
RankDE: Learning a Ranking Function for
Information Retrieval using Differential Evolution

Danushka Bollegala1 ∗ Nasimul Noman1 Hitoshi Iba1

1 The University of Tokyo

Abstract: Learning a ranking function is important for numerous tasks such as information retrieval (IR),
question answering, and product recommendation. For example, in information retrieval, a Web search
engine is required to rank and return a set of documents relevant to a query issued by a user. We propose
RankDE, a ranking method that uses differential evolution (DE) to learn a ranking function to rank a list
of documents retrieved by a Web search engine. To the best of our knowledge, the proposed method is the
first DE-based approach to learn a ranking function for IR. We evaluate the proposed method using LETOR
dataset, a standard benchmark dataset for training and evaluating ranking functions for IR. In our experi-
ments, the proposed method significantly outperforms previously proposed rank learning methods that use
evolutionary computation algorithms such as Particle Swam Optimization (PSO) and Genetic Programming
(GP), achieving a statistically significant mean average precision (MAP) of 0.339 on TD2003 dataset and
that of 0.430 on the TD2004 dataset. Moreover, the proposed method shows comparable results to the state-
of-the-art non-evolutionary computational approaches on this benchmark dataset. We analyze the feature
weights learnt by the proposed method to better understand the salient features for the task of learning to
rank for information retrieval.

1 Introduction
The World Wide Web has grown into a huge collection

of Web pages containing information regarding numerous
concepts. Web search engines have gain popularity as one
of the most important access methods to the Web [1]. Web
search engine users formalize their information need in the
form of a search query and retrieve the information that
they seek for. As a result of both the vast amount of Web
pages and the ambiguity in queries, a search engine often
retrieves numerous documents for a single query. To re-
duce the burden of users to go through the entire list of re-
trieved documents to find the information they are search-
ing for, search engines rank the retrieved set of documents
according to the relevancy of a document to a query issued
by the user and displays a ranked list of documents. Ac-
curate ranking of the retrieved set of documents is there-
fore an important component in a search engine that en-
ables users to quickly find the information that they need.
On the other hand, if a search engine often ranks docu-
ments that are irrelevant to user queries as the top hits, then
the users loose confidence in that search engine. Conse-

∗Contact Address:Graduate School of Information Science, The Uni-
versity of Tokyo,
7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan.
E-mail: danushka@iba.t.u-tokyo.ac.jp

quently, learning to rank documents retrieved for a user
query has gained much attention and several initiatives
have taken place such as the Yahoo!’s Learning to Rank
Challenge1, and Micsrosot’s LETOR project2.

Learning an accurate ranking function to rank a set of
documents retrieved for a given user query remains a diffi-
cult problem because of several challenges. First, there are
many factors a ranking function must take into considera-
tion in the Web when determining the rank of a document
such as the content of the page (i.e. whether the docu-
ment contains the words in the query or not), link struc-
ture (i.e. the number of in-bound and out-bound links to
the document), novelty (i.e. how regularly the content of
the document is revised?), authority (i.e. encyclopedic re-
sources such as Wikipedia vs. a blog) etc. Integrating
those heterogenous factors to construct a single ranking
function is a non-trivial task. Second, the learning algo-
rithm must be fast and scalable to be used in a Web search
engine. For example, LETOR dataset contains over 25
million documents with rank information annotated that
must be used to learn a ranking function. Moreover, speed
at test (retrieval) time is also important because a search

1http://learningtorankchallenge.yahoo.
com/

2http://research.microsoft.com/en-us/um/
beijing/projects/letor/



engine must rank and return a large number of documents
for a single user query. Third, the measures that are used
to evaluate a ranking algorithm in information retrieval
such as Mean Average Precision (MAP) and Normalized
Discounted Cumulative Gain (NDCG) are non-convex and
difficult to directly optimize by conventional optimization
tools. Most existing approaches for learning to rank resort
to some sort of a convex approximation to those measures
and then use standard machine learning algorithms.

In this paper, we propose a rank learning approach us-
ing differential evolution (DE) [27, 26] that we designate
RankDE. The proposed method directly optimizes over the
evaluation metrics used in information retrieval such as
MAP and NCDG, without requiring any approximations.
The main contributions of our work can be summarized as
follows.

• We propose RankDE, a rank learning method for in-
formation retrieval using differential evolution.

• We evaluate the proposed method on the LETOR
dataset – a benchmark dataset developed by Microsoft
Research to systematically evaluate different rank
learning methods. Our method outperforms numer-
ous baselines that are popularly used to rank doc-
uments in Web search such as BM25, as well as
previously proposed rank learning algorithms that
use evolutionary computation (EC) methods such as
Genetic Programming (GP) [32] and Particle Swam
Optimization (PSO) [6]. Moreover, the proposed
method outperforms non-EC methods such as RankSVM
(based on Support Vector Machines) and RankBoost
(based to AdaBoost).

• We analyze the weights learnt by the proposed method
for numerous popular features that are used to learn
ranking functions in IR to gain an insight into the
importance of different features for the task of learn-
ing to rank for IR.

