correct word pair among a given set of candidates
is difficult for even humans.

Turney et al. [6] combined 13 independent mod-
ules by considering the weighted sum of the outputs of
each individual module to solve SAT analogy questions.
The best performing individual module was based on
Vector Space Model (VSM). In the VSM approach to

∗http://google.com

measuring relational similarity [7], first a vector is cre-
ated for a word-pair (X,Y) by counting the frequencies
of various lexical patterns containing X and Y. In their
experiments they used 128 manually created patterns
such as “X of Y ”, “Y of X ”, “X to Y ” and “Y to X ”.
These patterns are then used as queries to a search en-
gine and the number of hits for each query is used as
elements in a vector to represent the word pair. Finally,
the relational similarity is computed as the cosine of the
angle between the two vectors representing each word-
pair. This VSM approach achieves a score of 47% on
college-level multiple-choice SAT analogy questions. A
SAT analogy question consists of a target word-pair and
five choice word-pairs. The choice word-pair that has
the highest relational similarity with the target word-
pair in the question is selected by the system as the
correct answer.

Turney [2] proposes Latent Relational Analysis
(LRA) by extending the VSM approach in three ways:
a) lexical patterns are automatically extracted from a
corpus, b) the Singular Value Decomposition (SVD) is
used to smooth the frequency data, and c) synonyms
are used to explore variants of the word-pairs. LRA
achieves a score of 56% on SAT analogy questions.
Both VSM and LRA require a large number of search
engine queries to create a vector representing a word-
pair. For example, with 128 patterns, VSM approach
requires at least 256 queries to compute relational simi-
larity. LRA considers synonymous variants of the given
word pairs, thus requiring even more search engine
queries. In contrast, our proposed method matches nu-
merous patterns among the text snippets retrieved from
a Web search engine for the two words in a word pair.
We do not search using each extracted pattern as done
in VSM and LRA methods. Therefore, the number of
Web search queries does not increase with the num-
ber of patterns extracted. This enables us to represent
relations using a large number of patterns.

Veale [8] proposed a relational similarity measure
based on taxonomic similarity in WordNet. He eval-
uates the quality of a candidate analogy A:B::C:D by
looking for paths in WordNet, joining A to B and C to
D. Then, the relational similarity is computed based on
the similarity between the A:B paths and C:D paths.
If the set of WordNet relations that connects A to B
and the set of WordNet relations that connects C to
D has many relations in common (i.e. a high overlap
between the two sets), then the relational similarity
between two word pairs (A,B) and (C,D) is high. His
method achieves a score of 43 on the SAT word analogy
questions. However, the dependence on the WordNet
means that this method cannot compute the relational
similarity when the word pairs have words that do not
appear in the WordNet.

Bollegala et al. [9] proposed a supervised metric
learning approach to solve SAT word analogy ques-
tions. First, they use SAT questions to induce pair-

BOLLEGALA et al.: MEASURING RELATIONAL SIMILARITY BETWEEN WORD PAIRS

3

wise distance constraints between word pairs. Next, a
Mahalanobis distance metric is learnt from the pair-
wise constraints. They use the information theoretic
metric learning (ITML) algorithm to learn the Ma-
halanobis distance metric. Evaluations are conducted
both on SAT word analogy questions as well as on a
novel dataset (ENT dataset) that consists of named
entities frequently found on the Web. They use lex-
ical patterns to represent the relations that exist be-
tween two words. They show that by clustering the
lexical patterns that represent the same semantic re-
lation, one can improve the accuracy of the relational
similarity measurement. However, both clustering and
learning distance metrics in high dimensional lexical
pattern space is computationally expensive.

3. Method

The proposed method can be described in two main
steps: identifying the implicit relations between the two
words in each word pair and learning a binary classifica-

tion model to recognize relationally similar word pairs.
Next, we describe each of those steps in detail.

