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Abstract
Domain adaptation is the task of transforming a model trained using data from a source domain
to a different target domain. In Unsupervised Domain Adaptation (UDA), we do not assume any
labelled training data from the target domain. In this paper, we consider the problem of UDA
in the contact of Part-of-Speech (POS). Specifically, we study the effect of data imbalance on
UDA of POS, and compare different pivot selection strategies for accurately adapting a POS tagger
trained using some source domain data to a target domain. We propose the use of F-score to
select pivots using available labelled data in the source domain. Our experimental results on using
benchmark dataset for cross-domain POS tagging, show that using frequency combined with F-
scores for selecting pivots in the source labelled data produces the best results.
Keywords: Domain Adaptation, Data Imbalance, Part-of-Speech Tagging, Pivot Selection

1. Introduction

In many real-world applications involving machine learning methods we frequently encounter two
important problems: (a) the training and testing data distributions being different (data mismatch) (Blitzer
et al., 2006, 2007; Ben-David et al., 2009), and (b) large discrepancy in terms of the amount of train-
ing data available for the different target classes we would like to learn (data imbalance) (Provost,
2000; Guo and Viktor, 2004; Zheng et al., 2004).

A popular solution to the first problem is Domain Adaptation (DA). DA considers the problem
of adapting a machine learning model from a source domain towards a different target domain.
For example, we would like to train a sentiment classifier for classifying the sentiment on iPads.
Let us further assume that we do not have any labelled training data expressing user sentiment
associated with iPads. However, we might have some labelled training data expressing user sen-
timent on iPhones. Considering that iPhones and iPads have some resemblance in terms of their
functionalities, we might be able to first use the available labelled data for iPhones and train a sen-
timent classifier. We could then adapt this trained iPhone sentiment classifier to classify the user
reviews of iPads. In this example, we assumed the availability of unlabelled data for both iPhone
source domain and iPad target domain, whereas labelled training instances were available only for
the source domain. This particular DA setting is referred to as Unsupervised Domain Adaptation
(UDA) (Daumé III, 2007). In contrast, if we had at least a few labelled training instances for the
target domain, in addition to the labelled training instances we have for the source domain, then it is
referred to as Supervised Domain Adaptation (SDA) (Daumé III et al., 2010). UDA is particularly
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challenging compared to SDA because of the lack of labelled training data for the target domain. In
this paper we consider the effect of the distribution of the source domain’s labelled data on UDA.

Data imbalance arises when we have unequal numbers of training instances for the different
target classes we would like to learn (Chawla et al., 2004; Branco et al., 2016; Krawczyk, 2016).
For example, in a sentiment classification setting, we might have a disproportionately large amount
of positively labelled data to negatively labelled data. If we simply mix all available data and train
a classifier, it might be incorrectly biased towards predicting the positive label by default. Under or
oversampling methods that respectively select a subset of training instances from the majority class
or take multiple samples from the minority class have been proposed to overcome data imbalance
issues in machine learning (He and Garcia, 2009).

We study cross-domain part-of-speech (POS) tagging (Schnabel and Schütze, 2013; Schanbel
and Schütze, 2014) in which we can encounter both the data mismatch and data imbalance problems
discussed above. POS tagging is the task of assigning POS categories such as noun, verb, adjective,
adverb, etc. to each word in a sentence. POS tagging is one of the fundamental steps in most nat-
ural language processing (NLP) applications such as dependency parsing, sentiment classification,
machine translation and text summarisation. For example, adjectives are known to carry useful in-
formation related to the sentiment of a user who has written a review about a product. Consequently,
using adjectives as features for training a classifier to predict sentiment has been an effective strat-
egy. In the cross-domain POS setting, we would like to train a POS tagger using data from a source
domain and apply the trained POS tagger on a different target domain. For example, we could train
a POS tagger using manually annotated Wall Street Journal articles and adapt the learnt POS tagger
to tag POS in social media such as tweets. In the UDA of POS taggers we do not assume any POS
labelled training data for the target domain.

As we later see in our analysis, the POS distribution of words is highly uneven. Some POS
categories such as nouns and adjectives are highly frequent, whereas adverbs are much less frequent.
Therefore, when we adapt a POS tagger to a new domain we must take into account the imbalance of
training data for the different POS categories. Several heuristic methods have been proposed in prior
work on cross-domain POS tagging for selecting pivots as we discuss later in Section 2. However,
to the best of our knowledge, prior work on cross-domain POS tagging has largely ignored this data
imbalance issue and have focused purely on the adaptation task. In this paper, we study the effect of
data imbalance on UDA applied in cross-domain Part-of-Speech (POS) tagging. UDA methods first
select a subset of features that are common to both source and target domains, which are referred to
as pivots. Next, a projection is learnt from the source and target domains to the space spanned by
the pivots. The source domain’s labelled training data can then be used to learn a POS tagger in this
shared pivot space. By using common features as pivots we can reduce the dissimilarity between
the two domains, thereby improving the accuracy of POS tagging in the target domain.