The remainder of this paper is organized as follows. We
first introduce the learning to rank problem in Section 2.1
followed up by a brief overview of differential evolution
in Section 2.2. Next, our proposed rank learning method,
RankDE, is presented in Section 3. We compare the pro-
posed method against numerous baselines as well as previ-
ously proposed EC approaches and non-EC approaches in
Section 4. We analyze the weights learnt by the proposed
method for the different features used in learning ranking
functions. We review related previous work on this topic
in Section 5 and conclude the paper.

2 Background
In this Section, we describe the problem of learning to

rank for information retrieval and present a brief overview
of differential evolution. This background information will
be helpful to better understand the proposed ranking method,
which is presented in detail in Section 4.

2.1 Learning to Rank Problem

The learning to rank problem in the context of infor-
mation retrieval consists of two main phases: the train-
ing phase where we learn a ranking function from a set of
annotated training data, and the test (i.e. retrieval) phase
where we apply the learnt ranking function to rank a set of
documents retrieved by a search engine for a user query.
Specifically, in the training phase, a learning algorithm
is presented with a collection of queries and their corre-
sponding retrieved documents. Moreover, the documents
are assigned with some labels that indicate the relevance
judgements of those documents to their corresponding query.
The relevance judgements are assigned by human annota-
tors. For example, an annotator might annotate a set of
documents by assigning some ranking score to each doc-
ument depending on its relevance to the query. A higher
ranking score indicates that a document with such a score
is more relevant to the user query and must be ranked at
the top.

The objective of learning is to construct a ranking model
(e.g. a ranking function) that achieves the best agree-
ment with the ranking induced by the scores assigned by
the human annotators. The agreement between a ranking
produced by an algorithm and that of a human annota-
tor for a set of documents can be measured using numer-
ous rank evaluation metrics such as Mean Average Pre-
cision (MAP), Normalized Discounted Cumulative Gain
(NDCG), Kendall’s rank correlation coefficient and Spear-
man’s rank correlation coefficient. Traditionally, both MAP
and NDCG have been used in the information retrieval
community to evaluate rankings in Web search engines be-
cause those measures are shown to be correlating well with
the document relevance in the Web search settings [12].

Once a ranking function is learnt using a set of training
data, it can be used to rank a set of documents retrieved
for a user query at test (i.e. retrieval) phase. Let us de-
note the set of queries by Q = {q1, . . . , q|Q|}, where we
use the notation, |Q| to represent the number of element
in set Q. Likewise, let D = {d1, . . . , d|D|} be the set of
documents. Then, the training dataset is created as a set of
query-document pairs, (qi, dj) ∈ Q × D, in which each



element is assigned with a relevance judgement (e.g. a la-
bel) y(qi, dj) indicating the relationship between qi and dj

by a human annotator. For example, the relevance judge-
ment can be simply a binary relevance indicating whether
the document dj is relevant (i.e. y(qi, dj) = 1) or non-
relevant ((i.e. y(qi, dj) = 0) for the query qi, or it can be
some ranking score (i.e. (i.e. y(qi, dj) ∈ R) that induces
a total ordering among all the documents dj retrieved for
the query qi. A query-document pair (q, d) is represented
using a feature vector φ(q, d). The actual features used
for training are discussed later in Section 4.1. The rank-
ing model is defined as a real valued function f(q, d) over
features as follows,

f(q, d) = w>φ(q, d). (1)

Here, w denotes a weight vector indicating the importance
of each feature towards the ranking score returned by the
ranking function. To rank the documents retrieved for a
query qi, we compute f(qi, dj) for each retrieved docu-
ment dj using Eq.1 and sort the documents in the descend-
ing order of their ranking score. Limiting the ranking func-
tions to linear combinations of features as defined in Eq.1
is common to all previous work in learning to rank for in-
formation retrieval. Web search engines must rank and
present a large number of documents to a single user query
within few milliseconds. Consequently, the linear ranking
function defined in Eq.1 only requires the inner product
between two vectors, which can be computed quickly and
makes it attractive as a ranking function for large-scale in-
formation retrieval systems.

2.2 Differential Evolution

Differential evolution (DE), proposed by Storn and Price
[27], is a simple yet powerful population-based stochas-
tic search technique for solving global optimization prob-
lems. DE has been used successfully in numerous fields
such as pattern recognition [27], communication [15], and
mechanical engineering [25], to optimize non-convex, non-
differentiable and multi-modal objective functions. DE
has many attractive properties compared to other evolu-
tionary algorithms such as, implementation simplicity, the
small number of control parameters, fast convergence rate,
and robust performance.

DE is has only a few control variables which remain
fixed throughout the optimization process, which makes it
easy to implement. Moreover, DE can be implemented in
a parallel processing framework, which enables it to pro-
cess a large number of training instances efficiently. These

properties of DE makes it an ideal candidate for the cur-
rent task of learning a ranking function for information
retrieval, where we must optimize non-convex objective
functions such as MAP and NDCG measures over large
datasets. Next, we briefly outline the main steps in DE.
For further details of DE and its comparison to other evo-
lutionary computational approaches refer [27]. Without a
loss of generality, we will consider the problem of max-
imizing a given objective function. (A similar approach
can be followed for minimization.)