3.1 Pattern Extraction

We use the subsequence lexical pattern extraction algo-
rithm first proposed by Bollegala et al. [9] for the task
of representing the implicit semantic relations that ex-
ist between two words. For completeness, we briefly
describe this algorithm here. For further details refer
the original paper.

To identify the implicit relations between two
words X and Y, we first query a web search engine
using the phrasal query “X * * * * * * * Y”. Here,
the wildcard operator “*” would match any word or
nothing. This query retrieves snippets that contain
both X and Y within a window of 7 words. For exam-
ple, Google returns the snippet shown in Fig.2 for the
word pair (lion, cat). We use PrefixSpan (i.e., prefix-
projected sequential pattern mining) [10] algorithm to
extract frequent subsequences from snippets that con-
tain both X and Y. PrefixSpan extracts all word sub-
sequences which occur more than a specified frequency
in snippets. We select subsequences that contain both
query words (eg. lion and cat) and replace the query
words respectively with variables X and Y to construct
lexical patterns. For example, some of the patterns ex-
tracted by the proposed algorithm from the snippet in
Figure 2 are X a large Y, X a large Y of and X ,

a large social Y. PrefixSpan algorithm is particularly
attractive for the current task because it can efficiently
extract a large number of lexical patterns. Moreover,
its ability to skip words when creating patterns enables
us to capture relations between words that appear at a
distance in snippets.

...lion, a large heavy-built social cat

of open rocky areas in Africa ...

Fig. 2 A snippet returned by Google for the query “lion * * *
* * * * cat”.

3.2 Pattern Selection

We used the pattern extraction algorithm described
in section 3.1 to extract lexical patterns for 374 SAT
multiple-choice analogy questions. This dataset was
first proposed by Turney and Littman [7] as a bench-
mark dataset to evaluate relational similarity measures.
Generally, there are six word pairs in each question (i.e.
one word pair for the question and five choices) which
amounts to 2176 (cf. some questions have less than
5 candidates) word-pairs. For each word pair, using
Yahoo BOSS Search API† we download 7000 snippets
on average. Yahoo BOSS Search API allows only 1000
snippets to be retrieved for a single query. To overcome
this limitation, we issue multiple contextual queries by
varying the number of asterisks between the two words
in a query. This process is repeated with the two words
inter-changed. Finally, duplicate snippets are removed
from the retrieved search results.

In addition to the snippets, we also select the ti-
tles of pages (also returned by the Yahoo BOSS Search
API alongside with the search results) for extracting
patterns. The corpus of snippets and titles down-
loaded from all SAT word pairs contains 412, 110, 644
tokens. We run the pattern extraction algorithm de-
scribed in the previous section on this corpus and ex-
tract 12, 712, 608 lexical patterns. However, this set of
patterns is very sparse and most patterns occur only a
few times in the corpus. Consequently, we select pat-
terns that occur at least 50 times in the corpus for the
remainder of the experiments described in this paper.
The selected set contains 48, 253 lexical patterns. Top
ranked 10 patterns are shown in Table 1 alongside with
their frequencies in the corpus.

3.3 Training

For given two pairs of words (A,B) and (C,D), we
create a feature vector using the patterns selected in
section 3.1. First, we record the frequency of occur-
rence of each selected pattern in snippets for each word
pair. We call this the pattern frequency. It is a lo-
cal frequency count, analogous to term frequency in in-
formation retrieval [11]. Second, we combine the two
pattern frequencies of a pattern (i.e., frequency of oc-
currence in snippets for (A,B) and that in snippets
for (C,D)) using various feature functions to compute

†http://developer.yahoo.com/search/boss/

4
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.1 JANUARY 2010

Table 1 Most frequent patterns in the corpus.

Rank Frequency Lexical Pattern

1 272892 Y and X

2 240802 X and Y

3 91720 X of Y

4 78125 Y or X

5 78011 X the Y

6 74428 Y to X

7 71260 X or Y

8 65470 Y of X

9 63986 X to Y

10 55062 X Y s
11 52106 X Y .
12 44049 X , Y
13 42708 Y the X

14 40434 Y X s
15 37608 X Y ,
16 36678 X of the Y

17 34725 Y , X
18 33851 Y .X
19 33331 Y and X .
20 31484 Y X .

the feature-values for training. The different feature
functions experimented in the paper are explained in
Section 4.1.

