

each choice word-pair, and select the choice word-pair with the
highest relational similarity as the correct answer.

An interesting application of relational similarity in information
retrieval is to search using implicitly stated analogies [15, 32]. For
example, the query “Muslim church” should return “mosque” and
the query “Hindu bible” should return “the Vedas”. These queries
can be formalized as word-pairs: (Christian, Church) vs (Mus-
lim,X), and (Christian, Bible) vs (Hindu,Y). We can then find the
words X and Y that maximize the relational similarity in each case.

Despite the wide applications of relational similarity measures,
accurately measuring the similarity between implicitly stated rela-
tions, remains a challenging task because of several reasons. First,
relational similarity is a dynamic phenomenon that varies with time.
For example, two companies can be initially competitors and sub-
sequently one company might acquire the other. Second, there can
be more than one relation between a word-pair. For example, be-
tween the two words in the word-pair (ostrich, bird), besides the
relation is a large, there is also the relation is a flightless. A rela-
tional similarity measure must first extract all relations between the
two words in each word-pair before it can compute the similarity
between the word-pairs. Third, there can be more than one way a
particular semantic relation can be expressed in a text. For example,
the three patterns: X was acquired by Y, X completed the acquisi-
tion of Y, and X buys Y, all indicate an acquisition relation between
X and Y. In addition to the above mentioned problems, measuring
relational similarity between pairs in which one or both words are
named-entities (e.g. company names, personal names, locations
etc.) is even more difficult because such words are not well covered
by manually created dictionaries such as WordNet1[17]. As we fur-
ther explain in section 2, most of the previously proposed relational
similarity measures either assume the availability of manually cre-
ated resources or evaluated on common English words, not named
entities.

We propose a relational similarity measure that uses a Web search
engine to measure the similarity between implicitly stated seman-
tic relations in two word-pairs. Formally, given two word-pairs,
(a,b) and (c,d), we design a function, relsim((a, b), (c, d)), that re-
turns a similarity score in the range [0, 1]. The proposed relational
similarity measure first extracts implicitly stated relations that exist
between the two words in each word-pair, and then compares the
extracted relations between word-pairs.

Our contributions are summarized as follows:

• We propose a shallow, lexical patterns-based approach to
represent the various semantic relations that exist between
the two words in a given word-pair. The proposed pattern
extraction algorithm does not require any language depen-
dent preprocessing steps such as part-of-speech tagging or
dependency parsing, which can be time consuming or even
infeasible at Web scale. We extract a large number of lexical
patterns that describe various semantic relations.

• We present an efficient sequential clustering algorithm to clus-
ter lexical patterns, to identify the different patterns that de-
scribe a particular semantic relation. The proposed clustering
algorithm requires only one pass through the set of extracted
patterns, thus scales linearly with the number of patterns.

• We manually create a dataset of entity-pairs covering five
relation types (our dataset is explained in section 4.1). We
compare the proposed method against the state-of-the-art La-
tent Relational Analysis (LRA) [28] and the Vector Space

1http://wordnet.princeton.edu/

Model-based approach (VSM) [30] on this dataset in a rela-
tion classification task. Experimental results show that the
proposed method significantly outperforms both LRA and
VSM methods.

2. RELATED WORK
Relational similarity has been studied in various fields under dif-

ferent contexts. In this section, we briefly review the previous work
on relational similarity.

The Structure-Mapping Theory (SMT) [10] claims that an anal-
ogy is a mapping of knowledge from one domain (base) into an-
other (target), which conveys that a system of relations known to
hold in the base also holds in the target. The target objects do not
have to resemble their corresponding base objects. This structural
view of analogy is based on the intuition that analogies are about re-
lations, rather than simple features. Although this approach works
best when the base and the target are rich in higher-order causal
structures, it can fail when structures are missing or flat [34].

Turney et al. [30] combined 13 independent modules by consid-
ering the weighted sum of the outputs of each individual module to
solve SAT analogy questions. The best performing individual mod-
ule was based on the Vector Space Model (VSM). In the VSM ap-
proach [29], first a vector is created for a word-pair (X,Y) by count-
ing the frequencies of various lexical patterns containing X and Y.
In their experiments they used 128 manually created patterns such
as “X of Y”, “Y of X”, “X to Y” and “Y to X”. These patterns are
then used as queries to a search engine and the number of hits for
each query is used as elements in a vector to represent the word-
pair. Finally, relational similarity is computed as the cosine of the
angle between the two vectors that represent the two word-pairs.
Turney et al. [30] introduced a dataset containing 374 SAT analogy
questions to evaluate relational similarity measures. A SAT anal-
ogy question consists of a stem word-pair that acts as the question,
and five choice word-pairs. The choice word-pair that has the high-
est relational similarity with the stem word-pair is selected by the
system as the correct answer. The average SAT score reported by
high school students for word-analogy questions is 57%. The VSM
approach achieves a score of 47% on this dataset.

Turney [26, 28] proposed Latent Relational Analysis (LRA) by
extending the VSM approach in three ways: a) lexical patterns are
automatically extracted from a corpus, b) the Singular Value De-
composition (SVD) is used to smooth the frequency data, and c)
synonyms are used to explore variants of the word-pairs. Like-
wise in VSM approach, LRA represents a word-pair by a vector
of lexical pattern frequencies. First, using a thesaurus, he finds re-
lated words for the two words in a word-pair and create additional
word-pairs that are related to the original word-pairs in the dataset.
Second, n-grams of words are extracted from the contexts in which
the two words in a word-pair co-occur. Most frequent n-grams are
selected as lexical patterns to represent a word-pair. Then a matrix
of word-pairs vs. lexical patterns is created for all the word-pairs
in the original dataset and the additional word-pairs. Elements of
this matrix correspond to the frequency of a word-pair in a lexical
pattern. Singular value decomposition is performed on this matrix
to reduce the number of columns (i.e. patterns). Finally, the rela-
tional similarity between two word-pairs is computed as the aver-
age cosine similarity over the original word-pairs and the additional
word-pairs derived from them. LRA achieves a score of 56.4% on
SAT analogy questions.