DE is a parallel direct search method which utilizes P

number of L-dimensional parameter vectors, xi,G, where
i = 1, . . . , P . Here, we denote the population size by
P and the i-th individual in the G-th generation is repre-
sented by an L-dimensional vector xi,G. The population
size, P , does not change during the optimization process
and the initial population is created by randomly generat-
ing the vectors such that they cover the entire range of val-
ues of the parameter space. In DE, we do not use selection
pressure for selecting parents. Instead, in each generation,
every individual xi,G, once becomes the principal parent
to breed its own offsprings mating with other parents.

DE generates new parameter vectors by adding the weighted
difference between two population vectors to a third vec-
tor. This differential operation is often referred to as mu-
tation in DE. Using the above notation, we can write the
mutation operation as follows,

vi,G+1 = xr1,G + F (xr2,G − xr3,G). (2)

Here, vi,G+1 is a mutant vector and r1, r2, r3 are three
mutually different random indexes selected from the set
{1, 2, 3, . . . , NP}. The value, F (> 0), is a real number
typically less than one.

To increase the diversity of the mutated parameter vec-
tors, a crossover operation is performed. A trial vector
(i.e. the child), ui,G+1 = (u1i,G+1, . . . , uLi,G+1) is con-
structed from the mutated vector, vi,G+1, and the original
population vector (i.e. the parent), xi,G, according to the
following criterion,

uji,G+1 =
{

vji,G+1 IF (randb(j) ≤ CR) OR (j = rnbr(i)),

xji,G IF (randb(j) > CR) AND (j 6= rnbr(i)).
(3)

Here, randb(j) is the j-th evaluation of a uniform random
number generator with outcomes in the range [0, 1], CR ∈
[0, 1] is a user-specified crossover constant, and rnbr(i)
is a randomly chosen index from the set {1, 2, . . . , L},
which ensures that ui,G+1 gets at least one parameter from
vi,G+1.

The selection scheme used in DE is also known as parent-
child competition. Specifically, once the child ui,G+1 is



computed according to the above-mentioned procedure the
objective function is evaluated for the child ui,G+1 and the
parent xi,G. If ui,G+1 yields a higher objective function
value than that by xi,G, then xi,G+1 is set to ui,G+1. Oth-
erwise, the parent (i.e. xi,G) is retained for the (G + 1)-th
generation.

3 Proposed Rank Learning Method
for IR: RankDE

Motivated by the success of DE in a wide range of tasks,
we propose RankDE, a learning to rank method for infor-
mation retrieval using DE. The goal of RankDE is to dis-
cover a good ranking functions adapted to the properties of
a given query-document collection, which are also able to
generalize to unseen new queries and documents retrieved
at test times. Main steps of RankDE are summarized in
Algorithm 1.

RankDE takes as input a training dataset T and a vali-
dation dataset V that contain query-document pairs (q, d)
with their corresponding feature vectors φ(q, d). As an
instance of DE, RankDE learns a weight vector xi,G that
optimizes some fitness function, which evaluates how well
the rank scores assigned by the learnt ranking function
agree with those assigned by the human annotators. The
final output of Algorithm 1 is the parameter vector that
maximizes the fitness function. We use Mean Average
Precision (MAP) [1] (defined in Section 4.2) as the fitness
function. MAP is frequently used to measure the accuracy
of a document ranking algorithm in information retrieval
systems. In addition to the training set T , we also consider
a validation set V , also provided in the LETOR bench-
mark dataset to compute the fitness function. The use of
both training and validation data enables us to avoid over-
fitting to training data and consequently find a solution that
not only has good accuracy on training data, but can also
generalize well to unseen test data. The fitness function,
Fitness(w, T, V ), used by RankDE is defined as follows,

Fitness(w, T, V ) = MAP(w, T ) + MAP(w, V ). (4)

Here, MAP(w, T ) and MAP(w, V ) respectively denote
the mean average precision values that we would obtain
on training and validation data if we use the weight vector
w in ranking function f(q, d) (Eq.1) to assign a score to
each document d according to its relevancy to a query q

and then sort those documents in the descending order of
the assigned scores to obtain a ranked list of documents.

Algorithm 1 RankDE: A DE-based rank learning algo-
rithm.
Input: (i) A training set T of query-document pairs with

their feature vectors. (ii) A validation set V of query-
document pairs with their feature vectors.

Output: A ranking function f(q, d) that assigns a score
to a document d indicating its relevancy to a query q.

1: for each generation G do
2: for each parent i in generation G do
3: select distinct r1, r2, r3 randomly from current

population.
4: compute vi,G+1 using Eq.2.
5: compute ui,G+1 using Eq.3.
6: if Fitness(ui,G+1, T, V ) > Fitness(xi,G, T, V )

then
7: xi,G+1 = ui,G+1

8: end if
9: end for

10: end for
11: return f(q, d) = w>φ(q, d), where w is the individ-

ual with the highest fitness value in the final popula-
tion.

4 Experiments
In this Section, we first describe the LETOR dataset and

then present the experimental results on this benchmark
dataset.