We model the problem of computing relational
similarity as a one of identifying analogous and non-
analogous word pairs, which can be solved by training a
binary classifier. Using SAT analogy questions as train-
ing data, we train a two-class support vector machine
(SVM) as follows. From each question in the dataset,
we create a positive training instance by considering
(A,B) to be the word pair for the question (i.e. stem)
and (C,D) to be the word pair for the correct answer.
Likewise, a negative training instance is created from a
question word pair and one of the incorrect answers.

The trained SVM model can then be used to com-
pute the relational similarity between two given word
pairs (A,B) and (C,D) as follows. First, we represent
the two word-pairs by a feature vector F of pattern
frequency-based features. Second, we define the re-
lational similarity RelSim((A,B), (C,D)) between the
two word-pairs (A,B) and (C,D) as the posterior prob-
ability Prob(F |analogous) that feature vector F be-
longs to the analogous-pairs (positive) class,

RelSim((A,B), (C,D)) = Prob(F |analogous).

Being a large margin classifier, the output of an SVM
is the distance from the decision hyper-plane. For the
purpose of solving SAT questions, we can directly use
the distance from the decision hyper-plane and rank
the candidate answers. However, distance from the de-
cision hyper-plane is not a calibrated posterior prob-
ability that lies between [0, 1] range. We use sigmoid
functions to convert this uncalibrated distance into a
calibrated posterior probability using the method pro-
posed by Platt [12].

4. Experiments and Results

For the experiments in this paper we used the 374 SAT
college-level multiple-choice analogy questions dataset
which was first proposed by Turney et al. [6]. We com-
pute the total score for answering SAT questions as
follows,

score =
100× no. correct

total no. of questions
. (1)

4.1 Feature Functions

In previous sections we described a method to represent
a word pair using a pattern frequency vector. However,
we are interested in measuring relational similarity be-
tween two word pairs. Therefore, we must somehow
represent two word pairs using a single feature vector.
It is not obvious how to construct a single feature vector
to represent two word pairs using pattern frequencies
that appear in two separate feature vectors representing
each word pair.

Bollegala et al. [5] defined several functions to
combine features from two vectors to construct a fea-
ture vector for two word pairs. However, they only eval-
uated symmetric functions because previous results in
psychological experiments investigating similarity be-
tween words suggest that although similarity is an
asymmetric phenomenon, the degree of asymmetry is
less than 5%. However, this does not limit us to use
only symmetric feature functions. We extend the set of
feature functions proposed in [5] to include asymmetric
feature functions and evaluate their effect empirically.
Next, we describe each of the feature functions we in-
vestigate in this paper.

Let us assume the frequency of a pattern v in two
word pairs (A,B) and (C,D) to be fAB and fCD, re-
spectively. We compute the value assigned to the fea-
ture corresponding to pattern v in the feature vector
that represents the two word pairs (A,B) and (C,D)
using the following four symmetric feature functions.

1. |fAB − fCD|: The absolute value of the difference
of pattern frequencies is considered as the feature
value.

2. (fAB − fCD)
2: The square of the difference of pat-

tern frequencies is considered as the feature value.

3. fAB+fCD: The sum of pattern frequencies is con-
sidered as the feature value.

4. fAB×fCD: The product of the pattern frequencies
is considered as the feature value.