Both VSM and LRA require a large number of search engine
queries to create a vector to represent a word-pair. For example,
with 128 patterns, VSM approach requires at least 256 queries to
create the two pattern-frequency vectors for two word-pairs before

it can compute relational similarity. LRA considers synonymous
variants of the given word-pairs, thus requires even more search
engine queries. Methods that require a large number of queries
impose a heavy load on search engines. Despite efficient imple-
mentations, singular value decomposition of large matrices is time
consuming. In fact, LRA takes over 8 days to process the 374 SAT
analogy questions [28]. This is problematic when computing rela-
tional similarity on the scale of the Web. Moreover, in the case of
named-entities, related words thesauri are not usually available or
not complete, which becomes a problem when creating the addi-
tional word-pairs required by LRA.

Veale [33] proposed a relational similarity measure based on the
taxonomic similarity in WordNet. He evaluates the quality of a
candidate analogy A:B::C:D (i.e. A to B as C to D), by compar-
ing the paths in the WordNet, joining A to B and C to D. Rela-
tional similarity is defined as the similarity between the A:B paths
and C:D paths. However, WordNet does not fully cover named-
entities such as personal names, organizations and locations, which
becomes problematic when using this method to measure relational
similarity between named-entities.

Using a relational similarity measure, Turney [27] proposed an
unsupervised learning algorithm to extract patterns that express im-
plicit semantic relations from a corpus. His method produces a
ranked set of lexical patterns that unambiguously describes the re-
lation between the two words in a given word-pair. Patterns are
ranked according to their expected relational similarity (i.e. perti-
nence), computed using an algorithm similar to LRA. To answer a
SAT analogy question, first, ranked lists of patterns are generated
for each of the six word pairs (one stem word-pair and five choice
word-pairs). Then each choice is evaluated by taking the intersec-
tion of its patterns with the stem’s patterns. The shared patterns are
scored by the average of their rank in the stem’s list and the choice’s
lists. The algorithm picks the choice with the lowest scoring shared
pattern as the correct answer. This method reports a SAT score of
54.6%.

Relational similarity measures have been applied in natural lan-
guage processing tasks such as generating word-analogies [9], and
classifying noun-modifier compounds based on the relation between
the head and the modifier [28, 18, 8]. Davidov and Rappoport [9]
proposed an unsupervised algorithm to discover general semantic
relationships that hold between lexical items. They represent a se-
mantic relationship with a cluster of patterns. They use the pattern
clusters to generate SAT-like word analogy questions for English
and Russian languages. The generated questions are then solved by
human subjects. They do not evaluate their method for relational
similarity between named-entities.

Relational similarity measures have been used to classify the re-
lationships between the head and the modifier in noun-compounds [28,
18, 8]. For example, in the compound viral flu, the flu (head) is
caused by a virus (modifier). The Diverse dataset of Barker and
Szpakowicz [1], which consists of 600 head-modifier pairs (noun-
noun, adjective-noun and adverb-noun) is used as a benchmark
dataset to evaluate relation classification of noun-compounds. Each
noun-modifier pair in this dataset is annotated with one of the fol-
lowing five relations: causal, temporal, spatial, participant, and
quality. Nakov and Hearst [18] proposed a linguistically motivated
method that utilizes verbs, prepositions, and coordinate conjunc-
tions that can help make explicit the hidden relations between the
target nouns. They report a classification accuracy of 40.5% on the
Diverse dataset using a single nearest neighbor classifier.

Web Search

Engine
Pattern

Extraction Pattern

Clustering

inter-cluster

correlation

(A,B)

(C,D)

snippets pattern

vectors

feature vectors

Relational Similarity

relsim((A,B), (C,D))

“A * * * B”

“C * * * D”
X acquired by Y

X, born in Y

Figure 1: Outline of the proposed relational similarity method.

Google to acquire YouTube for $1.65 billion in stock. Combination
will create new opportunities for users and content owners every-
where...

Figure 2: A snippet returned for the query “Google * * *
YouTube”.

3. METHOD

3.1 Outline
The proposed method consists of the four components outlined

in Figure 1: a Web search component, a pattern extraction compo-
nent, a pattern clustering component, and a similarity computation
component. In this section, we give a brief overview of each of
those components. The subsequent sections will explain the com-
ponents in detail.

Let us assume that we are given two pairs of words, (A,B) and
(C,D), between which we must compute relational similarity. As
shown in Figure 1, we first query a Web search engine using various
queries to find the contexts in which the two words in each word-
pair co-occur. We then download snippets returned by the search
engine. This process is described in section 3.2.

Next, we employ a shallow lexical pattern extraction algorithm to
extract lexical patterns that express semantic relations between the
two words in a word-pair. For example, for the word-pair (Google,
YouTube), the proposed pattern extraction algorithm extracts the
pattern X acquires Y, where X and Y are placeholders respectively
for the first and the second word in the word-pair. The proposed
pattern extraction algorithm is further explained in section 3.3.

Using a dataset of entity-pairs, we extract a large number of lexi-
cal patterns that express various semantic relations. However, there
can be more than one pattern that express the same semantic re-
lation. We cluster the patterns to identify the ones that express a
particular semantic relation. For this purpose, we present a sequen-
tial pattern clustering algorithm in section 3.4.

We represent a pair of words by a feature vector. Elements of a
feature vector correspond to the total frequency of a word-pair in a
pattern cluster. In section 3.5, we compute the relational similarity
between two word-pairs using their feature vectors. We use inter-
cluster correlation to account for the dependence between semantic
relations.

3.2 Retrieving Contexts
The first step involved in computing the relational similarity be-

tween two word-pairs is to identify the relation (or relations) that

hold between the two words in each word-pair. The context in
which two words co-occur provides useful clues about the seman-
tic relations that hold between those words. We propose the use
of text snippets returned by a Web search engine as an approxima-
tion of the context of two words. Snippets (also known as dynamic
teasers) are brief summaries provided by most of the Web search
engines along with the search results. Typically, a snippet is cre-
ated by a search engine by selecting a window of text including the
queried words from a document they occur. Snippets are useful in
search because most of the time a user can read the snippet and
decide whether a particular search result is relevant, without even
opening the url. Using snippets as contexts is also computationally
efficient because it obviates the need to download the source docu-
ments from the Web, which can be time consuming if a document
is large.