4.1 Datasets

We use the LETOR (version 2.0) benchmark dataset [20],
which is used in much previous work investigating the
problem of learning to rank for information retrieval. By
using this dataset, we can directly compare the perfor-
mance of the proposed method against previously proposed
learning to rank algorithms for information retrieval. The
LETOR version 2.0 consists of TD2003 and TD2004 datasets,
which were part of the topic distillation task of Text RE-
trieval Conference (TREC) in year 2003 and 2004. TD2003
dataset contains 50 queries and TD2004 dataset contains
75 queries. The document collection contains 1, 053, 110
documents together with 11, 164, 829 hyperlinks and is
based on a January, 2002 crawl of the .gov domain. Topic
distillation aims to find a list of documents relevant to a
particular topic. The TREC committee provides judge-
ments for the topic distillation task. For each query in
TD2003 and TD2004 datasets, there are about 1, 000 doc-
uments listed. Each query-document pair is given a binary



judgement indicating whether a document is relevant or
non-relevant for a particular query.

A query-document pair in the LETOR dataset is rep-
resented using a 44 dimensional feature vector. The nu-
merous features used in the LETOR dataset are shown in
Table 1. The features include numerous ranking heuris-
tics popularly used in the information retrieval community
to rank a list of retrieved documents. The set of features
used in LETOR includes low-level features such as, term
frequency (tf), inverse document frequency (idf), docu-
ment length (dl) combinations of low-level features such
as tf*idf [1], as well as high-level features such as BM25
[23] and LMIR [33]. Hyperlink structure provides useful
clues about the relevancy of a web page. Consequently,
several features are computed using the hyperlink infor-
mation in LETOR datasets such as PageRank [19], HITS
[16], HostRank [31], topical PageRank and topical HITS
[18].

It is noteworthy that the values of features extracted for
documents retrieved for different queries are not compara-
ble. Therefore, we first normalize the values of each fea-
ture across all documents retrieved for a particular query.
Let us denote the set of documents retrieved for query qi

by D(qi) and a document in this set by dj (i.e. dj ∈
D(qi)). Moreover, let us denote the k-th feature in the fea-
ture vector φ(qi, dj) representing a query-document pair
(qi, dj) by φk(qi, dj). Then, the normalized value of φk(qi, dj)
(∈ [0, 1]) is calculated as follows,

φk(qi, dj) =
φk(qi, dj) − min{φk(qi, dj)}

max{φk(qi, dj)} − min{φk(qi, dj)}
. (5)

4.2 Evaluation Measures

To evaluate a ranking produced by an algorithm for a set
of documents retrieved for a particular query, we can com-
pare it against the ranking induced by the scores assigned
by a human annotator for those documents. Precision at
position n (P@n), Mean Average Precision (MAP), and
normalized discounted cumulative gain (NDCG) are three
widely used rank evaluation measures in the information
retrieval community. Next, we describe each of those eval-
uation measures in detail.

Precision at rank n (P@n) [1] measure is defined as
the proportion of the relevant documents among the top
n-ranked documents,

P@n =
No. of relevant docs in top n results

n
. (6)

Average precision averages the P@n at over different n

values to produce a single measure for a given query as

表 1: Features in the LETOR TD2003 and TD2004
datasets.

Category Feature No. of
features

Content (low-level)

tf [1] 4
idf [1] 4
dl [1] 4
tfidf [1] 4

Content (high-level)
BM25 [23] 4
LMIR [33] 9

Hyperlink

PageRank [19] 1
Topical PageRank
[18]

1

HITS [16] 2
Topical HITS [18] 2
HostRank [31] 1

Hybrid
Hyperlink-base rel-
evance propagation
[24]

6

Sitemap-based rel-
evance propagation
[21]

2

Total 44

follows,

AP =
∑N

n=1(P@n × rel(n))
No. of relevant docs for this query

. (7)

Here, N is the number of retrieved documents, and rel(n)
is a binary function that returns the value 1 if the n-th
ranked document is relevant to the query under consid-
eration and 0 otherwise. Mean average precision (MAP)
is computed as the average of AP over all queries in the
dataset.

NDCG considers the reciprocal of the logarithm of the
rank assigned to relevant documents. For a ranked list of
documents retrieved for a query, NDCG value at position
n, NDCG@n, is computed as follows,

NDCG@n = Zn

n∑
j=1

2r(j) − 1
log(1 + j)

. (8)

Here, r(j) is the rating of the j-th document in the ranked
list, and the normalization constant Zn is chosen such that
a perfectly ranked list would obtain an NDCG@n score
of 1. For the TD2003 and TD2004 datasets, we define
two values of ratings 0 and 1 respectively corresponding to
relevant and non-relevant documents in order to compute
NDCG scores. In our evaluations, we report the average



表 2: Parameter settings for RankDE.
Parameter Value

Population size (P) 50
maximum no. of generations 10, 000
no. of dimensions (L) 44
F value 0.5
crossover rate (CR) 0.5

values taken over all the queries in a dataset as P@n and
NDCG@n.

4.3 Parameter Settings

The parameter settings for RankDE are shown in Table
2. The parameter values for the differential evolution al-
gorithm are set to those most commonly found in the liter-
ature. Each individual is represented by a 44 dimensional
real-valued vector in which, each dimension corresponds
to some feature found in the LETOR datasets. Moreover,
the initial population is generated randomly by selecting
the parameter values from the range [−1, 1].