5. JS divergence: Ideally, if two word pairs are anal-
ogous we would expect to see similar distribu-
tions of patterns in each word pair. Consequently,
the closeness between the pattern distributions
can be regarded as an indicator of relational sim-
ilarity. We define a feature function based on

BOLLEGALA et al.: MEASURING RELATIONAL SIMILARITY BETWEEN WORD PAIRS

5

Jensen-Shannon divergence [13] as a measure of the
closeness between pattern distributions. Jensen-
Shannon (JS) divergence DJS(P ||Q), between two
probability distributions P and Q is given by,

DJS(P ||Q) =
1

2
(DKL(P ||M) +DKL(Q||M)).(2)

Here, M = (P+Q)/2 andDKL is Kullback-Leibler
divergence, which is given by,

DKL(P ||Q) =
∑

v

P (v) log
P (v)

Q(v)
. (3)

Here, P (v) denotes the normalized pattern fre-
quency of a pattern v in the distribution P . Pat-
tern frequencies are normalized s.t.

∑
v
P (v) = 1

by dividing the frequency of each pattern by the
sum of frequencies of all patterns. We define the
contribution of each pattern towards the total JS-
divergence in Formula 2 as its feature value, JS(v).
Substituting Formula 3 in 2 and collecting the
terms under summation, we derive JS(v) as,

JS(v) =
1

2
(p log

2q

p+ q
+ q log

2p

p+ q
). (4)

Here, p and q respectively denote the normalized
pattern frequencies of fAB and fCD.

All of the above-described feature functions are
symmetric in their arguments (i.e. we obtain the same
feature value even if we reverse the two feature vectors
given as arguments for the feature function). Next, we
define asymmetric feature functions.

1. fAB/fCD: The ratio between the frequency of pat-
tern v in the two vectors is taken as the feature
value. If fCD is zero, then we set the feature value
to zero.

2. fCD/fAB: Same as above, except we consider the
reversed ratio. If fAB is zero, then we set the fea-
ture value to zero.

3. fAB −fCD: We subtract frequencies of patterns in
each word pair and take it as the feature value.

4. fCD−fAB: Same as above, except we consider the
reversed difference.

5. KL divergence, DKL(fAB||fCD): Each term
within the summation in the definition for KL di-
vergence given by Equation 3 can be considered as
the contribution of a pattern v towards the total
divergence between the two distributions. This is
an asymmetric measure. We use it to compute an
asymmetric feature function. Here, we have used
the notation DKL(·||·) to denote the contribution
of a pattern v towards the total divergence. Note
that fAB and fCD are not distributions.

6. Reverse KL divergence, DKL(fCD||fAB): Same as
the above, except we consider the reverse of the
two pattern frequencies.

There are 5 + 6 = 11 different feature functions.
We use those feature functions to construct feature vec-
tors for given two pairs of words. Next, we train a bi-
nary support vector machine as described in Section
3.3. We use five popular kernels in our experiments:
linear, quadratic (degree = 2), cubic (degree = 3), Ra-
dial Basis Functions (RBF), and the Sigmoid kernel.
To evaluate the effect of different kernels with different
feature functions, we use each feature function sepa-
rately with each kernel function to train and test on
SAT word analogy questions. We use svmlight† as the
SVM implementation in our experiments. We do not
tune any of the parameters in SVM including the ker-
nel parameters. All parameters are set to their default
values in svmlight. To avoid any bias towards the dif-
ference in the range of absolute values of features, we
normalize each feature to range [0, 1] by dividing from
the maximum value of that feature. There are 374 word
analogy questions in the SAT dataset. Each question
typically has 5 candidate answer pairs, whereas for a
small number of questions there are only 4 candidate
answer pairs. There is only one correct answer word
pair for each SAT word analogy question. We ran-
domly select 50 questions for testing and the remaining
374 − 50 = 324 questions are used as training data.
Experimental results for are presented in Table 2.

From Table 2, we see that the combination of mul-
tiplicative feature function (fAB × fCD) with RBF ker-
nel produces the maximum SAT score of 58% on the
test dataset. Among all asymmetric feature functions,
the KL divergence (DKL(fAB||fCD)) reports the max-
imum SAT score when used with the cubic kernel. The
performance of fAB × fCD and DKL(fAB||fCD) are
comparable across different kernel functions, except in
Sigmoid kernel where KL divergence perform poorly.
Considering the fact that SVMs are sensitive to the ker-
nel parameters, we believe that the poor performance
observed with the Sigmoid kernel is a result of the sub-
optimal kernel parameter values. All kernels perform
consistently well when used with multiplicative feature
function even without any parameter tuning. There-
fore, we can conclude that multiplicative feature func-
tion is robust against different kernel choices when used
in SVMs.