A snippet for a query containing two words, captures the local
context in which they co-occur. For example, consider the snippet
shown in Figure 2, returned by Yahoo2 for the query “Google * *
YouTube”. Here, the wildcard operator “*” matches one word or
none in a document. This snippet is extracted from a newspaper
article about the acquisition of YouTube by Google.

To retrieve snippets for a word pair (A,B), we use the following
seven types of queries: “A * B”, “B * A”, “A * * B”, “B * * A”,
“A * * * B”, “B * * * A”, and A B. The queries containing the wild-
card operator “*” return snippets in which the two words, A and B
appear within a window of specified length. We call such queries
wildcard queries. We search for snippets in which the query words
co-occur within a maximum of three words (tokens). Moreover,
the quotation marks around a query will ensure that the two words
appear in the specified order (e.g. A before B in snippets retrieved
for the query “A * B”). The usage of wildcards and quotations en-
ables us to mimic the behavior of the NEAR operator 3. In case all
wildcard queries fail to return any snippets, we use the query A B
(without wildcards or quotations) to retrieve snippets.

Once we collect snippets for a word-pair using each of the queries
described above, we remove duplicates. We consider two snippets
to be duplicates if they contain the exact sequence of all words.
Duplicate snippets exist because of two main reasons. First, a
web page can be mirrored in more than one location and the de-
duplication mechanism of the search engine might fail to filter-out
the duplicates (or might not perform de-duplication at all for mir-
ror sites). Second, the queries we construct for a word-pair are
not independent. For example, a query with two wildcards might
return a snippet that can also be retrieved using a query with one
wildcard. However, we observed that the ranking of search results
vary with the number of wildcards used. A search engine usually
returns only the top ranking results (in the case of Yahoo, only the
top 1000 snippets can be downloaded). We use multiple queries
per word-pair that induce different rankings, and aggregate search
results to circumvent this limitation.

3.3 Extracting Lexical Patterns
Lexical syntactic patterns have been successfully used in var-

ious natural language processing tasks such as extracting hyper-
nyms [12, 25], or meronyms [2], question answering [21], and para-
phrase extraction [3]. Following these previous work, we present
a shallow lexical pattern extraction algorithm to extract the seman-
tic relations between two words from web snippets. The proposed
method does not require any language dependent preprocessing
such as, part-of-speech tagging or dependency parsing, which can
2http://developer.yahoo.com/search/boss/
3YahooBOSS API that we used in our experiments did not have a
NEAR operator

be both time consuming at Web scale, and likely to produce incor-
rect results due to the fragmented and ill-formed snippets.

The pattern extraction algorithm consists of the following three
steps.

Step 1: Given a context S, retrieved for a word-pair (A, B) ac-
cording to the procedure described in section 3.2, we replace
the two words A and B respectively with two variables X
and Y . We consider variants of the two words and replace
them also with the same variables. For example, we consider
the variant Google Inc. as an occurrence of the word Google.
Legal abbreviations such as Inc., Ltd., Coop., and titles such
as Mr., Ms., Prof., Dr., Rev. are considered as variants of the
query terms. We replace all numeric values by D, a marker
for digits. However, we do not remove punctuation marks.

Step 2: We generate all subsequences of the context S, that satisfy
all the following conditions.

(i). A subsequence must contain exactly one occurrence of
each X and Y (i.e. exactly one X and one Y must exist
in a subsequence).

(ii). The maximum length of a subsequence is L words.

(iii). A subsequence is allowed to have gaps. However, we
do not allow gaps exceeding g words. Moreover, the
total length of all gaps in a subsequence should not ex-
ceed G words.

(iv). We expand all negation contractions in a context. For
example, didn’t is expanded to did not. We do not skip
the word not when generating subsequences. For ex-
ample, this condition ensures that from the snippet X is
not a Y, we do not produce the subsequence X is a Y.

Step 3: We count the frequency of all generated subsequences for
all word-pairs in the dataset. We select subsequences with
frequency greater than N as lexical patterns to represent the
semantic relations between words.

Our pattern extraction algorithm has four parameters (ca. L, g,
G and N). We set the values of those parameters experimentally, as
explained later in section 4. It is noteworthy that the proposed pat-
tern extraction algorithm considers all the words in a snippet, and
is not limited to extracting patterns from only the mid-fix (i.e. por-
tion of text in a snippet that appears between the queried words).
Moreover, the consideration of gaps enables us to capture relations
between distant words in a snippet. We use a modified version
of the prefixspan algorithm [20] to to generate subsequences. The
conditions in Step 2 are used to prune the search space, thereby re-
ducing the number of generated subsequences. For example, some
of the patterns extracted form the snippet shown in Figure 2 are: X
to acquire Y, X acquire Y, and X to acquire Y for.

3.4 Identifying Semantic Relations
A semantic relation can be expressed using more than one pat-

tern. For example, consider the two distinct patterns, X acquired
Y, and X completed the acquisition of Y. Both these patterns indi-
cate that there exist an acquisition relation between X and Y. When
we compute the relational similarity between two word-pairs, it is
important to know whether there is any correspondence between
the sets of patterns extracted for each word-pair. If there are many
related patterns between two word-pairs, we can expect a high re-
lational similarity.

We use distributional hypothesis [11] to find semantically related
lexical patterns. Distributional hypothesis claims that words that

occur in the same context have similar meanings. Distributional
hypothesis has been used in various related tasks, such as, identify-
ing related words[13], discovering inference rules[14], and extract-
ing paraphrases[3]. If two lexical patterns are similarly distributed
over a set of word-pairs (i.e. occurs with the same set of word-
pairs), then from the distributional hypothesis it follows that the
two patterns must be similar. We can cluster lexical patterns using
their distributions over word-pairs, to identify semantically related
patterns.

We represent a pattern by a vector of word-pair frequencies. We
call this vector the word-pair frequency vector of the pattern. It is
analogous to the document frequency vector of a word, as used in
information retrieval. We denote the word-pair frequency vector
of a pattern p by p. The value of the element corresponding to a
word-pair (ai, bi) in a word-pair frequency vector p of a pattern p,
is the frequency, f(ai, bi, p), that pattern p occurs with the word-
pair (ai, bi).