Our contributions in this paper can be summarised as follows:

• We compare the effect of previously proposed pivot selection strategies for selecting pivots
for UDA of POS tagging under data imbalance. Specifically, we compare frequency (FREQ),
mutual information (MI), pointwise mutual information (PMI) and positive pointwise mutual
information (PPMI) as heuristics for selecting pivots. These heuristics can be computed either
using labelled data or unlabelled data giving rise to two flavours.

• We propose a pivot selection method using the F-score for UDA of POS tagging, aimed at the
problem of high imbalance ratio in POS categories. This method prefers categories with lower
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performance, measured using F-score, when selecting pivots, thereby selecting more pivots to
cover low performing categories. We use only labelled data from the source domain training
instances when measuring F-scores. In our experiments, we see that the proposed F-score-
based pivot selection method indeed improves the POS tagging accuracy of low-performing
categories, thereby improving the overall performance.

2. Related Work

Blitzer et al. (2006) propose one Structural Correspondence Learning (SCL) (Blitzer et al., 2006)
for adapting a POS tagger from domain to another. SCL uses the frequency of a word in the source
and the target domain to determine its appropriateness as a pivot. A word that appears frequently in
both the source and the target domain is likely to be independent of the domains and more suitable
for domain adaptation. SCL train linear predictors to predict the presence of pivots using other
features. These pivot predictors can then be used to predict the probability of a particular pivot in
a sentence even if that pivot does not appear in that sentence. In effect, the pivot predictors can
be seen as representing a projection from the source (or target) feature spaces to the common pivot
space.

In addition to FREQ, various pivot selection strategies for DA have been proposed in the liter-
ature such as mutual information (MI), pointwise mutual information (PMI) and positive pointwise
mutual information (PPMI). Blitzer et al. (2006) proposed to select features that frequently oc-
curred in the two domains to be pivots for cross-domain POS tagging. Some other strategies were
proposed for cross-domain sentiment classification. Blitzer et al. (2007) proposed to select fea-
tures with higher MI between labels to be pivots. Pan et al. (2010) proposed to select features with
lower MI between different domains to be pivots. Bollegala et al. (2015) and Bollegala et al. (2014)
proposed to select pivots using PMI and PPMI respectively.

Although we focus on pivot selection strategies for domain adaptation in this paper, we note
that there are alternative DA methods that do not require pivot selection. For example, prediction-
based lower dimensional word embeddings have been used as features for reducing the mismatch
between source and target sentences thereby adapting a POS tagger trained using source domain data
to a different target domain (Schanbel and Schütze, 2014). Instance weighting methods emphasise
source domain labelled data instances that are similar to the target domain during training (Jiang and
Zhai, 2007). Autoencoders have also been used to learn domain-independent feature representations
which can then be used for learning a classifier (Ziser and Reichart, 2016). We do not consider these
pivotless DA methods in this paper.

3. Pivot Selection for Unsupervised Cross-domain Part-of-Speech Tagging

The POS tag of a word depends on the POS tags of the preceding words; sequence labellers such as
hidden markov models (HMMs) and conditional random fields (CRFs) have been successfully used
for learning accurate POS taggers (Kudo et al., 2004). However, by encoding structural features,
it is possible to obtain comparable performance using sequence labellers as well as classifiers on
POS tagging (Keerthi and Sundararajan, 2007). Therefore, in this work we model POS tagging
as a multi-class classification problem where for a given word, we must select its correct POS tag
from a pre-defined finite set of POS categories. This modelling assumption enables us to straight-
forwardly extend previously proposed pivot selection methods for cross-domain sentiment classifi-
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cation. However, sentiment classification is often modelled as a binary classification task (positive
vs. negative sentiment) whereas POS tagging is a multi-class classification task. For example, the
PennTreebank POS tag set contains 36 categories1.