It is noteworthy that both subtraction and divi-
sion of feature values perform poorly with all kernel
functions. Considering the fact that random guessing
on SAT dataset yields an SAT score of 20% the per-
formance of those asymmetric feature functions is not
significantly different from the random baseline. KL
divergence-based feature function clearly outperforms
all other asymmetric feature functions when used with
any of the kernels considered in this experiment. This
shows that although asymmetric feature functions are
useful to detect relational similarity, naively combining

†http://www.cs.cornell.edu/People/tj/svm_light/

6
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.1 JANUARY 2010

Table 2 Effect of feature functions and kernel functions.

Function Linear deg=2 deg=3 RBF Sigmoid

|fAB − fCD | 24 28 28 20 18
(fAB − fCD)2 22 20 24 24 18
fAB + fCD 26 32 36 10 12
fAB × fCD 44 50 46 58 50
JS divergence 24 26 28 24 22

fAB/fCD 22 12 14 16 14
fCD/fAB 26 22 14 16 14
fAB − fCD 26 26 24 20 22
fCD − fAB 26 26 24 20 22
DKL(fAB ||fCD) 46 50 52 36 20
DKL(fCD ||fAB) 22 20 16 16 8

features to produce asymmetric feature functions is not
desirable. It is particularly interesting to note that the
KL divergence (DKL(fAB||fCD)) outperforms its coun-
terpart, the reverse KL divergence (DKL(fCD||fAB)).
This result shows that in SAT word analogy questions
we must take into consideration the fact that we are
comparing a single question word pair with multiple
candidate answer pairs. Lexical patterns that occur in a
question word pair (i.e. (A,B)) define the relation that
is considered by that question. In DKL(fAB||fCD), the
log ratios are weighted by the probabilities of patterns
that occur in the question word pair. Therefore, diver-
gences from the patterns that occur frequently in the
question word pair are weighted higher than those that
occur less frequently in question word pair.

From Table 2, we can see that quadratic and cu-
bic kernels outperform the linear kernel in the best
symmetric (multiplicative) and asymmetric (KL di-
vergence) feature functions. Unlike the linear kernel,
which considers each feature independently, polynomial
kernels consider combinations of features. Therefore,
the superior performance reported by polynomial ker-
nels against the linear kernel suggests that the lexical
patterns that we use as features are not independent.
This can be explained considering the fact that there
exist multiple lexical patterns that represent the same
semantic relation.

4.2 Comparison against previous work

Table 3 summarizes various relational similarity mea-
sures proposed in previous work. All algorithms in Ta-
ble 3 are evaluated on the same SAT analogy questions.
Score (given by Formula 1) is the percentage of cor-
rectly answered questions to the total number of ques-
tions (374) in the dataset. An SAT question typically
contain 5 choices. Therefore, a random guessing algo-
rithm would obtain a score of 20. The score reported
by average senior high-school student is about 57 [7].
We performed 5-fold cross validation on SAT questions
to evaluate the performance of the proposed method
using the multiplicative feature function and the RBF
kernel, which we found to be the best combination in

Table 2. We do not tune any parameters in the RBF
kernel nor the SVM. The results reported in Table 2
must not be directly compared against the SAT scores
in Table 3 because in Table 2 we do not perform a cross-
validation over the entire 374 questions instead use a
randomly selected test set of 50 questions for efficiency
reasons when training with a wide range of kernel func-
tions and feature functions.