As shown later in the experiments, the pattern extraction algo-
rithm proposed in section 3.3 extracts a large number of lexical
patterns (ca. over 400, 000). Clustering algorithms based on pair-
wise comparisons between all patterns, are not feasible when the
number of patterns is large. Consequently, we propose a sequen-
tial clustering algorithm (Algorithm 1) to efficiently cluster the ex-
tracted patterns.

Given a set of patterns, P and a clustering similarity threshold,
θ, Algorithm 1 returns clusters (of patterns) that express similar se-
mantic relations. First, in Algorithm 1, the function SORT , sorts
the patterns in the descending order of their total occurrence in all
word-pairs. The total occurrence of a pattern p is the sum of fre-
quencies over all word-pairs (i.e.

∑
i f(ai, bi, p)). Once sorted

by the frequency, the most common patterns will appear at the be-
ginning in P , whereas rare patterns (i.e. patterns that occur only
with few word-pairs) will get shifted to the end. Next, in line 2,
we initialize the set of clusters, C, to empty set. The outer for-loop
(starting at line 3), repeatedly takes a pattern pi from the ordered
set P , and in the inner for-loop (starting at line 6), finds the clus-
ter, c∗ (∈ C) that is most similar to pi. To compute the similarity
between a pattern and a cluster, first we represent a cluster by the
vector sum of all word-pair frequency vectors corresponding to the
patterns that belong to that cluster. Next, we compute the cosine
of the angle between the vector that represents the cluster (cj), and
the word-pair frequency vector of the pattern (pi). For two n di-
mensional vectors x = [x1, . . . , xn], and y = [y1, . . . , yn], their
cosine similarity, cosine(x,y), is defined as follows,

cosine(x,y) =

∑n
i=1 xiyi

||x||||y|| . (1)

Here, ||x|| denotes the L2 norm of a vector x (i.e. 2
√∑n

i=1 x2
i) . If

the similarity between a pattern pi, and the most similar cluster to
it, c∗, is greater than the value of the threshold θ, we append pi to
c∗ (line 14). We use the operator ⊕ to denote the vector addition
between c∗ and pi. If pi is not similar to any of the existing clus-
ters beyond the threshold θ, then we form a new cluster {pi} and
append it to the set of clusters, C.

The only parameter in Algorithm 1 is the similarity threshold, θ,
which ranges in [0, 1]. It decides the purity of the formed clusters.
Setting θ to a high value ensures that the patterns in each cluster are
highly similar. However, high θ values also result in a large number
of clusters (increased model complexity). In section 4, we exper-
imentally investigate the effect of θ on the overall performance of
the proposed relational similarity measure.

The computational time complexity of Algorithm 1 is O(n|C|),
where n is the number of patterns to be clustered and |C| is the

number of clusters. The number of patterns n is usually very large
compared to the number of clusters (i.e. n >> |C|). Consequently,
the overall time complexity of Algorithm 1 linearly scales with the
number of patterns. The sequential nature of the algorithm essen-
tially avoids pair-wise comparisons between all patterns. More-
over, sorting the patterns by their total word-pair frequency prior
to clustering, ensures that the final set of clusters contains the most
common relations in the dataset.

Algorithm 1 Sequential pattern clustering algorithm.
Require: patterns P = {p1, . . . ,pn}, threshold θ
Ensure: clusters C

1: SORT(P)
2: C ← {}
3: for pattern pi ∈ P do
4: max ← −∞
5: c∗ ← null
6: for cluster cj ∈ C do
7: sim ← cosine(pi, cj)
8: if sim > max then
9: max ← sim

10: c∗ ← cj

11: end if
12: end for
13: if max ≥ θ then
14: c∗ ← c∗ ⊕ pi

15: else
16: C ← C ∪ {pi}
17: end if
18: end for
19: return C

3.5 Measuring Relational Similarity
Evidence from psychological experiments suggest that similar-

ity can be context-dependent and even asymmetric [31, 16]. Hu-
man subjects have reportedly assigned different similarity ratings
to word-pairs when the two words were presented in the reverse
order. However, experimental results investigating the effects of
asymmetry reports that the average difference in ratings for a word
pair is less than 5 percent [16]. Consequently, in this paper we
assume relational similarity to be symmetric and limit ourselves
to symmetric similarity measures. This assumption is in line with
previous work on relational similarity described in section 2.

To define a relational similarity measure over word-pairs, we first
represent a word-pair by a feature vector. For explanation purposes,
let us denote the feature vector of a word-pair (a, b) by xab. Ele-
ments of the feature vector xab, are the total frequencies of the
word-pair (a, b) in each cluster. For example, the ith element of
the feature vector xab is given by,

∑
p∈ci

f(a, b, p).

Here, p is a pattern in the cluster ci, and f(a, b, p) is the number of
times that the word-pair (a, b) appears with the pattern p. We L2

normalize all feature vectors.
We define the relational similarity, relsim((a, b), (c, d)), between

two word-pairs (a, b) and (c, d) as follows,

relsim((a, b), (c, d)) = xt
abΛxcd. (2)

Here, xab and xcd respectively are the feature vectors for word-
pairs (a, b) and (c, d), and Λ is a correlation matrix. Each cluster

represents a set of semantically related patterns. However, in real-
ity, semantic relations are not always mutually independent. The
matrix Λ encodes this information about relational dependence.
Specifically, the correlation between the relations represented by
clusters ci and cj is given by the (i, j) element, λij , in matrix Λ. It
is a |C| × |C| square matrix, where |C| is the number of clusters.
Moreover, for the relational similarity computed using Formula 2
to be symmetric, the correlation matrix Λ must be a symmetric ma-
trix.

It is noteworthy that the number of free parameters in Λ grows
quadratically with the number of clusters. Given enough train-
ing data, we might be able to use a distance metric learning al-
gorithm [23, 35] to compute Λ. However, in this paper we do not
assume the availability of a large training dataset, and approximate
Λ using inter-cluster correlation [24, 7]. Specifically, an element
λij is approximated by the correlation between the clusters ci and
cj , which is computed as follows,

λij =
2

|Γ|(|Γ| − 1)

∑

(p6=q), p,q∈Γ

cosine(p,q). (3)

Here, Γ is the merger between the two clusters ci and cj (i.e. union
of the two clusters), and p and q are two different patterns in Γ.
We denote the total number of patterns in Γ by |Γ|. Because a
pattern appears only in one cluster, |Γ| = |ci|+ |cj | holds. Cosine
similarity between two vectors is given by Formula 1.