To extend the pivot selection methods proposed for binary classification tasks (i.e. sentiment
classification) to multi-class classification tasks (i.e. POS tagging) we collate all training data for
the categories to a single category, except for the POS category of interest. This is similar to building
a one vs. rest binary classifier for each POS category. Specifically, the score function φ(x,D) for a
feature x in a set of training instances D is computed by heuristic pivot selection methods such as:
FREQ, MI, PMI and PPMI. The frequency of a feature x in a set of training instances D is denoted
by FREQ(x,D). The mutual information between a feature x and a set of instances D is given by:

MI(x,D) = p(x,D) log
(
p(x,D)
p(x)p(D)

)
(1)

We use “∗” to denote the sum over the set of features or sets of instances for all the domains, and
compute the probabilities in (1) using the frequency counts as follows:

p(x,D) = FREQ(x,D)/FREQ(∗, ∗),
p(x) = FREQ(x, ∗)/FREQ(∗, ∗),
p(D) = FREQ(∗,D)/FREQ(∗, ∗)

Similarly, we compute PMI and PPMI by:

PMI(x,D) = log

(
p(x,D)
p(x)p(D)

)
(2)

PPMI(x,D) = max(PMI(x,D), 0) (3)

3.1. Pivot Selection for Unlabelled Data

Unlabelled pivot selection methods use unlabelled data from the source domain and target domain
(we use notations DSU

and DTU
to denote unlabelled data in the source and the target domains

respectively).
For example, FREQU can be computed using Eq. (4) for selecting top-ranked features by oc-

currence in both domains to be pivots. However, for labelled datasets, pivot selection methods are
based on the number of classes, hence the selection process is under multi-class settings.

xU = min(φ(x,DSU
), φ(x,DTU

)) (4)

3.2. Pivot Selection for Labelled Data

As described above, we follow the idea of one vs. rest binary classification to select pivots based
on each known tag for labelled datasets in the source domain. For each POS tag P in m POS tags,
we split the labelled datasets into DP+ (x is labelled as P ) and DP− (x is NOT labelled as P ), then
compute the score φ(DP ) for this POS tag as follows:

φ(x,DP ) = |φ(x,DP+)− φ(x,DP−)| (5)

1. https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
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| · | is the absolute value and used for measuring the difference between two sets of instances. The
score for each feature x is then computed by the sum of scores from all POS categories:

xL =

m∑
i=1

φ(x,DPi) (6)

Under these scoring methods, features with higher score are more likely to be pivots because they
occur frequently or they are more associated with labels.

3.3. Effect of the Label Distribution

In the training datasets (Figure 1), there are very popular POS categories (e.g., nouns (NN)) and
less popular ones (e.g., symbols (SYM)). However, none of the above-mentioned pivot selection
methods take into consideration this imbalance in data when computing the score when selecting
a feature as a pivot. A straightforward method to incorporate the distributional information to the
pivot selection process is to multiply the score φ(x,DPi) of a feature x as a pivot for representing
the i-th POS category by the probability qi of that category, thus:

q(x) =
m∑
i=1

qiφ(x,DPi) (7)

The pivot selection score q(x) of a feature x given by (7) prefers frequent POS categories when
selecting pivots.

3.4. Effect of the F-Score

The pivot selection method described in Section 3.3 is agnostic to the individual performance on
a particular POS category. As we later see in our experiments (Figure 2), the frequency of a POS
category is not correlating with the performance obtained for that category by a POS tagger. In other
words, some low-frequent as well as high-frequent POS categories appear to be equally difficult
for adapting a POS tagger to. Therefore, we need a pivot selection method that is aware of the
performance on POS categories.

For this purpose, we propose a novel pivot selection method that uses F-score. We first train a
POS tagger separately for each POS category Pi using a randomly selected sample from the labelled
data from the source domain. Next, we evaluate its performance on a randomly selected (different)
sample from the source domain. We compute the F-score for this POS tagger on the i-th POS
category. Note that we do not use any labelled test data from the target domain for this purpose
because in UDA we do not have any labelled data for the target domain. Let us denote the F-score
for the i-th POS category to be Fi.

We would like to select pivots from POS categories that have low Fi values to encourage adap-
tation to those categories. We can consider the reciprocal of the F-scores, 1/Fi for this purpose.
Unfortunately, 1/Fi is not a [0, 1] bounded score such as a probability. Therefore, we compute such
a bounded score ri using the softmax function:

ri =
exp(1/Fi)∑N
j=1 exp(1/Fj)

(8)
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Source Target
Domians wsj newsgroups weblogs reviews answers emails

#sentences 30,060 1,195 1,016 1,906 1,744 2,450
#tokens 731,678 20,651 24,025 28,086 28,823 29,131
#types 35,933 4,924 4,747 4,797 4,370 5,478
OOV 0.0% 23.1% 19.6% 29.5% 27.7% 30.7%

Table 1: Number of sentences, tokens and types in the source and target labelled data. OOV (Out-
Of-Vocabulary) is the percentage of types that have not been observed in the source domain (wsj)
(Petrov and McDonald, 2012).