4.4 Evaluation Procedure and Baselines

We compare our DE-based learning to rank algorithm,
RankDE, with several baselines and previously proposed
EC-based rank learning algorithms using TD2003 and TD2004
datasets. Next, we briefly describe each of those algo-
rithms.

BM25: BM25 [23] is a non-learning ranking function that
combines numerous statistics to compute a ranking
score that reflects the relevancy of a document to a
given query. It utilizes information such as the num-
ber of times the query occur in a document (i.e. term
frequency), the number of documents that contains
the query (i.e. document frequency), the length of
the document in words, and the average length of a
document (i.e. the average number of words con-
tained in any document in the collection). BM25
was successfully used in the Okapi information re-
trieval system and is popularly known as Okapi BM25.
This baseline demonstrates the performance that we
would obtain if we did not use any training data to
learn a ranking function.

RankSVM: Ranking Support Vector Machine [13] is an
extension to the standard binary support vector clas-
sifier [29] that performs ordinal regression. Specifi-
cally, RankSVMs learn a large margin classifier that
minimizes the number of discordant pairs between
two sets of ranks. It is a pairwise learning algorithm,
which indirectly optimizes the rank evaluation mea-
sures such as the MAP, via minimizing the number
of discordant pairs between a human-made ranking
and a system-made ranking.

RankBoost: Freund et al. [10] proposed RankBoost to
combine multiple rankings using the AdaBoost [11]
algorithm. RankBoost works by combining multi-
ple weak rank scores of a given set of training in-
stances. The weak rank scores might be only weakly
correlated with the target (human assigned) ranking
scores. By combining such a set of weak rank scores
via boosting, RankBoost is able to learn an accurate
ranking function. The features exist in the LETOR
datasets such as term-frequency, PageRank, BM25,
etc. are used to create the weak rankings by the
RankBoost algorithm.

SwamRank: This is a particle swam optimization (PSO)-
based ranking algorithm that attempts to learn a lin-
ear combination of numerous ranking functions in
the form of Eq.1. SwamRank [6] directly optimizes
the MAP for a given training dataset.

GPRank: This is the genetic programming-based rank learn-
ing algorithm proposed by Yeh et al. [32] for infor-
mation retrieval. Similar to SwamRank, GPRank di-
rectly optimizes the MAP for a given training dataset.
Both SwamRank and GPRank are further detailed in
the Related Work Section (i.e. Section 5).

RankDE: This is the DE-based rank learning algorithm
proposed in this paper.

We conduct 5-fold cross-validation using the LETOR
datasets, following the official guidelines and data parti-
tions as described in the LETOR project [20]. For each
fold, we use three subsets as training data, one subset as
validation data, and the remaining subset for testing. To
report the performance of the ranking function learnt by
RankDE, we compute the evaluation measures MAP, P@N ,
and NDCG@n on the test. The reported performance in
this paper is the average over the five folds.



表 3: Ranking performance on the TD2003 dataset.
Method BM25 RankSVM RankBoost SwamRank GPRank RankDE

MAP 0.126 0.256 0.212 0.209 0.283 0.339
P@1 0.120 0.420 0.260 0.453 0.520 0.600
P@2 0.130 0.350 0.270 0.330 0.420 0.400
P@3 0.160 0.340 0.240 0.269 0.370 0.333
P@4 0.145 0.300 0.230 0.223 0.330 0.300
P@5 0.148 0.264 0.220 0.207 0.280 0.280
P@6 0.140 0.243 0.210 0.188 0.270 0.250
P@7 0.129 0.234 0.211 0.185 0.250 0.243
P@8 0.120 0.233 0.193 0.173 0.240 0.237
P@9 0.116 0.218 0.182 0.164 0.230 0.222
P@10 0.109 0.206 0.178 0.151 0.220 0.210

NDCG@1 0.120 0.420 0.260 0.453 0.520 0.600
NDCG@2 0.140 0.370 0.280 0.343 0.450 0.445
NDCG@3 0.176 0.379 0.270 0.307 0.420 0.388
NDCG@4 0.174 0.363 0.272 0.284 0.390 0.356
NDCG@5 0.183 0.347 0.279 0.278 0.380 0.336
NDCG@6 0.184 0.341 0.280 0.271 0.370 0.310
NDCG@7 0.184 0.340 0.287 0.273 0.360 0.300
NDCG@8 0.185 0.345 0.282 0.270 0.350 0.292
NDCG@9 0.186 0.342 0.282 0.267 0.350 0.279
NDCG@10 0.186 0.341 0.285 0.263 0.350 0.267

4.5 Results

Tables 3 and 4 compare the performance of the pro-
posed RankDE against the methods described in Section
4.4 respectively using the LETOR2 TD2003 and TD2004
datasets. Except for RankDE, all other results reported in
Tables 3 and 4 are obtained from published work and we
do not implement those methods here by ourselves. All re-
sults reported in Tables 3 and 4 use the officially released
LETOR2 datasets and evaluation tools, which enable us to
make a direct and a fair comparison.