The relational similarity measure defined in Formula 2 corre-
sponds to Mahalanobis distance of the feature vector space. As a
special case, if we set Λ to identity matrix we get the Euclidean
distance between two points.

4. EXPERIMENTS

4.1 Dataset
We created a dataset 4 of word-pairs to evaluate the proposed

relational similarity measure. Our dataset contains 100 instances
(word or named-entity pairs) covering the following five relation
types.

ACQUIRER-ACQUIREE This relation holds between pairs of com-
pany names (A, B), where the company B (acquiree) is ac-
quired by the company A (acquirer). We only consider ac-
quisitions that has already completed.

PERSON-BIRTHPLACE This relation holds between pairs (A, B),
where A is the name of a person, and B is the location (place)
where A was born. We consider city names and countries as
locations.

CEO-COMPANY This relation holds between pairs (A, B), where
A is the chief executive officer (CEO) of a company B. We
consider both current as well as past CEOs of companies.

COMPANY-HEADQUARTERS This relation holds between pairs
(A, B), where company A’s headquarters is located in a place
B. We select names of cities as B.

PERSON-FIELD This relation holds between pairs (A, B), where
a person A is an expert or known for his or her abilities in a
field B. Instances of this relation contain scientists and their
field of expertise, sportsmen and the sports they are associ-
ated with, and artists and the genre that they perform.

4http://www.miv.t.u-tokyo.ac.jp/danushka/reldata.zip

Table 2: Distribution of patterns
Frequency (f) Number of patterns Percentage

f ≥ 1 473910 100%
f ≥ 2 148655 31.36%
f ≥ 3 70952 14.97%
f ≥ 4 46040 9.71%
f ≥ 5 32596 6.87%
f ≥ 6 25189 5.31%
f ≥ 7 20220 4.26%
f ≥ 8 16807 3.54%
f ≥ 9 14393 3.03%
f ≥ 10 12559 2.65%

We selected the above mentioned relation types because previous
work on relation detection on the Web have frequently used those
relations in evaluations [4]. We manually selected 20 instances for
each of the five relation types. Instances were selected from var-
ious information sources such as Wikipedia5, online newspapers,
and company reviews6. For each instance in the dataset, using the
YahooBOSS API7, we download snippets as described in section
3.2. For each relation type, in Table 1, we show some of the in-
stances and the total number of contexts.

4.2 Lexical Patterns
We run the pattern extraction algorithm described in section 3.3

on the contexts in our dataset to extract lexical patterns. Experi-
mentally, we set the values for the various parameters in the pattern
extraction algorithm: L = 5, g = 2, and G = 4. The total number
of unique patterns extracted by the algorithm is 473910. However,
as shown in Table 2, only 31.36% of those patterns occur more than
twice. Patterns that only occur once contain misspellings or badly
formatted texts. To filter-out this noise, we only select the 148655
patterns that occur at least twice. The remainder of the experiments
in this paper are carried out using those patterns.

4.3 Pattern Clusters
We used the clustering algorithm described in section 3.4 to clus-

ter the extracted patterns. As described in section 3.4, the clustering
similarity threshold θ in Algorithm 1 determines the total number
of clusters. In Figure 3, we show the ratio of the number of single-
tons (i.e. clusters with only one pattern) to total number of clus-
ters against the value of threshold θ. It can be seen from Figure 3
that low θ values (e.g. θ < 0.35) do not produce any singletons.
However, when θ is increased beyond a certain point, the number
of singletons steadily increases. In Algorithm 1, a pattern will be
added to an existing cluster only if it has a similarity value greater
than the threshold θ. Otherwise, a new cluster (a singleton) will
be created with that pattern. Figure 3 confirms this behavior em-
pirically. Some patterns appear only for a particular word pair (or
pairs). Consequently, the similarity between those patterns is one.
Because of that reason in Figure 3, the ratio does not reach one,
when the clustering threshold is increased.

4.4 Relation Classification
We evaluate the proposed relational similarity measure in a re-

lation classification task. Given a word-pair, the goal is to select a
relation out of the five relation types in the dataset that describes the
5http://wikipedia.org/
6http://www.forbes.com/
7http://developer.yahoo.com/search/boss/

Table 1: Overview of the relational similarity dataset
Relation Type Total contexts Examples (20 in total for each relation type)
ACQUIRER-ACQUIREE 91439 (Google, YouTube), (Adobe Systems, Macromedia), (Yahoo, Inktomi)
PERSON-BIRTHPLACE 72836 (Franz Kafka, Prague), (Charlie Chaplin, London), (Marie Antoinette, Vienna)
CEO-COMPANY, 82682 (Terry Semel, Yahoo), (Eric Scmidt, Google), (Steve Jobs, Apple)
COMPANY-HEADQUARTERS 100887 (Microsoft, Redmond), (Yahoo, Sunnyvale), (Google, Mountain View)
PERSON-FIELD 99660 (Albert Einstein, Physics), (Roger Federer, Tennis), (Shane Warne, Cricket)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
at

io

Clustering threshold

Figure 3: Ratio of singletons to total clusters against the clus-
tering threshold (θ).

relationship between the two words. This is a multi-class classifica-
tion problem. We use k-nearest neighbor classification to assign a
relation to a given word-pair. Specifically, given a word-pair (a, b),
for which a relation R holds, we compute the relational similarity
between (a, b) and the remaining 99 word-pairs in the dataset. We
then sort the word-pairs in the descending order of relational sim-
ilarity with (a, b), and select the most similar k word-pairs. We
then find the relation that is given in the dataset to most number of
those k word-pairs and assign this relation to (a, b). If there are
more than one majority relation among the top k word-pairs, then
we randomly select a relation from those majority relations. We re-
peat this procedure with each of the word-pairs in the dataset, and
compute the classification accuracy as follows,

Accuracy =
No. of correctly classified pairs

Total no. of pairs
. (4)

We compute the classification accuracy for each of the five relation
types in the dataset individually. Because each relation type has
20 word-pairs in the dataset, the total number of pairs is in For-
mula 4 is set to 20. Moreover, the classification accuracy for the
entire dataset (100 word-pairs) is computed by counting the cor-
rectly classified word-pairs for all five relation types.