The first 13 algorithms were proposed by Turney
et al. [6], in which they combined these modules using a
weight optimization method. For given two word pairs,
the phrase vector (row 1) algorithm creates a vector
of manually created pattern-frequencies for each word-
pair and compute the cosine of the angle between the
vectors. Algorithms in rows 2-11 use WordNet to com-
pute various relational similarity measures based on dif-
ferent semantic relations defined in WordNet. Similar-

ity:dict (row 12) and Similarity:wordsmith (row 13)
respectively use Dictionary.com and Wordsmyth.net

to find the definition of words in word-pairs and com-
pute the relational similarity as the overlap of words in
the definitions. The proposed method outperforms all
those 13 individual modules reporting a score of 46.9,
which is comparable to the combined approach which
has an SAT score of 45.

The Symmetric Features (row 15) [5] only uses
symmetric feature functions when generating a feature
vector to represent two pairs of words. However, as
we already discussed in Table 2, asymmetric feature
functions such as the KL divergence measure are more
adapted for answering SAT word analogy questions
where there exist a distinction between the question
word pair and the candidate answer word pairs. More-
over, the number of lexical patterns used in our pro-
posed method is much larger (48, 253) than the Sym-

metric Features method which uses a relatively small
set of 9, 980. Therefore, we can represent a semantic
relation that exists between two words using a richer
feature representation.

The proposed method outperforms the WordNet-
based relational similarity measure [8]. One limitation
of the WordNet-based relational similarity measure is
that it cannot compute the relational similarity be-
tween word pairs where at least one of the four words
is not in the WordNet. Because named entities are not
well-covered by WordNet, we believe that the proposed
relational similarity measure can be useful when com-
puting relational similarity between pairs that involve
named entities. In future work, we intend to evaluate
the proposed method using named entities.

The SAT score reported by the proposed method
is comparable to the VSM method. However, the pro-
posed method is outperformed by the LRA method.
One reason for this might be that we only consider co-
occurrences of patterns in snippets, whereas VSM, per-
tinence and LRA use co-occurrences of patterns in a
large corpus. Therefore, it is interesting to explore the

BOLLEGALA et al.: MEASURING RELATIONAL SIMILARITY BETWEEN WORD PAIRS

7

Table 3 Comparison against previous work.

Algorithm score Algorithm score
1. Phrase Vectors 38.2 2. Thesaurus Paths 25
3. Synonym 20.7 4. Antonym 24
5. Hypernym 22.7 6. Hyponym 24.9
7. Meronym:substance 20 8. Meronym:part 20.8
9. Meronym:member 20 10. Holonym:substance 20
11. Holonym:member 20 12. Similarity:dict 18
13. Similarity:wordsmyth 29.4 14. Combined [6] 45
15. Symmetric Features [5] 40.1 16. Proposed (RankSVM) 46.9
17. WordNet [8] 42.8 18. VSM [7] 47.1
19. Pertinence [14] 53.5 20. LRA [2] 56.1

possibility of supervised learning approaches to measur-
ing relational similarity using co-occurrences in a larger
corpus. Although there are multiple incorrect answers
in an SAT question, they are not ranked by their degree
of relational similarity in the SAT benchmark dataset.
If we can obtain some ranking information for the in-
correct answers, then we can use that to further guide
the learning process. One possibility is to rank each
incorrect answer according to the number of times it
was selected by examinees. If many examinees select
an incorrect answer, then it is likely that it is relation-
ally similar to the question word pair although it is not
the correct answer to the question.

5. Conclusion

We proposed a supervised binary classification ap-
proach to measure the relational similarity between two
given word pairs. First, we represented a word pair us-
ing a feature vector where we select lexical patterns
that co-occur with that word pair in text snippets re-
trieved from a Web search engine. Second, we use
the SAT word analogy dataset to generative positive
(relationally similar) and negative (relationally dissim-
ilar) training instances to train a binary support vector
classifier. The distance from the decision hyperplane
is transformed into a posterior probability to measure
the degree of relational similarity between two word
pairs. Our proposed method achieved an SAT score of
46.9 on a benchmark dataset of 374 SAT word analogy
questions. In our future work, we intend to study the
effectiveness of the proposed method to measure the
relational similarity between named entities.