From Tables 3 and 4 we see that the proposed RankDE
has the best performance in terms of MAP scores among
the different methods compared. The improvements re-
ported by RankDE over all other methods are statistically
significant (paired t-test at probability level 0.05). More-
over, RankDE has the highest NDCG@1 and P@1 values
in both TD2003 and TD2004 datasets. This implies that
the proposed DE-based rank learning method (RankDE) is
able to rank relevant documents as the first hit, which is a
desirable quality of a ranking function for a search engine.
It is interesting to note that on the TD2004 dataset, none
of the previously proposed EC-based ranking algorithms
(i.e. SwamRank and GPRank) were unable to outperform

RankBoost, a non-EC algorithm. However, the proposed
DE-based rank learning algorithm (RankDE) outperforms
RankBoost as well as all the other algorithms in this dataset
as well.

4.6 Feature Analysis

Recall that the ranking function we learn (defined in
Eq.1) using the proposed method can be interpreted as a
weighted linear combination of 44 different features. By
inspecting the final weight vector returned by Algorithm
1 we can gain some insight into which features are im-
portant for determining the relevance of a document re-
trieved for a query. The weights learnt by RankDE us-
ing the TD2003 dataset for different features are shown
in Table 5. We have sorted the features in the descend-
ing order of their weights. Although not shown here for
the limited availability of space, a similar ranking among
features is observed for the weight vector learnt using the
TD2004 dataset. From Table 5, we see that heuristics
that are known to produce better document rankings such
as the HostRank, inverse document frequency (idf) of the
body text, inbound hyperlinks and HITS are assigned high



表 4: Ranking performance on the TD2004 dataset.
Method BM25 RankSVM RankBoost SwamRank GPRank RankDE

MAP 0.282 0.350 0.384 0.314 0.362 0.430
P@1 0.307 0.440 0.480 0.400 0.450 0.692
P@2 0.293 0.407 0.447 0.380 0.420 0.500
P@3 0.258 0.351 0.404 0.351 0.380 0.436
P@4 0.243 0.327 0.347 0.317 0.330 0.404
P@5 0.229 0.291 0.323 0.296 0.320 0.385
P@6 0.224 0.273 0.304 0.278 0.300 0.333
P@7 0.210 0.261 0.293 0.253 0.280 0.308
P@8 0.192 0.247 0.277 0.235 0.260 0.308
P@9 0.182 0.236 0.262 0.221 0.250 0.282
P@10 0.175 0.225 0.253 0.215 0.240 0.254

NDCG@1 0.307 0.440 0.480 0.400 0.450 0.692
NDCG@2 0.327 0.433 0.473 0.413 0.440 0.544
NDCG@3 0.314 0.409 0.464 0.404 0.430 0.488
NDCG@4 0.315 0.406 0.439 0.393 0.440 0.458
NDCG@5 0.319 0.939 0.437 0.391 0.440 0.438
NDCG@6 0.325 0.397 0.448 0.394 0.450 0.399
NDCG@7 0.326 0.406 0.457 0.392 0.460 0.377
NDCG@8 0.324 0.410 0.461 0.396 0.470 0.371
NDCG@9 0.332 0.414 0.464 0.397 0.470 0.350
NDCG@10 0.335 0.420 0.472 0.402 0.470 0.328

positive weights by RankDE. The ability of the proposed
method to detect salient features for ranking is important
if we want to use a large number of features in an infor-
mation retrieval system. For example, we can prune the
trained model based on the weights learnt for different fea-
tures to improve the speed during test (retrieval) phase,
which can be critical for online Web search engines.

5 Related Work
Learning to rank has received much attention lately as

a result of the popularity of Web information retrieval and
recommender systems. A Web search engine must rank a
set of retrieved documents for a user query according to
their relevance, whereas a recommender system must rank
a list of product items for each user according to their pref-
erences. Three different approaches exist to learn a rank-
ing function for information retrieval: pointwise approach,
pairwise approach and listwise approach.

In the pointwise approach [14, 4] each query-document
pair is considered separately during training to learn an
ordinal regression function that outputs a rank. The point-
wise approach does not consider the relative preferences

between two documents retrieved for the same query. Con-
sequently, it has shown poor performance in learning to
rank.

In contrast, the pairwise approach [13, 10, 2, 28] consid-
ers two documents dj and dk retrieved for the query qi and
forms pairwise preferential constraints. For example, if the
human annotators prefer a document dj to dk as being rel-
evant for qi, then the constraint f(qi, dj) > f(qi, dk) is
formed. The weight vector w is optimized such that the
majority of the pairwise preference constraints are satis-
fied. Pairwise rank learning is closely related to the prob-
lem of binary classification and numerous algorithms have
been employed successfully under the pairwise approach
to learn a ranking function such as Ranking Support Vector
Machines (RankSVM) [13], RankBoost [10], and RankNet
[2] respectively based on support vector machines [29],
AdaBoost [11], and neural networks. However, one fun-
damental problem associated with the pairwise approach
is that it only considers two documents at a time and ig-
nore the other documents retrieved for a query. This is
particularly severe in the case of learning to rank for infor-
mation retrieval because at test time we must decide the
total ordering of a list of documents and not partial order-
ings between two documents.