A good relational similarity measure must assign higher similar-
ity scores to word-pairs with similar implicit relations. However,
classification accuracy does not evaluate the relative rankings of
similarity scores. We use average precision [22] to evaluate the top
most similar k word-pairs to a given word-pair. Average precision

integrates the precision at different ranks and is frequently used as
an evaluation measure in ranking tasks. Average precision for a
particular relation type R is defined as follows,

AveragePrecision =

∑k
r=1 Pre(r)× Rel(r)

No of relevant word-pairs
. (5)

Here, Rel(r) is a binary valued function that returns 1 if the word-
pair at rank r has the same relation (i.e. R) as in (a, b). Otherwise
it returns zero. Pre(r) is the precision at rank r, and is given by,

Pre(r) =
no. of word-pairs with relation R in top r pairs

r
. (6)

The number of relevant word-pairs is 20 for all five relation types
in our dataset.

We consider the 10 most similar word-pairs (i.e. k = 10) for
nearest neighbor classification. Average precision is computed for
those top 10 word-pairs. Figure 4 shows the performance (clas-
sification accuracy and average precision) against the clustering
threshold θ. From Figure 4, we can see that low θ values result
in poor performance. Performance increases when we increase the
value of θ. This behavior can be understood from the fact that
higher values of θ result in highly similar pattern clusters that rep-
resent specific semantic relations. Best performance is reported for
θ = 0.955. At this value of θ we obtain 2629 non-singleton clus-
ters (i.e. containing more than one pattern), and 6930 singletons
(i.e. containing only one pattern).

In Table 3, we show the top 10 clusters with the largest number
of lexical patterns. The number of patterns in each cluster is shown
within brackets in the first column. For each cluster in Table 3,
we show the top four patterns that occur in most number of word-
pairs. For explanation purposes, we label the clusters with the five
relation types as: clusters 1 and 4 (acquirer-acquiree); clusters 2,
3, 6 and 7 (person-field); cluster 5 (ceo-company); cluster 8 and 10
(company-headquarters); cluster 9 (person-birthplace). From Ta-
ble 3, it is clear that patterns representing various semantic relations
are extracted by the proposed pattern extraction algorithm. More-
over, we see that each cluster contains different lexical patterns that
express a specific semantic relation. We can also see that there are
multiple clusters even among the top few clusters shown in Table 3
that represent a particular relation type. For example, cluster 1 and
4 both represent acquirer-acquiree relation, although the patterns
in cluster 1 are derived from the verb acquire, whereas the patterns
in cluster 4 are derived from the verbs buy and purchase. We can
expect a certain level of correlation between such clusters, which
justifies the relational similarity measure defined in Formula 2.

We compare the proposed relational similarity measure (CORR)
against cluster inner-product baseline (IP), vector space model-
based relational similarity [30] (VSM), and the state-of -the-art
Latent Relational Analysis [28] (LRA). Next, we explain each of
those relational similarity measures in detail.

VSM: This is the vector space model-based approach proposed by
Turney et al. [30]. First, each word-pair is represented by a

Table 3: Most frequent patterns in the largest clusters
cluster 1 (2868) X acquires Y X has acquired Y X’s Y acquisition X compra Y , Y team to X
cluster 2 (2711) Y legend X was brazilian Y legend X Y legend X was held X ’s championship Y Y star X robbed
cluster 3 (2615) Y champion X world Y champion X X teaches Y X’s greatest Y Y players like X
cluster 4 (2008) X to buy Y X and Y confirmed X buy Y is Y purchase to boost X Y grab shows X
cluster 5 (2002) Y founder X Y founder and ceo X X, founder of Y X says Y connect X says Y connect is
cluster 6 (1364) X revolutionized Y X professor of Y in Y since X ago, X revolutionized Y X’s contribution to Y
cluster 7 (845) X and modern Y genius: X and modern Y Y in DDDD, X was on Y by X X’s lectures on Y
cluster 8 (280) X headquarters in Y . X offices in Y past X offices in Y the X conference in Y X headquarters in Y on
cluster 9 (144) X’s childhood in Y X’s birth in Y Y born X Y born X introduced the sobbing X left Y to
cluster 10 (49) X headquarters in Y X’s Y headquarters Y - based X X works with the Y Y office of X

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Pe
rf

or
m

an
ce

Clustering Threshold

Accuracy
Average Precision

Figure 4: Performance of the proposed method against the clus-
tering threshold (θ).

vector of pattern frequencies. Then the relational similarity
between two word-pairs is computed as the cosine of the an-
gle between the two vectors representing the two word-pairs.
This approach is equivalent to computing relational similar-
ity using Formula 2, if we define feature vectors as pattern
frequency vectors, and set the correlation matrix Λ to iden-
tity matrix.

LRA: This is the Latent Relational Analysis (LRA) proposed by
Turney [28]. First, a matrix is created, in which the rows
represent word-pairs and the columns represent lexical pat-
terns. An element of the matrix corresponds to the frequency
of occurrence of a word-pair in a particular lexical pattern.
Next, singular value decomposition (SVD) is performed on
this matrix to reduce the number of columns. Finally, the
relational similarity between two word-pairs is computed as
the cosine of the angle between the corresponding row vec-
tors. We re-implemented LRA as described in the original
paper. However, we do not use related word thesauri to find
additional word-pairs, because such resources are not avail-
able for named-entities. Following, Turney’s proposal, we
used the most frequent 4000 lexical patterns in the matrix
and reduced the number of columns to 300 via SVD (i.e.
eigenvectors corresponding to the largest 300 eigenvalues are
used to approximate the matrix). We used scientific python’s

SVD library8 for the computation of SVD. LRA is the cur-
rent state-of-the-art relational similarity measure.