Here, N is the total number of POS categories. Note that for pivot selection purposes it is sufficient
to determine the relative ordering of the features according to their scores r(x). Because (8) is
monotonically increasing w.r.t. to the reciprocal of the F scores, we can simply use the reciprocal
of the F score as ri in (9) as follows:

r(x) =

m∑
i=1

riφ(x,DPi) (9)

3.5. Nouns

Nouns is one of the most popular POS categories. In fact, in our datasets nouns are the majority
POS category. As a baseline for selecting pivots from the majority category, we propose a score
function for pivot selection that prefers features that occur frequently in the noun category. This
baseline demonstrates the performance of a pivot selection method that considers only one POS
category such as nouns (NN). This score function xNN is defined as the score from only category
NN.

xNN = |φ(x,DNN+)− φ(x,DNN−)| (10)

4. Experiments

To evaluate the different pivot selection methods described in Section 3, we use the selected pivots
with SCL to perform cross-domain POS tagging.

4.1. Experimental Data

Following Blitzer et al. (2006), we use the Penn Treebank (Marcus et al., 1993) of the Wall Street
Journal (WSJ) section 2-21 as the labelled data, and 100,000 WSJ sentences from 1988 as unlabelled
data in the source domain. Following Schnabel and Schütze (2013), we evaluate on 5 different
target domains (newsgroups, weblogs, reviews, answers and emails) from SANCL 2012 shared
task (Petrov and McDonald, 2012). The Penn treebank tag annotated Wall Street Journal (wsj)
is considered as the source domain in all experiments. Table 1 and Table 2 are the statics of the
experimental data. All the datasets have been tokenized during pre-processing. Tokens with the
occurrence < 5 are removed.
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Unlabelled
Domians newsgroups weblogs reviews answers emails

#sentences 1,000,000 524,834 1,965,350 27,274 1,194,173
#tokens 18,424,657 10,356,284 29,289,169 424,299 17,047,731
#types 357,090 166,515 287,575 33,425 221,576

Table 2: Number of sentences, tokens and types in the target unlabelled data after sentence splitting
and tokenisation (Petrov and McDonald, 2012).

Figure 1: Distribution of the 48 PennTreebank POS tags in training data (wsj).

4.2. Training

To train a POS tagger, we model this task as a multi-class classification problem. We represent each
training instance (a POS labelled word in a sentence) by a feature vector. For this purpose, we use
two types of features: (a) contextual words and (b) embeddings.

Following Schanbel and Schütze (2014), we imply a window of 2l + 1 for tagging token x to
take the contextual words into account:

x = {x−l, x−l+1, . . . , x0, . . . , xl−1, xl} (11)

In SCL, original features are projected by the binary classifiers θ learnt from pivots and non-
pivots (i.e. pivot predictors) after applied singular value decomposition (SVD). These projected
features θx are influenced by the different sets of pivots selected by the different pivot selection
methods. We follow Sapkota et al. (2016) to train the final adaptive classifier f only by projected
features to reduce the dimensionality, where θx ∈ Rh.

We use d = 300 dimensional GloVe (Pennington et al., 2014) embeddings (trained using 42B
tokens from the Common Crawl) as word representations. By applying the window, each word w
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is defined by:
w = w−l ⊕w−l+1 ⊕ . . .⊕w0 ⊕ . . .⊕wl−1 ⊕wl (12)

where ⊕ is vector concatenation and w ∈ Rd.
We combine two types of features by introducing a mixing parameter γ, so that adaptive classi-

fier f is trained on [γθx,w].

4.3. Classification Accuracy

Accuracy (the percentage of correct predictions) is not a suitable measurement for datasets with
large numbers of labels, as it cannot show the effect on imbalanced data from the various labels.
Therefore, we use the F-score to measure the classification accuracy for each POS tag when a
particular pivot selection strategy is applied to SCL. Here, the F-scores are computed using the
target domain’s test labelled instances as follows:

Precision(Pi) =
no. of correctly predicted words as category Pi

total no. of test words in the target domain
(13)

Recall(Pi) =
no. of correctly predicted words as category Pi

total no. of test words belonging to category Pi
(14)

F-score(Pi) =
2× Precision(Pi)× Recall(Pi)

Precision(Pi) + Recall(Pi)
(15)

5. Results

In the Figure 2(a), we show the F-scores for the different POS tags obtained by adapting a POS
tagger from wsj source domain to the answers target domain. Here, we select pivots using the
FREQL method. xL denotes the level of performance we obtain if we had simply used the pivots
selected by FREQL without adjusting for the imbalance of data. q(x), r(x) and xNN correspond to
the pivot selection methods described respectively in Sections 3.3, 3.4 and 3.5. The POS tags are
arranged in the horizontal axis in the descending order of their frequency in the source domain. The
mixing parameter γ is fixed to 1 in this experiment and we later study its effect on the performance.