表 5: Weights learnt for the different features by RankDE.
Feature Weight

HostRank 5.9932
idf(body) 3.938
HyperlinkScore(weighted-in-link) 3.798
HITS(hub) 3.548
tfidf(anchor) 2.571
LMIR.ABS(title) 2.299
LMIR.JM(anchor) 2.091
BM25(anchor) 1.870
TopicalHITS(authority) 1.727
HyperlinkFeature(weighted-in-link) 1.653
TopicalPageRank 1.460
LMIR.DIR(anchor) 1.440
sitemap2 1.341
BM25(title) 1.168
BM25(exttitle) 1.106
BM25 0.964
tf(url) 0.894
tfidf(url) 0.794
HyperlinkScore(weighted-out-link) 0.693
tfidf(title) 0.613
DL(body) 0.590
LMIR.JM(title) 0.491
tf(title) 0.453
LMIR.ABS(anchor) 0.280
tf(anchor) 0.248
LMIR.JM(title) 0.183
HyperlinkFeature(uniform-out-link) −0.053
HITS(authority) −0.416
tfidf(body) −0.504
sitemap1 −0.517
HyperlinkScore(uniform-out-link) −0.571
TopicalHITS(hub) −0.611
LMIR.ABS(exttitle) −0.841
PageRank −0.989
LMIR.JM(exttitle) −1.020
DL(title) −1.082
DL(anchor) −1.122
HyperlinkFeature(weighted-out-link) −1.152
tf(body) −1.371
LMIR.DIR(exttitle) −2.047
idf(anchor) −4.365
idf(title) −7.841
DL(url) −8.210
idf(url) −11.305

The listwise approach [22, 3, 17, 30] consider the entire
set of documents retrieved for a query during the training
phase, there by overcoming the above-mentioned disflu-
encies in the pointwise and pairwise approaches. Because
in information retrieval we must apply the learnt ranking
function to induce a total ordering for a set of documents
retrieved for a user query, the listwise approach models
this setting closely compared to the pointwise or the pair-
wise approaches. Therefore, we follow the listwise ap-
proach in this paper to learn a ranking function from a
given set of training data. Different loss functions have
been employed in prior work on listwise rank learning
leading to numerous algorithms such as ListNet [3] us-
ing cross entropy, RankCosine [22] using cosine loss, and
ListMLE [30] using likelihood loss. However, these meth-
ods do not directly optimize the evaluation criteria used in
information retrieval such as MAP or NDCG, instead ap-
proximate them via the above-mentioned loss functions.
In contrast, our proposed method can directly optimize
those evaluation criteria without requiring any approxima-
tions.

Genetic programming (GP) has been used to learn rank-
ing functions in literature. Fan et al. [8, 9, 7] proposed
a GP-based approach to learn a term-weighting formula
by combining different parameters. First, they use an ex-
pression tree data structure to represent a term-weighting
formula and then apply genetic programming to select the
best performing function. Numerous operators such as ad-
dition, subtraction, multiplication, division, square root,
logarithm etc. are considered. Almeida et al. [5] propose
Combined Component Approach (CCA), a GP-based rank-
ing function, that combines several term-weighting com-
ponents such as term frequency, collection frequency, etc.
to generate new ranking functions. Yeh et al. [32] pro-
pose a learning method that employs GP to learn a rank-
ing function for information retrieval using the LETOR
dataset. In this paper, we refer this GP-based rank learn-
ing method as GPRank. Diaz-Aviles et al. [6] propose
SwamRank, a ranking method that uses particle swam op-
timization (PSO). They use the LETOR benchmark dataset
and learn a linear combination of different features that
represent a query-document pair to maximize average pre-
cision or NDCG measure on train data. As shown in our
experiments on the LETOR benchmark dataset (Section
4), our proposed method (RankDE) which uses differen-
tial evolution outperforms both GP (GPRank) and PSO
(SwamRank) based previously proposed methods.



6 Conclusion
In this paper, we proposed a differential evolution-based

rank learning method for information retrieval. The pro-
posed method (named as RankDE) directly optimizes the
mean average precision (MAP) over a set of queries, with-
out requiring any convex approximations as required by
most of the previously proposed rank learning algorithms
for information retrieval. We evaluated the proposed method
using the LETOR benchmark datasets. In our experiments,
the proposed method significantly outperformed numerous
other rank learning methods such as BM25, RankSVM,
RankBoost, SwamRank and GPRank. Moreover, a close
investigation into the weights learnt by the proposed method
for different features used for learning reveals that the pro-
posed method can accurately detect salient features for
ranking. In our future work, we plan to study different
parameter settings and local search techniques to further
improve the performance of the proposed method.

参考文献
[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Infor-

mation Retrieval. Addison-Wesley, 1999.

[2] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learn-
ing to rank using gradient descent. In ICML 2005,
pages 89–96, 2005.

[3] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li.
Learning to rank: From pairwise approach to listwise
approach. In ICML 2007, pages 129–136, 2007.

[4] K. Crammer and Y. Singer. Pranking with ranking.
In NIPS’01, 2001.