IP: We set Λ in Formula 2 to the identity matrix and compute re-
lation similarity using pattern clusters. This is equivalent to
computing relational similarity between two word-pairs as
the inner-product (IP) between the two feature vectors cre-
ated using pattern clusters. This baseline is a cut-down ver-
sion of the proposed method, where we assume all clusters
are independent (i.e. correlation coefficients λij = 0, ∀i 6=j).
IP baseline is expected to show the effect on the performance
when the correlation between clusters is ignored.

CORR: This is the proposed relational similarity measure. It is
defined in Formula 2. For both IP and CORR, we used the
same set of clusters. Therefore, any difference in perfor-
mance can be directly attributable to using cluster correla-
tion when computing relational similarity. We used the 9559
clusters (including both the 2629 non-singleton clusters and
the 6930 singleton clusters) derived by setting the clustering
threshold θ to the value 0.955.

We compare the above mentioned four methods in Table 4 using av-
erage precision. The proposed method (CORR) reports the highest
overall average precision (73.18) in Table 4. Moreover, CORR has
the best average precision scores for four out of five relation types.
Analysis of variance (ANOVA) reveals that the average precision
scores in Table 4 are statistically significant. Moreover, paired t-
tests conducted between the proposed method (CORR) and each
of the remaining three methods in Table 4, reveal that the improve-
ment shown by the proposed method over VSM, IP, and LRA is
statistically significant (α = 0.01).

Table 5 compares the four methods using classification accuracy.
The proposed method (CORR) has the highest classification accu-
racy (93%), followed by IP, LRA, and VSM. It is interesting to
note that the IP baseline that does not consider inter-cluster corre-
lation performs better than VSM method. This result shows that
clustering similar patterns before computing relational similarity
indeed improves performance. Among the five relation types com-
pared in Table 5, all four methods report a perfect (100%) clas-
sification accuracy for the three relation types: acquirer-acquiree,
company-headquarters, and ceo-company. Lowest performance is
reported for the person-birthplace relation. A closer look into the
snippets extracted for the person-birthplace pairs revealed that there
were many snippets that convey information related to places that
people associate with other than the place of birth. For example,
in the case of actors, the locations where they gave their first per-
formance are incorrectly extracted as a contexts for the person-
birthplace relation.

8www.scipy.org

Table 4: Average precision
Relation VSM LRA IP CORR
acquirer-acquiree 92.27 92.24 91.47 93.78
comp.-headquarters 84.55 82.54 79.86 85.19
person-field 44.70 43.96 51.95 56.09
ceo-comp. 95.82 96.12 90.58 95.31
person-birthplace 27.47 27.95 33.43 35.52
overall 68.96 68.56 69.46 73.18

Table 5: Relation classification accuracy
Relation VSM LRA IP CORR
acquirer-acquiree 100 100 100 100
comp.-headquarters 100 100 100 100
person-field 80 80 95 95
ceo-comp. 100 100 100 100
person-birthplace 50 60 55 70
overall 86 88 90 93

5. DISCUSSION
The proposed method requires only a few queries to compute

the relational similarity between two word-pairs. For each pair of
words it uses the seven types of queries described in section 3.2, to
retrieve snippets, and then matches a large number of lexical pat-
terns within those snippets. Moreover, multiple snippets (e.g. 50
or 100) can be retrieved using only one query. Contrastingly, pre-
viously proposed relational similarity measures such as LRA [28]
require a query per each lexical pattern. For example, LRA, which
uses approximately 4000 lexical patterns, requires at least 8000 (2
word-pairs× 4000 patterns) search engine queries. Moreover, the
number of search engine queries required by LRA increases with
the number of lexical patterns. This is problematic not only because
it increases the load on search engines, but also makes it impossible
to use a large number of lexical patterns to express various seman-
tic relations. The low number of search engine queries required by
the proposed method makes it attractive for measuring relational
similarity on the Web.

LRA is based on singular value decomposition (SVD), which is
computationally expensive. Performing SVD on large matrices can
be time consuming. In fact, it has been shown [28] that LRA takes
over 9 days to process a dataset of 374 word-analogy questions.
Comparatively, the proposed method requires under 6 hours in to-
tal (retrieve contexts, extract patterns, cluster, and compute simi-
larity) to process 100 word-pairs. Moreover, in LRA, to compute
the similarity for new (unseen) word-pairs, their pattern frequency
vectors must be first appended to the matrix and then the SVD pro-
cess must be repeated. On the other hand, in the proposed method
we can simply use the existing clusters to create feature vectors for
new word-pairs. Therefore, the proposed method is suitable in an
online setting (e.g. web search), where we must quickly compute
relational similarity for unseen word-pairs.

The definition of relational similarity as given in Formula 2 can
be viewed as a general framework into which all of the existing
relational similarity measures can be integrated. The existing ap-
proaches differ in their definition of matrix Λ. For example, in
VSM, Λ is the identity matrix and in LRA it is computed via SVD.
The task of designing relational similarity measures can be mod-
eled as searching for a matrix Λ that best reflects the notion of
relational similarity possessed by humans. If we consider the trans-

formation, y = xab − xcd, then we can use Formula 2 to define
a relational distance, yt∆y, where ∆ is a distance matrix. Given
a training dataset, we can learn ∆ using a distance metric learning
technique [23, 35].

6. CONCLUSION
We proposed a method to compute the similarity between im-

plicit semantic relations in two word-pairs. Given two word-pairs,
the proposed relational similarity measure first finds contexts in
which the two words in each word-pair co-occur on the Web. We
use text snippets returned by a Web search engine as contexts, and
proposed a shallow lexical pattern extraction algorithm to represent
the various semantic relations that exist between two words. The
proposed pattern extraction algorithm does not require language
specific preprocessing techniques such as part-of-speech taggers or
dependency parsers. We then cluster the extracted patterns to iden-
tify the different lexical patterns that convey a particular semantic
relation. We proposed a sequential clustering algorithm that scales
linearly with the number of patterns, to efficiently cluster a larger
number of patterns. We create a feature vector using the formed
pattern clusters, and compute the relational similarity between two
word-pairs as the Mahalanobis similarity between the two feature
vectors. We account for the dependence between semantic rela-
tions by using an inter-cluster correlation matrix. We compared the
proposed method against a baseline relational similarity measure
and previously proposed relational similarity measures, including
the state-of-the-art latent relational analysis. Experimental results
on a dataset that contains five common relation types show that the
proposed method significantly outperforms the state-of-the-art rela-
tional similarity measure in a relation classification task. In future,
we intend to employ the proposed relational similarity measure to
retrieve a set of word-pairs for a given implicit relation from the
Web.