Figure 2(a) shows that r(x) is the best multi-label strategy for FREQL. Similar results were
obtain when r(x) was combined with other pivot selection methods (MI, PMI and PPMI), and on
other target domains. Because of space limitation, we use show the results for the wsj-answers
adaptation setting. We see that probability of a POS tag (q(x)), or selecting pivots from the majority
category (xNN ), performs at a similar level to not performing any adjustments due to data imbalance
(xL).

Next, we study the effect of the proposed F-score-based pivot selection method, r(x), with
different labelled pivot selection methods. Figure 2(b) shows that F-score by FREQ is consistently
better than others for all labelled methods. Figure 3 shows that FREQ is also one of the good pivot
selection methods for unlabelled datasets, MIU is closely following FREQU . These two results
agree with the observation made by Blitzer et al. (2007) that FREQ works better for POS tagging
as a pivot selection strategy. Overall, PMI or PPMI with any multi-class pivot selection strategy
proposed in this paper do not work well on datasets with large numbers of categories. A possible
reason is that PMI and PPMI do not weight the amount of information obtained about one random
event by observing another by the joint probability of the two events (Bollegala et al., 2015).
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(a) Different labelled data strategies using FREQL.

(b) Different pivot selection methods using r(x).

Figure 2: F-score for the 48 PennTreebank POS tags (left to right: high to low distribution in training
data, as shown in Figure 1) for adapting from wsj to answers under mixing parameter γ = 1.0.

5.1. Effect on Mixing Parameter

In Section 4.2, we defined a mixing parameter γ for the combination of two types of features. Table 3
shows that all labelled pivot selection methods share the same trend for γ = {0.01, 0.1, 1, 10, 100}.
The highest F-score is obtained with 0.01. These F-scores are closer to each other for different pivot
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Figure 3: F-score for different pivot selection methods using unlabelled datasets.

Method xL q(x) r(x) xNN xL q(x) r(x) xNN

γ FREQL MIL
0.01 0.6993 0.6982 0.6985 0.6992 0.6986 0.6993 0.6993 0.7006
0.1 0.6927 0.6910 0.6975 0.6877 0.6857 0.6890 0.6930 0.6977
1 0.2246 0.2604 0.4370 0.2649 0.2407 0.2461 0.3533 0.3689

10 0.4366 0.4328 0.4824 0.4290 0.4317 0.4314 0.4589 0.4725
100 0.6890 0.6909 0.6957 0.6959 0.6900 0.6892 0.6860 0.6931

PMIL PPMIL
0.01 0.7001 0.7025 0.6966 0.7034 0.6996 0.6977 0.6939 0.7002
0.1 0.5270 0.6775 0.5005 0.5113 0.6992 0.4118 0.5133 0.4666
1 0.1254 0.1492 0.0846 0.1151 0.6955 0.0907 0.0836 0.0956

10 0.3296 0.4359 0.3225 0.3423 0.6811 0.3085 0.3198 0.3236
100 0.6732 0.6906 0.6779 0.6636 0.6609 0.6621 0.6611 0.6839

Table 3: F-score for pivot selection strategies with mixing parameter γ = {0.01, 0.1, 1, 10, 100}.
Highest F-score for each strategy is bolded. xL, q(x), r(x) and xNN denote data imbalance strate-
gies by (6), (7), (9) and (10) respectively.

selection methods when γ towards zero because we reduce the weight of pivot predictors from SCL
and pretrained word embeddings are not influenced by the pivot selection method. All unlabelled
pivot selection methods also follow this trend (not shown in Table 3 due to space limitations). The
differences between F-scores reported by the different pivot selection methods with the optimal
value of γ for that method are not statistically significant, which indicates that pretrained word
embeddings can be used to overcome any disfluencies introduced by the pivot selection methods if
the mixing parameter is carefully selected. We differ the study of learning the best combinations of
pretrained word embedding-based features and pivot predictors to future work.
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6. Conclusion

We compare the effect of previously proposed pivot selection strategies for UDA of POS tagging
under data imbalance. We propose a combination of pivot selection method and labelled data strat-
egy (FREQL + r(x)) that works better than other combinations in the our experiments. We also
show that the classification accuracy on a single category does not improve using a single category
strategy (e.g. xNN).
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