References

[1] V. Natase and S. Szpakowicz, “Exploring noun-modifier se-
mantic relations,” Proc. of fifth int’l workshop on compu-
tational semantics (IWCS-5), pp.285–301, 2003.

[2] P. Turney, “Similarity of semantic relations,” Computa-
tional Linguistics, vol.32, no.3, pp.379–416, 2006.

[3] S. Banerjee and T. Pedersen, “Extended gloss overlaps
as a measure of semantic reladeness,” Proc. of IJCAI’03,
pp.805–810, 2003.

[4] V. Vapnik, Statistical Learning Theory, Wiley, Chichester,
GB, 1998.

[5] D. Bollegala, Y. Matsuo, and M. Ishizuka, “Www sits the

sat: Measuring relational similarity on the web,” ECAI
2008: Proceedings, 18th European Conference on Artificial
Intelligence, July 21-25, 2008, Patras, Greece: Including
Prestigious Applications of Intelligent, pp.333 – 337, 2008.

[6] P. Turney, M. Littman, J. Bigham, and V. Shnayder, “Com-
bining independent modules to solve multiple-choice syn-
onym and analogy problems,” Proc. of RANLP’03, pp.482–
486, 2003.

[7] P. Turney and M. Littman, “Corpus-based learning of
analogies and semantic relations,” Machine Learning,
vol.60, pp.251–278, 2005.

[8] T. Veale, “Wordnet sits the sat: A knowledge-based ap-
proach to lexical analogy,” Proc. of 16th European Confer-
ence on Artificial Intelligence (ECAI’04), pp.606–612, 2004.

[9] D. Bollegala, Y. Matsuo, and M. Ishizuka, “Measuring
the similarity between implicit semantic relations from the
web,” WWW 2009, pp.651 – 660, 2009.

[10] J. Pei, J. Han, B. Mortazavi-Asi, J. Wang, H. Pinto,
Q. Chen, U. Dayal, and M. Hsu, “Mining sequential pat-
terns by pattern-growth: the prefixspan approach,” IEEE
Transactions on Knowledge and Data Engineering, vol.16,
no.11, pp.1424–1440, 2004.

[11] G. Salton and C. Buckley, Introduction to Modern Infor-
mation Retreival, McGraw-Hill Book Company, 1983.

[12] J. Platt, “Probabilistic outputs for support vector machines
and comparison to regularized likelihood methods,” Ad-
vances in Large Margin Classifiers, pp.61–74, 2000.

[13] C.D. Manning and H. Schütze, Foundations of Statistical
Natural Language Processing, The MIT Press, Cambridge,
Massachusetts, 2002.

[14] P. Turney, “Expressing implicit semantic relations without
supervision,” Proc. of Coling/ACL’06, pp.313–320, 2006.

Danushka Bollegala received his BS,
MS and PhD degrees from the Univer-
sity of Tokyo, Japan in 2005, 2007, and
2009. He is currently an assistant profes-
sor at the Graduate School of Information
Science and Technology, the University of
Tokyo. His research interests are natural
language processing, Web mining and ar-
tificial intelligence.

8
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.1 JANUARY 2010

Yutaka Matsuo is an associate pro-
fessor at Institute of Engineering Innova-
tion, the University of Tokyo, Japan. He
received his BS, MS, and PhD degrees
from the University of Tokyo in 1997,
1999, and 2002. He joined National Insti-
tute of Advanced Industrial Science and
Technology (AIST) from 2002 to 2007.
He is interested in social network mining,
text processing, and semantic web in the
context of artificial intelligence research.

Mitsuru Ishizuka is a professor at
Graduate School of Information Science
and Technology, the University of Tokyo,
Japan. He received his BS and PhD de-
grees in electronic engineering from the
University of Tokyo in 1971 and 1976.
His research interests include artificial in-
telligence, Web intelligence, and lifelike
agents.