7. REFERENCES
[1] K. Barker and S. Szpakowicz. Semi-automatic recognition of

noun modifier relationships. In Proc. of COLING’98, pages
96–102, 1998.

[2] M. Berland and E. Charniak. Finding parts in very large
corpora. In Proc. of ACL’99, pages 57–64, 1999.

[3] R. Bhagat and D. Ravichandran. Large scale acquisition of
paraphrases for learning surface patterns. In Proc. of
ACL’08: HLT, pages 674–682, 2008.

[4] R. C. Bunescu and R. Mooney. Learning to extract relations
from the web using minimal supervision. In Proc. of ACL’07,
pages 576–583, 2007.

[5] P. Cimiano and J. Wenderoth. Automatic acquisition of
ranked qualia structures from the web. In Proc. of ACL’07,
pages 888–895, 2007.

[6] A. Culotta and J. Sorensen. Dependency tree kernels for
relation extraction. In Proc. of ACL’04, pages 423–429,
2004.

[7] Cutting, R. Douglas, D. R. Karger, and J. O. Pedersen.
Constant interaction-time scatter/gather browsing of very
large documents collections. In Proceedings of SIGIR’93,
1993.

[8] D. Davidov and A. Rappoport. Classification of semantic
relationships between nominals using pattern clusters. In
Proc. of the ACL’08, 2008.

[9] D. Davidov and A. Rappoport. Unsupervised discovery of
generic relationships using pattern clusters and its evaluation

by automatically generated sat analogy questions. In Proc. of
ACL’08-HLT, pages 692–700, 2008.

[10] B. Falkenhainer, K. Forbus, and D. Gentner. Structure
mapping engine: Algorithm and examples. Artificial
Intelligence, 41:1–63, 1989.

[11] Z. Harris. Distributional structure. Word, 10:146–162, 1954.
[12] M. Hearst. Automatic acquisition of hyponyms from large

text corpora. In Proc. of 14th COLING, pages 539–545,
1992.

[13] D. Lin. Automatic retrieval and clustering of similar words.
In Proc. of COLING-ACL’98, pages 768–774, 1998.

[14] D. Lin and P. Pantel. Dirt: Discovery of inference rules from
text. In Proc. of ACM SIGKDD’01, pages 323–328, 2001.

[15] Z. Marx, D. Ido, B. Joachim, and S. Eli. Coupled clustering:
A method for detecting structural correspondance. Journal of
Machine Learning Research, 3:747–780, 2002.

[16] D. Medin, R. Goldstone, and D. Gentner. Respects for
similarity. Psychological Review, 6(1):1–28, 1991.

[17] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and
K. Miller. Introducton to wordnet: An on-line lexical
database. International Journal of Lexicography, 3:238–244,
1990.

[18] P. Nakov and M. Hearst. Solving relational similarity
problems using the web as a corpus. In Proc. of
ACL’08-HLT, pages 452–460, 2008.

[19] M. Pasca, D. Lin, J. Bigham, A. Lifchits, and A. Jain.
Organizing and searching the world wide web of facts - step
one: the one-million fact extraction challenge. In Proc. of
AAAI’06, pages 1400–1405, 2006.

[20] J. Pei, J. Han, B. Mortazavi-Asi, J. Wang, H. Pinto, Q. Chen,
U. Dayal, and M. Hsu. Mining sequential patterns by
pattern-growth: the prefixspan approach. IEEE Transactions
on Knowledge and Data Engineering, 16(11):1424–1440,
2004.

[21] D. Ravichandran and E. Hovy. Learning surface text patterns
for a question answering system. In Proc. of ACL ’02, pages
41–47, 2001.

[22] G. Salton and C. Buckley. Introduction to Modern
Information Retreival. McGraw-Hill Book Company, 1983.

[23] M. Schultz and T. Joachims. Learning a distance metric from
relative comparisons. In Proc. of NIPS’03, 2003.

[24] H. Schutze. Automatic word sense discrimination.
Computational Linguistics, 24(1):97–123, 1998.

[25] R. Snow, D. Jurafsky, and A. Ng. Learning syntactic patterns
for automatic hypernym discovery. In Proc. of Advances in
Neural Information Processing Systems (NIPS) 17, pages
1297–1304, 2005.

[26] P. Turney. Measuring semantic similarity by latent relational
analysis. In Proc. of IJCAI’05, pages 1136–1141, 2005.

[27] P. Turney. Expressing implicit semantic relations without
supervision. In Proc. of Coling/ACL’06, pages 313–320,
2006.

[28] P. Turney. Similarity of semantic relations. Computational
Linguistics, 32(3):379–416, 2006.

[29] P. Turney and M. Littman. Corpus-based learning of
analogies and semantic relations. Machine Learning,
60:251–278, 2005.

[30] P. Turney, M. Littman, J. Bigham, and V. Shnayder.
Combining independent modules to solve multiple-choice
synonym and analogy problems. In Proc. of RANLP’03,
pages 482–486, 2003.

[31] A. Tversky. Features of similarity. Psychological Review,
84(4):327–352, 1997.

[32] T. Veale. The analogical thesaurus. In Proc. of 15th
Innovative Applications of Artificial Intelligence Conference
(IAAI’03), pages 137–142, 2003.

[33] T. Veale. Wordnet sits the sat: A knowledge-based approach
to lexical analogy. In Proc. of ECAI’04, pages 606–612,
2004.

[34] T. Veale and M. T. Keane. The competence of structure
mapping on hard analogies. In Proc. of IJCAI’03, 2003.

[35] K. Weinberger, J. Blitzer, and L. Saul. Distance metric
learning for large margin nearest neighbor classification. In
Proc. of NIPS’05, pages 1473–1480, 2005.

[36] D. Zelenko, C. Aone, and A. Richardella. Kernel methods
for relation extraction. Journal of Machine Learning
Research, 3:1083–1106, 2003.