[5] H. M. de Almeida, M. A. Goncalves, M. Cristo, and
P. Calado. A combined component approach for find-
ing collection-adapted ranking functions based on
genetic programming. In SIGIR 2007, pages 399–
406, 2007.

[6] E. Diaz-Aviles, W. Nejdl, and L. Schmidt-Thieme.
Swarming to rank for information retrieval. In
GECCO 2009, pages 9–15, 2009.

[7] W. Fan, M. D. Gordon, and P. Pathak. Personaliza-
tion of search engine services for effective retrieval
and knowledge management. In twenty first interna-
tional conference on information systems (ICIS’00),
pages 20 – 34, 2000.

[8] W. Fan, M. D. Gordon, and P. Pathak. Discovery of
context-specific ranking functions for effective infor-
mation retrieval using genetic programming. IEEE
Transactions on Knowledge and Data Engineering,
16(4):523–527, 2004.

[9] W. Fan, M. D. Gordon, and P. Pathak. Genetic
programming-based discovery of ranking functions
for effective web search. Journal of Management In-
formation Systems, 21(4):37–56, 2005.

[10] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining prefer-
ences. Journal of Machine Learning Research, 4:933
– 969, 2003.

[11] Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application
to boosting. Journal of Computer and System Sci-
ences, 55(1):119 – 139, 1997.

[12] B. He, C. Macdonald, and I. Ounis. Retrieval sen-
sitivity under training using different measures. In
SIGIR’08, pages 67 – 74, 2008.

[13] R. Herbrich, T. Graepel, and K. Obermayer. Support
vector learning for ordinal regression. In ICANN’99,
pages 97 – 102, 1999.

[14] R. Herbrich, T. Graepel, and K. Obermayer. Large
margin rank boundaries for ordinal regression. Ad-
vances in Large Margin Classifiers, pages 115 – 132,
2000.

[15] J. Ilonen, J.-K. Kamarainen, and J. Lampinen.
Differential evolution training algorithm for feed-
forward neural networks. Neural Processing Letters,
17:93 – 105, 2003.

[16] J. M. Kleinberg. Authoritative sources in a hyper-
linked environment. Journal of the ACM, 46(5):604
– 632, 1999.

[17] Y. Lan, T.-Y. Liu, Z. Ma, and H. Li. Generalization
analysis of listwise learning-to-rank algorithms. In
ICML 2009, pages 557–584, 2009.

[18] L. Nie, B. D. Davison, and X. Qi. Topical link anal-
ysis for web search. In SIGIR’06, pages 91 – 98,
2006.

[19] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical Report SIDL-WP-1999-0120, Stanford In-
foLab, November 1999.



[20] T. Qin, T.-Y. Liu, J. Xu, W. Xiong, and H. Li. Letor:
A benchmark collection for learning to rank for in-
formation retrieval. Technical report, Microsoft Re-
search Asia, 2007.

[21] T. Qin, T.-Y. Liu, X.-D. Zhang, Z. Chen, and W.-
Y. Ma. A study of relevance propagation for web
search. In SIGIR’05, pages 408 – 415, 2005.

[22] T. Qin, X.-D. Zhang, M.-F. Tsai, D.-S. Wang, T.-Y.
Liu, and H. Li. Query-level loss functions for infor-
mation retrieval. Information Processing and Man-
agement, 2007.

[23] S. E. Robertson. Overview of the okapi projects.
Journal of Documentation, 53(1):3 – 7, 1997.

[24] A. Shakery and C. Zhai. Relevance propagation for
topic distillation uiuc trec 2003 web track experi-
ments. In TREC’03, 2003.

[25] R. Storn. Differential evolution design of an iir-filter.
In IEEE International Conference on Evolutionary
Computation, pages 268 – 273, 1996.

[26] R. Storn and K. V. Price. Differential evolution - a
simple and efficient adaptive scheme for global op-
timization over continuous spaces. Technical Report
TR-95-012, ICSI, 1995.

[27] R. Storn and K. V. Price. Differential evolution - a
simple and efficient heuristic for global optimization
over continuous spaces. Journal of Global Optimiza-
tion, 11(4):314 – 359, December 1997.

[28] M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y.
Ma. Frank: a ranking method with fidelity loss. In
SIGIR’07, pages 383 – 390, 2007.

[29] V. Vapnik. Statistical Learning Theory. Wiley,
Chichester, GB, 1998.

[30] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li. List-
wise approach to learning to rank: theory and algo-
rithm. In ICML 2008, pages 1192–1199, 2008.

[31] G.-R. Xue, Q. Yang, H.-J. Zeng, Y. Yu, and Z. Chen.
Exploiting the hierarchical structure for link analysis.
In SIGIR’05, pages 186 – 193, 2005.

[32] J.-Y. Yeh, J.-Y. Lin, H.-R. Ke, and W.-P. Yang.
Learning to rank for information retrieval using ge-
netic programming. In SIGIR Workshop on Learning
to rank for Information Retrieval (LR4IR), 2007.

[33] C. Zhai and J. Lafferty. A study of smoothing meth-
ods for language models applied to information re-
trieval. ACM Transactions on Information Systems,
22(2):179 – 214, 2004.


